Multilevel Mixed-Effects Models to Identify Contributing Factors on Freight Vehicle Crash Severity
Abstract
:1. Introduction
2. Literature Review
2.1. Crash Severity
2.2. Freight Vehicle Safety
3. Methodology
3.1. Ordered Model
3.2. Multinomial Model
3.3. Mixed Model
3.4. Random-Effects Ordered Model
3.5. Multilevel Mixed-Effects Model
3.6. Marginal Effect
4. Data Preparation
Analysis of Data
5. Results and Discussion
5.1. Ordered Model
5.2. Multinomial Model
5.3. Mixed-Effects Model
5.4. Random-Effects Ordered Model
5.5. Multilevel Mixed-Effects Ordered Model
5.6. Model Comparison
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Korea National Logistics Information Center. Available online: https://www.nlic.go.kr/nlic/front.action (accessed on 21 September 2021).
- Korea Transport DataBase (KTDB). Available online: https://www.ktdb.go.kr/www/index.do (accessed on 21 September 2021).
- Abdel-Aty, M.; Chen, C.L.; Schott, J.R. An assessment of the effect of driverage on traffic accident involvement using log linear models. Accid. Anal. Prev. 1998, 30, 851–861. [Google Scholar] [CrossRef]
- Massie, D.L.; Campbell, K.L.; Williams, A.F. Traffic accident involvement ratesby driver age and gender. Accid. Anal. Prev. 1995, 27, 73–87. [Google Scholar] [CrossRef]
- Zhang, J.; Fraser, S.; Lindsay, J.; Clarke, K.; Mao, Y. Age specific patterns offactors related to fatal motor vehicle traffic crashes: Focus on young and elderlydrivers. Public Health 1998, 112, 289–295. [Google Scholar]
- Lourens, P.F.; Vissers, J.A.; Jessurun, M. Annual mileage, driving violations, and accident involvement in relation to drivers’ sex, age, and level of education. Accid. Anal. Prev. 1999, 31, 593–597. [Google Scholar] [CrossRef]
- Kockelman, K.M.; Kweon, Y.-J. Driver injury severity: An application of ordered probit models. Accid. Anal. Prev. 2002, 34, 313–321. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, S.; Ulfarsson, G.F.; Porrello, L.A. Bicyclist injury severities in bicycle motor vehicle crashes. Accid. Anal. Prev. 2007, 39, 238–251. [Google Scholar] [CrossRef]
- Won, M.S.; Lee, G.R.; Gang, G.U. A Study on the Application of Accident Severity Prediction Model. J. Korea N Soc. Transp. 2009, 27, 167–173. [Google Scholar]
- Kim, K.H.; Park, B.H. Developing the Traffic Accident Severity Models by Accident Type. J. Korean Soc. Saf. 2011, 26, 118–123. [Google Scholar]
- Lee, H.-R.; Kum, K.-J.; Son, S.-N. A study on the factor analysis by grade for highway traffic accident. Int. J. Highw. Eng. 2011, 13, 157–165. [Google Scholar] [CrossRef]
- Lu, M.; Yan, X. Examining the nonparametric effect of drivers’s age in rear end crashes through an additive logistic regression model. Accid. Anal. Prev. 2014, 67, 129–136. [Google Scholar]
- Choi, J.W.; Kum, K.J. Analysis of Factors influencing Severity of Motorcycle Crashes using Ordered Probit Model. Int. J. Highw. Eng. 2014, 16, 143–154. [Google Scholar] [CrossRef]
- Dionne, G.; Desjardins, D.; Laberge-Nadeau, C.; Maag, U. Medical conditions, risk exposure, and truck drivers’ accidents: An analysis with count data regression models. Accid. Anal. Prev. 1995, 27, 295–305. [Google Scholar] [CrossRef]
- Chang, L.-Y.; Mannering, F. Analysis of injury severity and vehicle occupancy in truck- and non-truck-involved accidents. Accid. Anal. Prev. 1999, 31, 579–592. [Google Scholar] [CrossRef]
- Rosenbloom, T.; Eldror, E.; Shahar, A. Approaches of truck drivers and non-truck drivers toward reckless on-road behavior. Accid. Anal. Prev. 2009, 41, 723–728. [Google Scholar] [CrossRef]
- Zhu, X.; Srinivasan, S. A comprehensive analysis of factors influencing the injury severity of large-truck crashes. Accid. Anal. Prev. 2011, 43, 49–57. [Google Scholar] [CrossRef]
- Chang, L.-Y.; Chen, J.-T. Analysis of driver injury severity in truck-involved accidents using a non-parametric classification tree model. Saf. Sci. 2013, 51, 17–22. [Google Scholar] [CrossRef]
- Choi, S.; Kim, M.; Oh, C.; Lee, K. Effects of Weather and Traffic Conditions on Truck Accident Severity on Freeways. J. Korean Soc. Civ. Eng. 2013, 33, 1105–1113. [Google Scholar] [CrossRef]
- Han, S.; Jo, W.; Chang, S. Analysis on Truck Accidents using Classification and Regression Trees. J. Transp. Res. 2014, 21, 87–103. [Google Scholar]
- Hong, J.; Park, J.; Lee, G.; Park, D. Endogenous commercial driver’s traffic violations and freight truck-involved crashes on mainlines of expressway. Accid. Anal. Prev. 2019, 131, 327–335. [Google Scholar] [CrossRef]
- Park, J.; Abdel-Aty, M.; Wang, L.; Lee, G.; Hong, J. Influence of Multiple Freeway Design Features on Freight Traffic Safety. J. Adv. Transp. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Christoforou, Z.; Cohen, S.; Karlaftis, M.G. Vehicle occupant injury severity on highways: An empirical investigation. Accid. Anal. Prev. 2010, 42, 1606–1620. [Google Scholar] [CrossRef]
- Jalayer, M.; Shabanpour, R.; Pour-Rouholamin, M.; Golshani, N.; Zhou, H. Wrong-way driving crashes: A random-parameters ordered probit analysis of injury severity. Accid. Anal. Prev. 2018, 117, 128–135. [Google Scholar] [CrossRef]
- Park, J.H.; Yun, D.G.; Sung, J.G. Analysis on Factors Affecting Traffic Accident Severity Case Study: Arterial Incl uded Curve Section. J. Korean Soc. Saf. 2013, 28, 84–89. [Google Scholar] [CrossRef]
- Sarwar, T.; Anastasopoulos, P.C.; Golshani, N.; Hulme, K.F. Grouped random parameters bivariate probit analysis of perceived and observed aggressive driving behavior: A driving simulation study. Anal. Methods Accid. Res. 2017, 13, 52–64. [Google Scholar] [CrossRef]
- Shao, X.; Ma, X.; Chen, F.; Song, M.; Pan, X.; You, K. A random parameters ordered probit analysis of injury severity in truck involved rear-end collisions. Int. J. Environ. Res. Public Health 2020, 17, 395. [Google Scholar] [CrossRef] [Green Version]
- Washington, S.P.; Karlaftis, M.G.; Mannering, F.L. Statistical and Econometric Methods for Transportation Data Analysis; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Chen, Z.; Fan, W. A multinomial logit model of pedestrian-vehicle crash severity in North Carolina. Int. J. Transp. Sci. Technol. 2019, 8, 43–52. [Google Scholar] [CrossRef]
- Hensher, D.A.; Greene, W.H. Specification and estimation of the nested logit model: Alternative normalisations. Transp. Res. Part B Methodol. 2002, 36, 1–17. [Google Scholar] [CrossRef]
- Tay, R.; Choi, J.; Kattan, L.; Khan, A. A multinomial logit model of pedestrian–vehicle crash severity. Int. J. Sustain. Transp. 2011, 5, 233–249. [Google Scholar] [CrossRef]
- Vajari, M.A.; Aghabayk, K.; Sadeghian, M.; Shiwakoti, N. A multinomial logit model of motorcycle crash severity at Australian intersections. J. Saf. Res. 2020, 73, 17–24. [Google Scholar] [CrossRef]
- Wahab, L.; Jiang, H. A multinomial logit analysis of factors associated with severity of motorcycle crashes in Ghana. Traffic Inj. Prev. 2019, 20, 521–527. [Google Scholar] [CrossRef]
- Xin, C.; Wang, Z.; Lee, C.; Lin, P.-S. Modeling safety effects of horizontal curve design on injury severity of single-motorcycle crashes with mixed-effects logistic model. Transp. Res. Rec. J. Transp. Res. Board 2017, 2637, 38–46. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Yang, X.; Xu, C.; Zhu, X.; Wei, J. Driver drowsiness detection using mixed-effect ordered logit model considering time cumulative effect. Anal. Methods Accid. Res. 2020, 26, 100114. [Google Scholar] [CrossRef]
- Abdel-Aty, M. Analysis of driver injury severity levels at multiple locations using ordered probit models. J. Saf. Res. 2003, 34, 597–603. [Google Scholar] [CrossRef]
- Duncan, C.S.; Khattak, A.; Council, F.M. Applying the ordered probit model to injury severity in truck-passenger car rear-end collisions. Transp. Res. Rec. J. Transp. Res. Board 1998, 1635, 63–71. [Google Scholar] [CrossRef]
- Lee, J.; Abdel-Aty, M.; Cai, Q.; Wang, L. Effects of emergency medical services times on traffic injury severity: A random effects ordered probit approach. Traffic Inj. Prev. 2018, 19, 577–581. [Google Scholar] [CrossRef]
- Mannering, F.L.; Shankar, V.; Bhat, C.R. Unobserved heterogeneity and the statistical analysis of highway accident data. Anal. Methods Accid. Res. 2016, 11, 1–16. [Google Scholar] [CrossRef]
- Quddus, M. Effects of geodemographic profiles of drivers on their injury severity from traffic crashes using multilevel mixed-effects ordered logit model. Transp. Res. Rec. J. Transp. Res. Board 2015, 2514, 149–157. [Google Scholar] [CrossRef]
- Greene, W.H. NLOGIT Version 4.0 Reference Guide; Econometric Software, Inc.: New York, NY, USA, 2008. [Google Scholar]
- Obeng, K. Gender differences in injury severity risks in crashes at signalized intersections. Accid. Anal. Prev. 2011, 43, 1521–1531. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, K.; Huynh, N. Analysis of driver injury severity in rural single-vehicle crashes. Accid. Anal. Prev. 2012, 47, 36–44. [Google Scholar] [CrossRef]
- Maistros, A.; Schneider, W.H., IV; Savolainen, P.T. A comparison of contributing factors between alcohol related single vehicle motorcycle and car crashes. J. Saf. Res. 2014, 49, 129-e1. [Google Scholar] [CrossRef]
- Pei, X.; Wong, S.; Sze, N. A joint-probability approach to crash prediction models. Accid. Anal. Prev. 2011, 43, 1160–1166. [Google Scholar] [CrossRef]
- Russo, B.J.; Savolainen, P.; Schneider, W.H.; Anastasopoulos, P.C. Comparison of factors affecting injury severity in angle collisions by fault status using a random parameters bivariate ordered probit model. Anal. Methods Accid. Res. 2014, 2, 21–29. [Google Scholar] [CrossRef]
- Wong, S.; Sze, N.N.; Li, Y. Contributory factors to traffic crashes at signalized intersections in Hong Kong. Accid. Anal. Prev. 2007, 39, 1107–1113. [Google Scholar] [CrossRef]
- Zhou, M.; Chin, H.C. Factors affecting the injury severity of out-of-control single-vehicle crashes in Singapore. Accid. Anal. Prev. 2019, 124, 104–112. [Google Scholar] [CrossRef]
- Pour-Rouholamin, M.; Zhou, H. Investigating the risk factors associated with pedestrian injury severity in Illinois. J. Saf. Res. 2016, 57, 9–17. [Google Scholar] [CrossRef]
Variable | Frequency | Percentage | |
---|---|---|---|
Severity | Fatality | 808 | 3.57% |
Injury | 2379 | 10.52% | |
Damage only | 19,432 | 85.91% | |
Day/Night | Day | 14,971 | 66.19% |
Night | 7648 | 33.81% | |
Crash Location | Mainline | 13,644 | 60.32% |
Tollgate | 4523 | 20.00% | |
Ramp | 3200 | 14.15% | |
Tunnel | 886 | 3.92% | |
Service area | 366 | 1.62% | |
Crash Factor | Driver | 16,549 | 73.16% |
Vehicle | 3180 | 14.06% | |
Other | 2890 | 12.78% | |
Traffic Condition | Normal | 21,630 | 95.63% |
Congestion | 471 | 2.08% | |
Forward car stopped | 518 | 2.29% | |
Road Environment | Normal | 19,444 | 85.96% |
Abnormal | 3175 | 14.04% | |
Main Crash Factor | Speeding | 4237 | 18.73% |
Drowsy | 3798 | 16.79% | |
Lack of safety distance | 552 | 2.44% | |
Negligence | 5827 | 25.76% | |
Driver other | 2239 | 9.90% | |
Vehicle fault | 4008 | 17.72% | |
Road fault | 1301 | 5.75% | |
Other factors | 4237 | 18.73% | |
Crash Type | Car–Car | 4412 | 19.51% |
Car–Facility | 13,989 | 61.85% | |
Car–Person | 161 | 0.71% | |
Other types | 4057 | 17.94% | |
Weather Condition | Sunny | 14,722 | 65.09% |
Cloudy | 2999 | 13.26% | |
Rainy | 4107 | 18.16% | |
Snowy | 674 | 2.98% | |
Foggy | 103 | 0.46% | |
Other weather | 14 | 0.06% | |
Surface Condition | Dry | 17,466 | 77.22% |
Wet | 5025 | 22.22% | |
Snow | 128 | 0.57% | |
Other surface conditions | 27 | 0.12% | |
Horizontal Alignment | Straight | 19,739 | 87.27% |
Right curve | 161 | 0.71% | |
Left curve | 2719 | 12.02% | |
Longitudinal Slope | Flatness | 17,512 | 77.42% |
Uphill | 2719 | 12.02% | |
Downhill | 2388 | 10.56% | |
Pavement Condition | Normal | 22,570 | 99.78% |
Abnormal | 49 | 0.22% | |
Median Type | Wall (127 cm) | 7554 | 33.40% |
Wall (81 cm) | 3665 | 16.20% | |
Green wall | 447 | 1.98% | |
Guardrail | 2011 | 8.89% | |
Other median types | 8942 | 39.53% | |
Guardrail Type | Guardrail | 8827 | 39.02% |
Guard cable | 250 | 1.11% | |
Guard pipe | 47 | 0.21% | |
Guard fence | 302 | 1.34% | |
Concrete wall | 2035 | 9.00% | |
Other guardrails | 11,158 | 49.33% | |
Truck Vehicle Size | Small | 2666 | 11.79% |
Medium | 5910 | 26.13% | |
Large | 3850 | 17.02% | |
Trailer | 4193 | 18.54% | |
Age | Less than 20s | 5919 | 26.17% |
The 30s | 2704 | 11.95% | |
The 40s | 5541 | 24.50% | |
The 50s | 5892 | 26.05% | |
Over 60 | 2563 | 11.33% | |
Sex | Male | 22,243 | 98.34% |
Female | 376 | 1.66% | |
Vehicle Speed | Average | 91.1 km/h | |
Standard deviation | 19.62 |
Variable | Ordered Logit | Ordered Probit | Variable | Ordered Logit | Ordered Probit |
---|---|---|---|---|---|
Year | −0.0473 | −0.0251 | Congestion | 0.9239 | 0.5166 |
Day/Night | 0.1679 | 0.0803 | Forward Car Stopped | 0.7457 | 0.434 |
Tollgate | −1.7974 | −0.8306 | Saturday | N/S | −0.0765 |
Ramp | −0.5392 | −0.2777 | Snowy | −1.0312 | −0.573 |
Crash Factor-Vehicle | 0.565 | 0.3057 | Car–Car | 2.1355 | 1.1666 |
Speeding | 1.216 | 0.6427 | Car–Facility | 0.2342 | 0.1067 |
Drowsy | 1.4684 | 0.7889 | Car–Person | 4.4338 | 2.4407 |
Lack of Safety Distance | 1.1501 | 0.5937 | Right curve | 0.1382 | 0.0831 |
Negligence | 1.0731 | 0.5471 | Downhill | 0.2223 | 0.1328 |
Main Crash Factor-Driver Other | 0.9019 | 0.4704 | Construction Area | −0.3396 | −0.1643 |
The 40s | 0.143 | 0.0817 | |||
Cut 1 | 3.0998 | 1.7211 | The 50s | 0.2049 | 0.1197 |
Cut 2 | 4.9245 | 2.6932 | Over 60 | 0.3795 | 0.2092 |
Variable | Ordered Logit | Ordered Probit | ||||
---|---|---|---|---|---|---|
Y = 0 | Y = 1 | Y = 2 | Y = 0 | Y = 1 | Y = 2 | |
Year | 0.003 | −0.003 | 0.000 | 0.004 | −0.003 | −0.001 |
Day/Night | −0.013 | 0.001 | 0.012 | −0.013 | 0.011 | 0.002 |
Tollgate | 0.009 | −0.074 | 0.065 | 0.095 | −0.081 | −0.014 |
Ramp | 0.034 | −0.028 | −0.006 | 0.038 | −0.032 | −0.006 |
Crash Factor-Vehicle | −0.049 | 0.040 | 0.009 | −0.056 | 0.045 | 0.011 |
Speeding | −0.124 | 0.099 | 0.025 | −0.132 | 0.104 | 0.028 |
Drowsy | −0.163 | 0.129 | 0.034 | −0.173 | 0.133 | 0.040 |
Lack of Safety Distance | −0.132 | 0.104 | 0.028 | −0.133 | 0.102 | 0.031 |
Negligence | −0.099 | 0.080 | 0.019 | −0.103 | 0.083 | 0.020 |
Main Crash Factor-Driver Other | −0.009 | 0.072 | −0.063 | −0.095 | 0.075 | 0.020 |
Congestion | −0.098 | 0.078 | 0.020 | −0.111 | 0.087 | 0.024 |
Forward Car stopped | −0.074 | 0.059 | 0.015 | −0.089 | 0.071 | 0.018 |
Saturday | N/S | N/S | 0.000 | 0.012 | −0.001 | −0.011 |
Snowy | 0.051 | −0.042 | −0.009 | 0.062 | −0.054 | −0.008 |
Car–Car | −0.271 | 0.208 | 0.063 | −0.281 | 0.204 | 0.077 |
Car–Facility | −0.017 | 0.014 | 0.003 | −0.017 | 0.014 | 0.003 |
Car–Person | −0.799 | 0.280 | 0.519 | −0.772 | 0.245 | 0.527 |
Right Curve | −0.011 | 0.009 | 0.002 | −0.014 | 0.011 | 0.003 |
Downhill | −0.017 | 0.014 | 0.003 | −0.022 | 0.019 | 0.003 |
Construction Area | 0.022 | −0.018 | −0.004 | 0.023 | −0.002 | −0.021 |
The 40s | −0.011 | 0.009 | 0.002 | −0.013 | 0.011 | 0.002 |
The 50s | −0.016 | 0.013 | 0.003 | −0.002 | 0.016 | −0.014 |
Over 60 | −0.031 | 0.025 | 0.006 | −0.037 | 0.003 | 0.034 |
Variable | Multinomial Logit | Multinomial Probit | ||
---|---|---|---|---|
Y = 1 | Y = 2 | Y = 1 | Y = 2 | |
Year | −0.0711 | N/S | −0.0523 | N/S |
Day/Night | N/S | 0.4611 | N/S | 0.2701 |
Tollgate | −1.7136 | −2.8522 | −1.1129 | −1.5016 |
Ramp | −0.6953 | N/S | −0.5073 | N/S |
Speed | −0.0001 | 0.0023 | 0.0000 | 0.0015 |
Crash Factor-Vehicle | 0.4632 | N/S | 0.2921 | N/S |
Speeding | N/S | 1.6604 | N/S | 1.0902 |
Drowsy | 1.2371 | 2.0368 | 0.8695 | 1.3184 |
Lack of Safety Distance | 1.2421 | 1.1572 | 0.8703 | 0.7351 |
Negligence | 1.0455 | 1.3409 | 0.6955 | 0.8298 |
Main Crash Factor-Driver Other | 0.8607 | 1.1642 | 0.5674 | 0.7360 |
Road Fault | −0.6612 | N/S | −0.4136 | N/S |
Congestion | 0.7553 | 1.3675 | 0.6236 | 0.9545 |
Forward Car stopped | 0.3511 | 1.1955 | 0.3048 | 0.8553 |
Saturday | −0.1868 | N/S | −0.1431 | N/S |
Snowy | −0.7604 | −1.8752 | −0.5963 | −1.1893 |
Foggy | N/S | 0.9696 | N/S | 0.6259 |
Car–Car | 1.8494 | 3.0437 | 1.4573 | 1.9456 |
Car–Facility | 0.1865 | 0.5447 | 0.1263 | 0.2599 |
Car–Person | 3.4476 | 6.0974 | 2.6096 | 4.1560 |
Right curve | 0.1465 | 0.1383 | 0.1201 | 0.1060 |
Downhill | 0.2506 | 0.2310 | 0.1969 | 0.1819 |
Surface-wet | −0.2353 | −0.4007 | −0.1767 | −0.2773 |
Construction Area | N/S | −0.5281 | N/S | −0.2888 |
Guardrail–Guard fence | N/S | 0.5709 | N/S | 0.4080 |
The 30s | N/S | 0.6797 | N/S | 0.3915 |
The 40s | N/S | 0.7845 | N/S | 0.4883 |
The 50s | N/S | 1.0031 | N/S | 0.6191 |
Over 60 | N/S | 1.3041 | N/S | 0.8061 |
Constant | −2.4682 | −7.1413 | −1.9326 | −4.6713 |
Variable | Multinomial Logit | Multinomial Probit | ||||
---|---|---|---|---|---|---|
Y = 0 | Y = 1 | Y = 2 | Y = 0 | Y = 1 | Y = 2 | |
Year | 0.004 | −0.004 | 0.000 | 0.005 | −0.005 | 0.000 |
Day/Night | −0.005 | 0.001 | 0.004 | −0.006 | 0.000 | 0.006 |
Tollgate | 0.087 | −0.073 | −0.014 | 0.091 | −0.077 | −0.015 |
Ramp | 0.036 | −0.035 | −0.001 | 0.042 | −0.041 | −0.001 |
Speed | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Crash Factor-Vehicle | −0.042 | 0.032 | 0.009 | −0.043 | 0.029 | 0.014 |
Speeding | −0.130 | 0.107 | 0.023 | −0.134 | 0.104 | 0.030 |
Drowsy | −0.141 | 0.106 | 0.035 | −0.146 | 0.102 | 0.045 |
Lack of Safety Distance | −0.140 | 0.126 | 0.014 | −0.137 | 0.121 | 0.016 |
Negligence | −0.096 | 0.081 | 0.015 | −0.095 | 0.077 | 0.018 |
Main Crash Factor-Driver Other | −0.086 | 0.071 | 0.015 | −0.084 | 0.065 | 0.019 |
Road Fault | 0.022 | −0.033 | 0.011 | 0.024 | −0.035 | 0.011 |
Congestion | −0.083 | 0.062 | 0.022 | −0.105 | 0.074 | 0.032 |
Forward Car stopped | −0.042 | 0.024 | 0.018 | −0.058 | 0.028 | 0.030 |
Saturday | 0.011 | −0.011 | −0.001 | 0.014 | −0.013 | −0.001 |
Snowy | 0.042 | −0.035 | −0.008 | 0.052 | −0.042 | −0.009 |
Foggy | 0.009 | −0.024 | 0.014 | 0.008 | −0.031 | 0.023 |
Car–Car | −0.247 | 0.176 | 0.072 | −0.271 | 0.191 | 0.080 |
Car–Facility | −0.015 | 0.011 | 0.004 | −0.016 | 0.011 | 0.004 |
Car–Person | −0.788 | 0.241 | 0.547 | −0.772 | 0.246 | 0.526 |
Right curve | −0.011 | 0.009 | 0.001 | −0.014 | 0.012 | 0.002 |
Downhill | −0.019 | 0.017 | 0.002 | −0.023 | 0.020 | 0.003 |
Surface-wet | 0.017 | −0.014 | −0.003 | 0.020 | −0.016 | −0.004 |
Construction Area | 0.011 | −0.007 | −0.004 | 0.012 | −0.008 | −0.004 |
Guardrail–Guard fence | −0.024 | 0.018 | 0.006 | −0.030 | 0.020 | 0.010 |
The 30s | −0.001 | −0.007 | 0.008 | −0.002 | −0.008 | 0.010 |
The 40s | −0.007 | −0.002 | 0.008 | −0.008 | −0.004 | 0.012 |
The 50s | −0.008 | −0.004 | 0.011 | −0.010 | −0.006 | 0.016 |
Over 60 | −0.021 | 0.002 | 0.020 | −0.027 | 0.000 | 0.027 |
Variable | Mixed-Effects Logit | Mixed-Effects Probit | Variable | Mixed-Effects Logit | Mixed-Effects Probit |
---|---|---|---|---|---|
Year | −0.0576 | −0.0303 | Saturday | −0.1545 | −0.0891 |
Day/Night | 0.1204 | 0.0518 | Snowy | −0.9966 | −0.5471 |
Tollgate | −1.7883 | −0.7872 | Car–Car | 2.0778 | 1.1686 |
Ramp | −0.5618 | −0.2923 | Car–Facility | 0.2319 | 0.1041 |
Crash Factor-Vehicle | 0.6935 | 0.3474 | Car–Person | 4.2733 | 2.3923 |
Speeding | 1.3296 | 0.6873 | Right curve | 0.1498 | 0.0877 |
Drowsy | 1.5572 | 0.8103 | Downhill | 0.2416 | 0.1417 |
Lack of Safety Distance | 1.3428 | 0.6918 | Median–Other | N/S | −0.1132 |
Negligence | 1.2175 | 0.603 | Guardrail–Guard fence | N/S | 0.1891 |
Main Crash Factor-Driver Other | 1.0362 | 0.5149 | The 50s | 0.0926 | N/S |
Congestion | 0.8735 | 0.5245 | Over 60 | 0.2518 | 0.1155 |
Forward Car stopped | 0.6002 | 0.3736 | Constant | −2.9464 | −1.6086 |
Variable | Random-Effects Ordered Logit | Random-Effects Ordered Probit | Variable | Random-Effects Ordered Logit | Random-Effects Ordered Probit |
---|---|---|---|---|---|
Day/Night | 0.1713 | 0.0778 | Forward Car stopped | 0.7585 | 0.4353 |
Tollgate | −1.8198 | −0.7935 | Road Fault | −0.2641 | −0.5692 |
Ramp | −0.5566 | −0.2613 | Snowy | −0.9413 | −1.1628 |
Crash Factor-Vehicle | 0.5211 | 0.3059 | Car–Car | 2.1290 | 0.1028 |
Speeding | 1.2575 | 0.6448 | Car–Facility | 0.2406 | 2.4455 |
Drowsy | 1.4234 | 0.7860 | Car–Person | 4.4351 | 0.0790 |
Lack of Safety Distance | 1.1290 | 0.5995 | Right curve | 0.1388 | 0.1330 |
Negligence | 1.0359 | 0.5444 | Downhill | 0.2266 | 0.1527 |
Main Crash Factor-Driver Other | 0.8749 | 0.4720 | Construction Area | −0.3458 | −0.1259 |
Congestion | 0.9286 | 0.5106 | Guardrail–Guard fence | N/S | 0.1788 |
The 40s | 0.1438 | 0.0817 | |||
Cut 1 | 3.7306 | 2.0780 | The 50s | 0.2044 | 0.1185 |
Cut 2 | 5.5583 | 3.0515 | Over 60 | 0.3732 | 0.2062 |
Variable | Random-Effects Ordered Logit | Random-Effects Ordered Probit | ||||
---|---|---|---|---|---|---|
Y = 0 | Y = 1 | Y = 2 | Y = 0 | Y = 1 | Y = 2 | |
Day/Night | −0.013 | 0.010 | 0.003 | −0.013 | 0.010 | 0.003 |
Tollgate | 0.091 | −0.075 | −0.016 | 0.092 | −0.079 | −0.013 |
Ramp | 0.035 | −0.028 | −0.007 | 0.036 | −0.031 | −0.005 |
Crash Factor-Vehicle | −0.045 | 0.036 | 0.009 | −0.056 | 0.046 | 0.010 |
Speeding | −0.130 | 0.103 | 0.027 | −0.132 | 0.104 | 0.028 |
Drowsy | −0.157 | 0.124 | 0.033 | −0.172 | 0.132 | 0.040 |
Lack of Safety Distance | −0.129 | 0.102 | 0.027 | −0.135 | 0.104 | 0.031 |
Negligence | −0.095 | 0.077 | 0.018 | −0.103 | 0.083 | 0.020 |
Main Crash Factor-Driver Other | −0.086 | 0.069 | 0.017 | −0.095 | 0.076 | 0.019 |
Congestion | −0.099 | 0.079 | 0.020 | −0.110 | 0.086 | 0.024 |
Forward Car stopped | −0.075 | 0.060 | 0.015 | −0.090 | 0.071 | 0.019 |
Snowy | 0.018 | −0.015 | −0.003 | 0.062 | −0.053 | −0.009 |
Car–Car | 0.048 | −0.040 | −0.008 | −0.280 | 0.203 | 0.077 |
Car–Facility | −0.270 | 0.207 | 0.063 | −0.016 | 0.013 | 0.003 |
Car–Person | −0.017 | 0.014 | 0.003 | −0.772 | 0.244 | 0.528 |
Right Curve | −0.798 | 0.280 | 0.518 | −0.013 | 0.011 | 0.002 |
Downhill | −0.011 | 0.009 | 0.002 | −0.023 | 0.019 | 0.004 |
Construction Area | −0.018 | 0.015 | 0.003 | 0.022 | −0.018 | −0.004 |
Guardrail–Guard fence | 0.022 | −0.018 | −0.004 | −0.032 | 0.026 | 0.006 |
The 40s | −0.011 | 0.009 | 0.002 | −0.013 | 0.011 | 0.002 |
The 50s | −0.016 | 0.013 | 0.003 | −0.020 | 0.016 | 0.004 |
Over 60 | −0.031 | 0.025 | 0.006 | −0.036 | 0.030 | 0.006 |
Day/Night | −0.013 | 0.010 | 0.003 | −0.013 | 0.010 | 0.003 |
Tollgate | 0.091 | −0.075 | −0.016 | 0.092 | −0.079 | −0.013 |
Ramp | 0.035 | −0.028 | −0.007 | 0.036 | −0.031 | −0.005 |
Crash Factor-Vehicle | −0.045 | 0.036 | 0.009 | −0.056 | 0.046 | 0.010 |
Speeding | −0.130 | 0.103 | 0.027 | −0.132 | 0.104 | 0.028 |
Drowsy | −0.157 | 0.124 | 0.033 | −0.172 | 0.132 | 0.040 |
Lack of Safety Distance | −0.129 | 0.102 | 0.027 | −0.135 | 0.104 | 0.031 |
Negligence | −0.095 | 0.077 | 0.018 | −0.103 | 0.083 | 0.020 |
Main Crash Factor-Driver Other | −0.086 | 0.069 | 0.017 | −0.095 | 0.076 | 0.019 |
Congestion | −0.099 | 0.079 | 0.020 | −0.110 | 0.086 | 0.024 |
Forward Car stopped | −0.075 | 0.060 | 0.015 | −0.090 | 0.071 | 0.019 |
Snowy | 0.018 | −0.015 | −0.003 | 0.062 | −0.053 | −0.009 |
Car–Car | 0.048 | −0.040 | −0.008 | −0.280 | 0.203 | 0.077 |
Car–Facility | −0.270 | 0.207 | 0.063 | −0.016 | 0.013 | 0.003 |
Car–Person | −0.017 | 0.014 | 0.003 | −0.772 | 0.244 | 0.528 |
Right curve | −0.798 | 0.280 | 0.518 | −0.013 | 0.011 | 0.002 |
Downhill | −0.011 | 0.009 | 0.002 | −0.023 | 0.019 | 0.004 |
Construction Area | −0.018 | 0.015 | 0.003 | 0.022 | −0.018 | −0.004 |
Guardrail–Guard fence | 0.022 | −0.018 | −0.004 | −0.032 | 0.026 | 0.006 |
The 40s | −0.011 | 0.009 | 0.002 | −0.013 | 0.011 | 0.002 |
The 50s | −0.016 | 0.013 | 0.003 | −0.020 | 0.016 | 0.004 |
Over 60 | −0.031 | 0.025 | 0.006 | −0.036 | 0.030 | 0.006 |
Variable | Multilevel Mixed-Effects Ordered Logit | Multilevel Mixed-Effects Ordered Probit | Variable | Multilevel Mixed-Effects Ordered Logit | Multilevel Mixed-Effects Ordered Probit |
---|---|---|---|---|---|
Year | −0.0492 | −0.0251 | Congestion | 0.9269 | 0.5166 |
Day/Night | 0.1692 | 0.0803 | Forward Car stopped | 0.7425 | 0.4340 |
Tollgate | −1.7999 | −0.8306 | Saturday | −0.1436 | −0.0765 |
Ramp | −0.5396 | −0.2777 | Snowy | −1.0418 | −0.5730 |
Crash Factor-Vehicle | 0.5655 | 0.3057 | Car–Car | 2.1341 | 1.1666 |
Speeding | 1.2172 | 0.6427 | Car–Facility | 0.2355 | 0.1067 |
Drowsy | 1.4718 | 0.7889 | Car–Person | 4.4308 | 2.4407 |
Lack of Safety Distance | 1.1591 | 0.5937 | Right Curve | 0.1388 | 0.0831 |
Negligence | 1.0766 | 0.5471 | Downhill | 0.2230 | 0.1328 |
Main Crash Factor-Driver Other | 0.9057 | 0.4704 | Construction Area | −0.3503 | −0.1643 |
The 40s | 0.1429 | 0.0817 | |||
Cut 1 | 3.0603 | 1.7211 | The 50s | 0.2042 | 0.1197 |
Cut 2 | 4.8854 | 2.6932 | Over 60 | 0.3778 | 0.2092 |
Variable | Multilevel Mixed-Effects Ordered Logit | Multilevel Mixed-Effects Ordered Probit | ||||
---|---|---|---|---|---|---|
Y = 0 | Y = 1 | Y = 2 | Y = 0 | Y = 1 | Y = 2 | |
Year | 0.004 | −0.003 | −0.001 | 0.004 | −0.003 | −0.001 |
Day/Night | −0.013 | 0.010 | 0.002 | −0.013 | 0.011 | 0.002 |
Tollgate | 0.090 | −0.074 | −0.016 | 0.095 | −0.081 | −0.014 |
Ramp | 0.034 | −0.028 | −0.006 | 0.038 | −0.032 | −0.006 |
Crash Factor-Vehicle | −0.049 | 0.040 | 0.009 | −0.056 | 0.045 | 0.010 |
Speeding | −0.124 | 0.099 | 0.025 | −0.132 | 0.104 | 0.028 |
Drowsy | −0.164 | 0.129 | 0.034 | −0.173 | 0.133 | 0.040 |
Lack of Safety Distance | −0.133 | 0.106 | 0.028 | −0.133 | 0.102 | 0.030 |
Negligence | −0.100 | 0.080 | 0.020 | −0.103 | 0.083 | 0.020 |
Main Crash Factor-Driver other | −0.090 | 0.072 | 0.018 | −0.095 | 0.075 | 0.019 |
Congestion | −0.098 | 0.078 | 0.020 | −0.111 | 0.087 | 0.024 |
Forward Car stopped | −0.073 | 0.059 | 0.014 | −0.089 | 0.071 | 0.019 |
Saturday | 0.010 | −0.008 | −0.002 | 0.012 | −0.010 | −0.002 |
Snowy | 0.051 | −0.042 | −0.009 | 0.062 | −0.054 | −0.008 |
Car–Car | −0.271 | 0.208 | 0.063 | −0.281 | 0.204 | 0.077 |
Car–Facility | −0.017 | 0.014 | 0.003 | −0.017 | 0.014 | 0.003 |
Car–Person | −0.798 | 0.281 | 0.518 | −0.772 | 0.245 | 0.527 |
Right Curve | −0.011 | 0.009 | 0.002 | −0.014 | 0.011 | 0.002 |
Downhill | −0.017 | 0.014 | 0.003 | −0.022 | 0.019 | 0.004 |
Construction Area | 0.022 | −0.018 | −0.004 | 0.023 | −0.020 | −0.004 |
The 40s | −0.011 | 0.009 | 0.002 | −0.013 | 0.011 | 0.002 |
The 50s | −0.016 | 0.013 | 0.003 | −0.020 | 0.016 | 0.003 |
Over 60 | −0.031 | 0.025 | 0.006 | −0.037 | 0.030 | 0.007 |
Model | AIC | BIC | ||
---|---|---|---|---|
Logit | Probit | Logit | Probit | |
Ordered Model | 17,189.76 | 17,154.63 | 17,382.39 | 17,355.30 |
Multinomial Model | 14,861.22 | 14,853.84 | 15,334.95 | 15,327.57 |
Mixed-effects Model | 17,187.68 | 17,154.53 | 17,388.44 | 17,354.75 |
Random-effects Ordered Model | 14,777.54 | 14,748.72 | 14,954.12 | 14,933.33 |
Multilevel Mixed-effects ordered Model | 13,808.41 | 13,790.86 | 13,984.99 | 13,967.44 |
Variable Type | Variables |
---|---|
Variables that increase the severity | Night, Accident factor-vehicle, Speeding, Drowsy, Lack of Safety Distance, Negligence, Main Crash Factor-Driver other, Congestion, Forward Car stopped, Foggy, Right curve, Downhill, Guardrail-guard fence |
Variables that decrease the severity (normal) | Tollgate, Ramp, Saturday |
Variables that decrease the severity (abnormal) | Road Fault, Snowy, Surface-wet, Construction Area |
Ordered Variable | Year, Car–Person > Car–Car > Car–Facility, Age |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Park, J. Multilevel Mixed-Effects Models to Identify Contributing Factors on Freight Vehicle Crash Severity. Sustainability 2022, 14, 11804. https://doi.org/10.3390/su141911804
Park S, Park J. Multilevel Mixed-Effects Models to Identify Contributing Factors on Freight Vehicle Crash Severity. Sustainability. 2022; 14(19):11804. https://doi.org/10.3390/su141911804
Chicago/Turabian StylePark, Seongmin, and Juneyoung Park. 2022. "Multilevel Mixed-Effects Models to Identify Contributing Factors on Freight Vehicle Crash Severity" Sustainability 14, no. 19: 11804. https://doi.org/10.3390/su141911804
APA StylePark, S., & Park, J. (2022). Multilevel Mixed-Effects Models to Identify Contributing Factors on Freight Vehicle Crash Severity. Sustainability, 14(19), 11804. https://doi.org/10.3390/su141911804