TechnoEconomic Comprehensive Review of StateoftheArt Geothermal and Solar Roadway Energy Systems
Abstract
:1. Introduction
2. Geothermal and Solar Roadway Energy Systems
2.1. Geothermal Roadway Energy System
2.2. Solar Roadway Energy System
3. Technical Evaluation
3.1. Geothermal Roadway Energy System
3.1.1. Geothermal Bridge Deck Energy System
3.1.2. Geothermal Pavement Energy System
3.2. Solar Roadway Energy System
3.3. Summary
4. Economic Assessment
4.1. Geothermal Roadway Energy Systems
4.2. Solar Roadway Assessment Energy Systems
4.3. Summary
5. Future Developments
 Numerical models of the GRES and SRES are still required to be established to predict the system deicing and snowmelting performance more accurately, thereby this contributes to improving system designs in the future.
 Further investigation on the GRES and SRES should be focused on the construction and maintenance technique for pavement with pipes; this is because if the subsidence deformation or structure crack happens during the fitting and operation, this may damage the enclosed state, causing the groundwater entry and pipeline leak, and decreasing the system service lifetime. Hence, it is essential to setup a real time monitoring system to check the effect of the surrounding environment on the structure deformation.
 Heat pipe is generally banded with the reinforced steel cage in the EP system, therefore massive attention should be spent to avoid the pipe damage during concreting, and appropriate measures should be adopted to prevent blockage at the connecting point. What is more, freezing injury should be taken into account in cold region, this is because the frozen soil and road excavation may result in the freezing of water within the GRSE. Furthermore, using the PCM to replace the regular concrete in ground heat exchanger should be further studied.
 The soil and asphalt layers can store thermal energy in the GRES, therefore, in this aspect, the thermal storage capacity should be clarified to complement roadway energy consumption.
 A detail analysis should be implemented to identify the influences of air convection on the physical properties of the GRES and SRES in the fields of energy capturing, LCC and CO_{2} emission.
6. Conclusions
 The climate data such as ambient temperature, solar radiation, snowfall rate as well as wind speed, are the essential information to design deicing and snowmelting systems.
 The spiral shape pipe could extract more soil heat in comparison with Ushape and Wshape pipes, so it is the best choice in the GRES system under the limited pile length. The velocity of the working fluid has less effects on the system performance with the U and W shape pipes whereas it has a significant influence on that with the spiralshape pipe.
 Approximately 35% less hours of the pavement slippery condition are achieved when the working fluid temperature increases by about 15 °C in the GRES.
 In the GRES, the soil thermal imbalance influences not only the system energy conversion but also the structural foundation, so this imbalance should be avoided by injecting a large amount of heat to the soil.
 The modified GRES, such as using the EP and PCM to replace the traditional ground pipe loop and concrete, could extract more thermal energy and reduce the pile number for deicing pavement surface, which is conducive to decreasing the capital investment and maintenance cost.
 In the SRES, the increasing of the pipe thermal conductivity and decreasing of its depth have significant effects on the system longterm operation. The thermal gain decreases from 21% to 14% when the depth of the ground pipe varies from 25 mm to 105 mm.
 In the SRES, the chimney height is a vital parameter influencing on the system performance, the chimney efficiency increases from 11.7% to 15% when its height rise from 4 m to 9 m. The higher the chimney, the lower the energy loss.
 Compared with the traditional ways, the GRES and SRES could decrease energy consumption by approximately 30%, the roadway surface temperature could be increased by around 5 °C in winter and reduced by about 6 °C in summer.
 The service lifetimes of the GRES and SRES could attain 25 to 30 years and 20 to 23 years, respectively. The GRES has a higher capital investment because of the drilling and installation fees, which is almost three times higher than that of the SRES, while the PBPs of the GRES and SRES are in the ranges of 4 to 8 years and 2.3 to 5 years respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
 Chen, J.; Wang, H.; Zhu, H. Analytical approach for evaluating temperature field of thermal modified asphalt pavement and urban heat island effect. Appl. Therm. Eng. 2017, 113, 739–748. [Google Scholar] [CrossRef]
 Wang, H.; Li, M. Comparative study of asphalt pavement responses under FWD and moving vehicular loading. J. Transp. Eng. 2016, 142, 04016069. [Google Scholar] [CrossRef]
 Wang, H.; Jasim, A.; Chen, X. Energy harvesting technologies in roadway and bridge for different applications—A comprehensive review. Appl. Energy 2018, 212, 1083–1094. [Google Scholar] [CrossRef]
 Denby, B.R.; Ketzel, M.; Ellermann, T.; Stojiljkovic, A.; Kupiainen, K.; Niemi, J.; Norman, M.; Johansson, C.; Gustafsson, M.; Blomqvist, G.; et al. Road salt emissions: A comparison of measurements and modelling using the NORTRIP road dust emission model. Atmos. Environ. 2016, 141, 508–522. [Google Scholar] [CrossRef]
 Pan, P.; Wu, S.; Xiao, Y.; Liu, G. A review on hydronic asphalt pavement for energy harvesting and snow melting. Renew. Sustain. Energy Rev. 2015, 48, 624–634. [Google Scholar] [CrossRef]
 Roskill. Salt. Available online: https://roskill.com/marketreport/salt/ (accessed on 16 March 2020).
 Sassani, A.; Arabzadeh, A.; Ceylan, H.; Kim, S.; Sadati, S.M.; Gopalakrishnan, K.; Taylor, P.C.; Abdualla, H. Carbon fiberbased electrically conductive concrete for saltfree deicing of pavements. J. Clean. Prod. 2018, 203, 799–809. [Google Scholar] [CrossRef]
 Wang, H. Analysis on Optimization Design and Viscoelastic Response of Conductive Asphalt Pavement Using Snowmelt; Wuhan University of Technology: Wuhan, China, 2010. [Google Scholar]
 Vo, H.V.; Park, D.W. Application of conductive materials to asphalt pavement. Adv. Mater. Sci. Eng. 2017, 10, 4101503. [Google Scholar] [CrossRef]
 Wang, H.; Zhao, J.; Chen, Z. Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water. Energy Convers. Manag. 2008, 49, 1538–1546. [Google Scholar] [CrossRef]
 Wang, H.; Chen, Z. Study of critical freearea ratio during the snowmelting process on pavement using lowtemperature heating fluids. Energy Convers. Manag. 2009, 50, 157–165. [Google Scholar] [CrossRef]
 Liu, K.; Huang, S.; Xie, H.; Wang, F. Multiobjective optimization of the design and operation for snowmelting pavement with electric heating pipes. Appl. Therm. Eng. 2017, 122, 359–367. [Google Scholar] [CrossRef]
 Xu, H.; Tan, Y. Modeling and operation strategy of pavement snow melting systems utilizing lowtemperature heating fluids. Energy 2015, 80, 666–676. [Google Scholar] [CrossRef]
 Zhao, W.; Chen, X.; Zhang, Y.; Su, W.; Xu, F.; Li, B. Deicing performances of a road unit driven by a hydronic heating system in severely cold regions of China. Comput. Math. Appl. 2021, 81, 838–850. [Google Scholar] [CrossRef]
 Pei, J.; Guo, F.; Zhang, J.; Zhou, B.; Bi, Y.; Li, R. Review and analysis of energy harvesting technologies in roadway transportation. J. Clean. Prod. 2021, 288, 125338. [Google Scholar] [CrossRef]
 Bizjak, K.F.; Lenart, S. Life cycle assessment of a geosyntheticreinforced soil bridge system—A case study. Geotext. Geomembr. 2018, 46, 543–558. [Google Scholar] [CrossRef]
 Liu, K.; Huang, S.; Wang, F.; Xie, H.; Lu, X. Energy consumption and utilization rate analysis of automatically snowmelting system in infrastructures by thermal simulation and melting experiments. Cold Reg. Sci. Technol. 2017, 138, 73–83. [Google Scholar] [CrossRef]
 Nasir, D.; Hughes, B.R.; Calautit, J.K. A study of the impact of building geometry on the thermal performance of road pavement solar collectors. Energy 2015, 93, 2614–2630. [Google Scholar] [CrossRef]
 Nasir, D.; Hughes, B.R.; Calautit, J.K. A CFD analysis of several design parameters of a road pavement solar collector (RPSC) for urban application. Appl. Energy 2017, 186, 436–449. [Google Scholar] [CrossRef]
 Nasir, D.; Hughes, B.R.; Calautit, J.K.; Aquino, A.I.; Shahzad, S. Effect of urban street canyon aspect ratio on thermal performance of road pavement solar collectors (RPSC). Energy Proc. 2017, 105, 4414–4419. [Google Scholar] [CrossRef]
 BobesJesus, V.; PascualMuñoz, P.; CastroFresno, D.; RodriguezHernandez, J. Asphalt solar collectors: A literature review. Appl. Energy 2013, 102, 962–970. [Google Scholar] [CrossRef]
 Pei, J.; Zhou, B.; Lyu, L. eRoad: The largest energy supply of the future? Appl. Energy 2019, 241, 174–183. [Google Scholar] [CrossRef]
 Papadimitriou, C.N.; Psomopoulos, C.S.; Kehagia, F. A review on the latest trend of solar pavements in urban environment. Energy Proc. 2019, 157, 945–952. [Google Scholar] [CrossRef]
 Zhou, B.; Pei, J.; Xue, B.; Guo, F.; Wen, Y.; Zhang, J.; Li, R. Solar/road from ‘forced coexistence’ to ‘harmonious symbiosis’. Appl. Energy 2019, 255, 113808. [Google Scholar] [CrossRef]
 Chiarelli, A.; AlMohammedawi, A.; Dawson, A.R.; García, A. Construction and configuration of convectionpowered asphalt solar collectors for the reduction of urban temperatures. Int. J. Therm. Sci. 2017, 112, 242–251. [Google Scholar] [CrossRef]
 Liu, H.; Maghoul, P.; Holländer, H.M. Sensitivity analysis and optimum design of a hydronic snow melting system during snowfall. Phys. Chem. Earth 2019, 113, 31–42. [Google Scholar] [CrossRef]
 Liu, H.; Maghoul, P.; Bahari, A.; Kavgic, M. Feasibility study of snow melting system for bridge decks using geothermal energy piles integrated with heat pump in Canada. Renew. Energy 2019, 136, 1266–1280. [Google Scholar] [CrossRef]
 Yu, X.; Hurley, M.; Li, T.; Lei, G.; Pedarla, A.; Puppala, A.J. Experimental feasibility study of a new attached hydronic loop design for geothermal heating of bridge decks. Appl. Therm. Eng. 2020, 164, 114507. [Google Scholar] [CrossRef]
 Li, T.; Yu, X.; Lei, G.; HabibzadehBigdarvish, O.; Hurley, M. Numerical analyses of a laboratory test of a geothermal bridge deck externally heated under controlled temperature. Appl. Therm. Eng. 2020, 174, 115255. [Google Scholar] [CrossRef]
 Fabrice, D.; Chao, L.; Lyesse, L. Heatexchanger piles for the deicing of bridges. Acta Geotech. 2014, 9, 413–423. [Google Scholar]
 Kong, G.; Wu, D.; Liu, H.; Laloui, L.; Cheng, X.; Zhu, X. Performance of a geothermal energy deicing system for bridge deck using a pile heat exchanger. Int. J. Energy Res. 2019, 43, 596–603. [Google Scholar] [CrossRef]
 Mirzanamadi, R.; Hagentoft, C.E.; Johansson, P.; Johansson, J. Antiicing of road surfaces using Hydronic Heating Pavement with low temperature. Cold Reg. Sci. Technol. 2018, 145, 106–118. [Google Scholar] [CrossRef]
 Mirzanamadi, R.; Hagentoft, C.E.; Johansson, P. An analysis of hydronic heating pavement to optimize the required energy for antiicing. Appl. Therm. Eng. 2018, 144, 278–290. [Google Scholar] [CrossRef]
 Mirzanamadi, R.; Hagentoft, C.E.; Johansson, P. Coupling a hydronic heating pavement to a horizontal ground heat exchanger for harvesting solar energy and heating road surfaces. Renew. Energy 2020, 147, 447–463. [Google Scholar] [CrossRef]
 AdlZarrabi, B.; Mirzanamadi, R.; Johansson, P. Hydronic pavement heating for sustainable icefree roads. Transp. Res. Proc. 2016, 14, 704–713. [Google Scholar] [CrossRef]
 Xu, H.; Wang, D.; Tan, Y.; Zhou, J.; Oeser, M. Investigation of design alternatives for hydronic snow melting pavement systems in China. J. Clean. Prod. 2018, 170, 1413–1422. [Google Scholar] [CrossRef]
 Han, C.; Yu, X. Feasibility of geothermal heat exchanger pilebased bridge deck snow melting system: A simulation based analysis. Renew. Energy 2017, 101, 214–224. [Google Scholar] [CrossRef]
 Han, C.; Yu, X. An innovative energy pile technology to expand the viability of geothermal bridge deck snow melting for different United States regions: Computational assisted feasibility analyses. Renew. Energy 2018, 123, 417–427. [Google Scholar] [CrossRef]
 Ho, I.; Dickson, M. Numerical modeling of heat production using geothermal energy for a snowmelting system. Geomech. Energy Environ. 2017, 10, 42–51. [Google Scholar] [CrossRef]
 Yang, C.; Peng, F.; Xu, K.; Zheng, L. Feasibility study on the geothermal utility tunnel system. Sustain. Cities Soc. 2019, 46, 101445. [Google Scholar] [CrossRef]
 Chiarelli, A.; Dawson, A.R.; García, A. Pavement temperature mitigation by the means of geothermally and solar heated air. Geothermics 2017, 68, 9–19. [Google Scholar] [CrossRef]
 Chiarelli, A.; Dawson, A.R.; García, A. Field evaluation of the effects of air convection in energy harvesting asphalt pavements. Sustain. Energy Technol. Assess. 2017, 21, 50–58. [Google Scholar] [CrossRef]
 Mäkiranta, A.; Hiltunen, E. Utilizing Asphalt Heat Energy in Finnish Climate Conditions. Energies 2019, 12, 2101. [Google Scholar] [CrossRef] [Green Version]
 Balbay, A.; Esen, M. Experimental investigation of using ground source heat pump system for snow melting on pavements and bridge decks. Sci. Res. Essays 2010, 5, 3955–3966. [Google Scholar]
 Balbay, A.; Esen, M. Temperature distributions in pavement and bridge slabs heated by using vertical groundsource heat pump systems. Acta Sci. Technol. 2013, 35, 677–685. [Google Scholar] [CrossRef]
 Ho, I.H.; Li, S.; Abudureyimu, S. Alternative hydronic pavement heating system using deep direct use of geothermal hot water. Cold Reg. Sci. Technol. 2019, 160, 194–208. [Google Scholar] [CrossRef]
 TotaMaharaj, K.; Grabowiecki, P.; Scholz, M. Energy and temperature performance analysis of geothermal (ground source) heat pumps integrated with permeable pavement systems for urban runoff reuse. Int. J. Sustain. Eng. 2009, 2, 201–213. [Google Scholar] [CrossRef]
 Zhang, C.; Tan, Y.; Chen, F.; Ye, Q.; Xu, H. Longterm thermal analysis of an airfieldrunway snowmelting system utilizing heatpipe technology. Energy Convers. Manag. 2019, 186, 473–486. [Google Scholar]
 Wang, X.; Fan, H.; Xhu, Y.; Zhu, M. Heat transfer simulation and analysis of ice and snow melting system using geothermy by superlong flexible heat pipes. Energy Proc. 2017, 105, 4724–4730. [Google Scholar] [CrossRef]
 Mauro, A.; Grossman, J.C. Streetheat: Controlling road temperature via low enthalpy geothermal energy. Appl. Therm. Eng. 2017, 110, 1653–1658. [Google Scholar] [CrossRef]
 Guldentops, G.; Nejad, A.M.; Vuye, C.; Bergh, W.V.; Rahbar, N. Performance of a pavement solar energy collector: Model development and validation. Appl. Energy 2016, 163, 180–189. [Google Scholar] [CrossRef]
 Saad, H.E.; Kaddah, K.S.; Sliem, A.A.; Rafat, A.; Hewhy, M.A. The effect of the environmental parameters on the performance of asphalt solar collector. Ain Shams Eng. J. 2019, 10, 791–800. [Google Scholar] [CrossRef]
 Johnsson, J.; AdlZarrabi, B. A numerical and experimental study of a pavement solar collector for the northern hemisphere. Appl. Energy 2020, 260, 114286. [Google Scholar] [CrossRef]
 Johnsson, J.; AdlZarrabi, B. Modeling the thermal performance of low temperature hydronic heated pavements. Cold Reg. Sci. Technol. 2019, 161, 81–90. [Google Scholar] [CrossRef]
 Zaim, E.H.; Farzan, H.; Ameri, M. Assessment of pipe configurations on heat dynamics and performance of pavement solar collectors: An experimental and numerical study. Sustain. Energy Technol. Assess. 2020, 37, 100635. [Google Scholar] [CrossRef]
 AlonsoEstébanez, A.; PascualMuñoz, P.; SampedroGarcía, J.L.; CastroFresno, D. 3D numerical modelling and experimental validation of an asphalt solar collector. Appl. Therm. Eng. 2017, 126, 678–688. [Google Scholar] [CrossRef]
 Daniels, J.W.; Heymsfield, E.; Kuss, M. Hydronic heated pavement system performance using a solar water heating system with heat pipe evacuated tube solar collectors. Sol. Energy 2019, 179, 343–351. [Google Scholar] [CrossRef]
 García, A.; Partl, M.N. How to transform an asphalt concrete pavement into a solar turbine. Appl. Energy 2014, 119, 431–437. [Google Scholar] [CrossRef]
 Wu, S.; Chen, M.; Zhang, J. Laboratory investigation into thermal response of asphalt pavements as solar collector by application of smallscale slabs. Appl. Therm. Eng. 2011, 31, 1582–1587. [Google Scholar]
 Du, Y.; Han, Z.; Chen, J.; Liu, W. A novel strategy of inducing solar absorption and accelerating heat release for cooling asphalt pavement. Sol. Energy 2018, 159, 125–133. [Google Scholar]
 Dakessian, L.; Harfoushian, H.; Habib, D.; Chehab, G.R.; Saad, G.; Srour, I. Finite element approach to assess the benefits of asphalt solar collectors. Transp. Res. Rec. 2016, 2575, 79–91. [Google Scholar] [CrossRef]
 HabibzadehBigdarvish, O.; Yu, X.; Lei, G.; Li, T.; Puppala, A. LifeCycle costbenefit analysis of Bridge deck deicing using geothermal heat pump system: A case study of North Texas. Sustain. Cities Soc. 2019, 47, 101492. [Google Scholar] [CrossRef]
 Nahvi, A.; Pyrialakou, V.D.; Anand, P.; Sadati, S.S.; Gkritza, K.; Ceylan, H.; Cetin, K.; Kim, S.; Gopalakrishnan, K.; Taylor, P.C. Integrated stochastic life cycle benefit cost analysis of hydronically heated apron pavement system. J. Clean. Prod. 2019, 224, 994–1003. [Google Scholar] [CrossRef]
 Sable, A. Experimental and economic analysis of concrete absorber collector solar water heater with use of dimpled tube. Resour.Effic. Technol. 2017, 3, 483–490. [Google Scholar] [CrossRef]
Description  Equations 

Energy balance  $\mathrm{q}={\mathrm{q}}_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}}+{\mathrm{q}}_{\mathrm{s}}+{\mathrm{q}}_{\mathrm{m}}+{\mathrm{q}}_{\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{a}\mathrm{r}}$ ${\mathrm{q}}_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}}(\mathrm{t})={\mathrm{h}}_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}}[{\mathrm{T}}_{\mathrm{a}}(\mathrm{t}){\mathrm{T}}_{\mathrm{s}}(\mathrm{t})]$ ${\mathrm{q}}_{\mathrm{m}}(\mathrm{t})={\mathsf{\rho}}_{\mathrm{w}}\mathrm{s}(\mathrm{t}){\mathrm{h}}_{\mathrm{f}}$ ${\mathrm{q}}_{\mathrm{s}}(\mathrm{t})={\mathsf{\rho}}_{\mathrm{w}}\mathrm{s}(\mathrm{t})[{\mathrm{c}}_{\mathsf{\rho}}^{\mathrm{i}}({\mathrm{T}}_{\mathrm{m}}{\mathrm{T}}_{\mathrm{a}}(\mathrm{t})+{\mathrm{c}}_{\mathsf{\rho}}^{\mathrm{w}}({\mathrm{T}}_{\mathrm{f}}{\mathrm{T}}_{\mathrm{m}})]$ 
Heat transfer within the working fluid  ${\mathsf{\rho}}_{\mathrm{w}}{\mathrm{A}}_{\mathrm{g}\mathrm{f}}{\mathrm{C}}_{\mathrm{p}\mathrm{w}}\frac{\partial {\mathrm{T}}_{\mathrm{g}\mathrm{f}}}{\partial \mathrm{t}}+{\mathsf{\rho}}_{\mathrm{w}}{\mathrm{A}}_{\mathrm{g}\mathrm{f}}{\mathrm{C}}_{\mathsf{\rho}\mathrm{w}\mathrm{v}\mathrm{g}}\nabla {\mathrm{T}}_{\mathrm{g}\mathrm{f}}=\nabla \cdot ({\mathrm{A}}_{\mathrm{g}\mathrm{f}}{\mathrm{k}}_{\mathrm{w}}\nabla {\mathrm{T}}_{\mathrm{g}\mathrm{f}})+{\mathrm{Q}}_{\mathrm{w}2}$ 
Temperature distribution within the pipe  $\mathsf{\eta}=\frac{\mathrm{P}{\mathrm{V}}_{\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}}}{\mathrm{A}\times \mathrm{I}}$ ${\mathsf{\rho}}_{\mathrm{w}}{\mathrm{A}}_{\mathrm{h}\mathrm{f}}{\mathrm{C}}_{\mathrm{p}\mathrm{w}}\frac{\partial {\mathrm{T}}_{\mathrm{h}\mathrm{f}}}{\partial \mathrm{t}}+{\mathsf{\rho}}_{\mathrm{w}}{\mathrm{A}}_{\mathrm{h}\mathrm{f}}{\mathrm{C}}_{\mathrm{p}\mathrm{v}\mathrm{s}}\nabla {\mathrm{T}}_{\mathrm{h}\mathrm{f}}=\nabla \cdot ({\mathrm{A}}_{\mathrm{h}\mathrm{f}}{\mathrm{k}}_{\mathrm{w}}\nabla {\mathrm{T}}_{\mathrm{h}\mathrm{f}})+{\mathrm{Q}}_{\mathrm{w}1}$ ${\mathrm{Q}}_{\mathrm{w}1}={(\mathrm{h}\mathrm{Z})}_{\mathrm{e}\mathrm{f}\mathrm{f}}({\mathrm{T}}_{\mathrm{e}\mathrm{x}\mathrm{t}}\mathrm{T})$ 
Heat transfer around concrete slab  ${\mathsf{\rho}}_{\mathrm{s}}{\mathrm{A}}_{\mathrm{c}\mathrm{s}}{\mathrm{C}}_{{}_{\mathrm{p}}}^{\mathrm{s}}\frac{\partial {\mathrm{T}}_{\mathrm{c}\mathrm{s}}}{\partial \mathrm{t}}=\nabla \cdot ({\mathrm{A}}_{\mathrm{c}\mathrm{s}}{\mathrm{k}}_{\mathrm{s}}\nabla \mathrm{T}){\mathrm{Q}}_{\mathrm{w}1}$ 
Heat transfer within the soil  $\mathsf{\rho}\mathrm{A}{\mathrm{C}}_{\mathrm{p}}\frac{\partial {\mathrm{T}}_{\mathrm{s}}}{\partial \mathrm{t}}=\nabla \cdot (\mathrm{A}\mathrm{k}\nabla {\mathrm{T}}_{\mathrm{s}}){\mathrm{Q}}_{\mathrm{w}2}$ 
Description  Equations 

Thermal resistance  ${\mathrm{R}}_{\mathrm{e}\mathrm{q}\mathrm{p}\mathrm{i}\mathrm{p}\mathrm{e}}={\mathrm{R}}_{\mathrm{p}\mathrm{i}\mathrm{p}\mathrm{e}}+{\mathrm{R}}_{\mathrm{i},\mathrm{j}}+{\mathrm{R}}_{\mathrm{P}\mathrm{W}\mathrm{S}}$ ${\mathrm{R}}_{\mathrm{p}\mathrm{i}\mathrm{p}\mathrm{e}}=\frac{\mathrm{ln}(\frac{{\mathrm{r}}_{\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{r}}}{{\mathrm{r}}_{\mathrm{i}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}}})}{2\cdot \mathsf{\pi}\cdot {\mathsf{\lambda}}_{\mathrm{p}\mathrm{i}\mathrm{p}\mathrm{e}}}$ ${\mathrm{R}}_{\mathrm{i},\mathrm{j}}=\frac{\mathrm{ln}(\frac{{\mathrm{r}}_{\mathrm{i},\mathrm{j}}}{{\mathrm{r}}_{\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{r}}})}{2\cdot \mathsf{\pi}\cdot {\mathsf{\lambda}}_{\mathrm{i},\mathrm{j}}}$ ${\mathrm{R}}_{\mathrm{P}\mathrm{W}\mathrm{S}}=\frac{1}{\mathsf{\pi}\cdot {\mathsf{\lambda}}_{\mathrm{f}}\cdot \mathrm{N}\mathrm{u}}$ 
Temperature distribution of working fluid within the pipe  ${\mathrm{T}}_{\mathrm{e}\mathrm{q}\mathrm{p}\mathrm{i}\mathrm{p}\mathrm{e}}={\mathrm{T}}_{\mathrm{f}}{\mathrm{q}}_{\mathrm{i},\mathrm{j}}\cdot {\mathrm{R}}_{\mathrm{e}\mathrm{q}\mathrm{p}\mathrm{i}\mathrm{p}\mathrm{e}}$ 
Outlet fluid temperature  ${\mathrm{T}}_{\mathrm{f},\mathrm{n}+1}^{\mathrm{t}}={\mathrm{T}}_{\mathrm{e}\mathrm{q}\mathrm{p}\mathrm{i}\mathrm{p}\mathrm{e},\mathrm{n}}^{\mathrm{t}}+({\mathrm{T}}_{\mathrm{f},\mathrm{n}}^{\mathrm{t}}\mathrm{p}{\mathrm{T}}_{\mathrm{e}\mathrm{q}\mathrm{p}\mathrm{i}\mathrm{p}\mathrm{e},\mathrm{n}}^{\mathrm{t}})\cdot {\mathrm{e}}^{({\mathrm{L}}_{\mathrm{n}}/{\mathrm{l}}_{\mathrm{n}})}$ ${\mathrm{l}}_{\mathrm{n}}={\mathrm{R}}_{\mathrm{e}\mathrm{q}\mathrm{p}\mathrm{i}\mathrm{p}\mathrm{e}}\cdot {\mathsf{\nu}}_{\mathrm{f}}\cdot \mathsf{\pi}\cdot {\mathrm{r}}_{\mathrm{i}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}}^{2}\cdot {\mathsf{\rho}}_{\mathrm{f}}\cdot {\mathrm{c}}_{\mathrm{p},\mathrm{f}}$ 
Principle of superposition  ${\mathrm{T}}_{\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}}(\mathrm{t})={\mathrm{T}}_{\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}}^{\mathrm{h}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}}(\mathrm{t})+{\mathrm{T}}_{\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}}^{\mathrm{u}\mathrm{n}\mathrm{h}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}}(\mathrm{t})$ 
Description  Equations 

Water transport  $\frac{\partial \mathsf{\theta}}{\partial \mathsf{\tau}}=\nabla ({\mathrm{D}}_{\mathrm{l}}(\mathsf{\theta})\nabla \mathsf{\theta})+\nabla ({\mathrm{D}}_{\mathrm{l}}(\mathrm{T})\nabla \mathrm{T})\frac{\partial \mathrm{K}(\mathsf{\theta})}{\partial \mathrm{y}}+\nabla ({\mathrm{D}}_{\mathrm{v}}(\mathsf{\theta})\nabla \mathsf{\theta})+\nabla ({\mathrm{D}}_{\mathrm{v}}(\mathrm{T})\nabla \mathrm{T})$ $\mathrm{K}{(\frac{\mathsf{\theta}{\mathsf{\theta}}_{\mathrm{r}}}{{\mathsf{\theta}}_{\mathrm{s}}{\mathsf{\theta}}_{\mathrm{r}}})}^{\mathrm{n}+2+\frac{2}{\mathrm{a}}}=\mathrm{K}(\mathsf{\theta})$ ${\mathrm{D}}_{\mathrm{v}}(\mathsf{\theta})=\frac{1}{{\mathsf{\rho}}_{\mathrm{w}}}{\mathrm{D}}_{0}\mathsf{\alpha}\mathrm{b}{\mathsf{\rho}}_{0}\frac{\partial {\mathrm{h}}_{0}}{\partial \mathsf{\theta}}$ ${\mathrm{D}}_{\mathrm{l}}(\mathsf{\theta})=\mathrm{K}(\mathsf{\theta})\frac{\partial \mathsf{\psi}}{\partial \mathsf{\theta}}$ 
Heat transport  $\frac{\partial}{\partial \mathsf{\tau}}(\mathrm{C}(\mathsf{\theta})\mathrm{T})=\frac{\partial}{\partial \mathrm{x}}(\mathsf{\lambda}(\mathsf{\theta})\frac{\partial \mathrm{t}}{\mathrm{x}})+\frac{\partial}{\partial \mathrm{y}}(\mathsf{\lambda}(\mathsf{\theta})\frac{\partial \mathrm{t}}{\mathrm{y}})$ $\mathrm{C}(\mathsf{\theta})={\mathrm{C}}_{\mathrm{d}\mathrm{r}\mathrm{y}}+\frac{\mathsf{\theta}}{{\mathsf{\theta}}_{\mathrm{s}}}({\mathrm{C}}_{\mathrm{s}\mathrm{a}\mathrm{t}}{\mathrm{C}}_{\mathrm{d}\mathrm{r}\mathrm{y}})$ $\mathsf{\lambda}(\mathsf{\theta})={\mathsf{\lambda}}_{\mathrm{d}\mathrm{r}\mathrm{y}}+{\mathrm{K}}_{\mathrm{e}}({\mathsf{\lambda}}_{\mathrm{s}\mathrm{a}\mathrm{t}}{\mathsf{\lambda}}_{\mathrm{d}\mathrm{r}\mathrm{y}})$ 
RMSE  $\mathrm{R}\mathrm{M}\mathrm{S}\mathrm{E}=\sqrt{\frac{1}{\mathrm{n}}{\displaystyle \sum {({\mathrm{N}}_{\mathrm{i}}{\mathrm{O}}_{\mathrm{i}})}^{2}}}$ 
ME  $\mathrm{M}\mathrm{E}=\frac{1}{\mathrm{n}}{\displaystyle \sum ({\mathrm{N}}_{\mathrm{i}}{\mathrm{O}}_{\mathrm{i}})}$ 
Description  Equations 

PCM model  $\mathsf{\rho}=\mathsf{\theta}(\mathrm{T}){\mathsf{\rho}}_{\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}1}+[1\mathsf{\theta}(\mathrm{T})]{\mathsf{\rho}}_{\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}2}$ $\mathrm{k}=\mathsf{\theta}(\mathrm{T}){\mathrm{k}}_{\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}1}+[1\mathsf{\theta}(\mathrm{T})]{\mathrm{k}}_{\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}2}$ ${\mathrm{C}}_{\mathrm{p}}=\frac{1}{\mathsf{\rho}}\{\mathsf{\theta}(\mathrm{T}){\mathsf{\rho}}_{\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}1}{\mathrm{C}}_{\mathrm{p},\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}1}+[1\mathsf{\theta}(\mathrm{T}){\mathsf{\rho}}_{\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}2}{\mathrm{C}}_{\mathrm{p},\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}2}]\}+\mathrm{L}\frac{\partial {\mathsf{\alpha}}_{\mathrm{m}}(\mathrm{T})}{\partial \mathrm{T}}$ ${\mathsf{\alpha}}_{\mathrm{m}}(\mathrm{T})=\frac{1}{2}\frac{[1\mathsf{\theta}(\mathrm{T})]{\mathsf{\rho}}_{\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}2}[\mathsf{\theta}(\mathrm{T}){\mathsf{\rho}}_{\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}1}]}{\mathsf{\theta}(\mathrm{T}){\mathsf{\rho}}_{\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}1}{\mathrm{C}}_{\mathrm{p},\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}1}+[1\mathsf{\theta}(\mathrm{T}){\mathsf{\rho}}_{\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}2}]}$ ${\mathrm{M}}_{\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}1}=(1\mathrm{w}\mathrm{t}\%){\mathrm{M}}_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{c}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{e}}+\mathrm{w}\mathrm{t}\%{\mathrm{M}}_{\mathrm{P}\mathrm{C}\mathrm{M},\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}1}$ ${\mathrm{M}}_{\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}1}=(1\mathrm{w}\mathrm{t}\%){\mathrm{M}}_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{c}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{e}}+\mathrm{w}\mathrm{t}\%{\mathrm{M}}_{\mathrm{P}\mathrm{C}\mathrm{M},\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}1}$ 
Heat transport within EP  $\mathsf{\rho}{\mathrm{C}}_{\mathrm{p}}\frac{\partial \mathrm{T}}{\partial \mathrm{t}}+\nabla \cdot (\mathrm{k}\nabla \mathrm{T})={\mathrm{Q}}_{\mathrm{w}\mathrm{a}\mathrm{l}\mathrm{l}}$ 
Description  Equations 

Pavement surface  ${\mathrm{q}}_{\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}}+{\mathrm{q}}_{\mathrm{conv}}+{\mathrm{q}}_{\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{p}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}}+{\mathrm{q}}_{\mathrm{l}\mathrm{w}}+{\mathrm{q}}_{\mathrm{s}\mathrm{w}}$ $+{\mathrm{q}}_{\mathrm{e}\mathrm{v}\mathrm{a}\mathrm{p}/\mathrm{c}\mathrm{o}\mathrm{n}}+{\mathrm{q}}_{\mathrm{s}\mathrm{u}\mathrm{b}/\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{o}}+{\mathrm{q}}_{\mathrm{f}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{z}\mathrm{e}/\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{w}}+{\mathrm{q}}_{\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}}=0$ 
Roadway convection heat flux  ${\mathrm{q}}_{\mathrm{conv}}={\mathrm{h}}_{\mathrm{c}}\cdot ({\mathrm{T}}_{\mathrm{a}\mathrm{m}\mathrm{b}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}}{\mathrm{T}}_{\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}})$ 
Heat flux due to precipitation  ${\mathrm{q}}_{\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{p}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}}={\mathrm{m}}_{\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{t}}\cdot {\mathrm{c}}_{\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{t}}\cdot ({\mathrm{T}}_{\mathrm{a}\mathrm{m}\mathrm{b}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}}{\mathrm{T}}_{\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}})$ 
Longwave radiation  ${\mathrm{q}}_{\mathrm{l}\mathrm{w}}={\mathrm{q}}_{\mathrm{l}\mathrm{w}}^{\mathrm{i}\mathrm{n}}{\mathrm{q}}_{\mathrm{l}\mathrm{w}}^{\mathrm{o}\mathrm{u}\mathrm{t}}$ ${\mathrm{q}}_{\mathrm{l}\mathrm{w}}^{\mathrm{i}\mathrm{n}}={\mathrm{F}}_{\mathrm{s}\mathrm{k}\mathrm{y}\mathrm{v}\mathrm{i}\mathrm{e}\mathrm{w}}{\mathsf{\epsilon}}_{\mathrm{s}\mathrm{k}\mathrm{y}}\mathsf{\sigma}{\mathrm{T}}_{\mathrm{a}\mathrm{m}\mathrm{b}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}}^{4}+(1{\mathrm{F}}_{\mathrm{s}\mathrm{k}\mathrm{y}\mathrm{v}\mathrm{i}\mathrm{e}\mathrm{w}})\mathsf{\sigma}{\mathrm{T}}_{\mathrm{a}\mathrm{m}\mathrm{b}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}}^{4}$ ${\mathrm{q}}_{\mathrm{l}\mathrm{w}}^{\mathrm{o}\mathrm{u}\mathrm{t}}={\mathsf{\epsilon}}_{\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}}\mathsf{\sigma}{\mathrm{T}}_{\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}}^{4}$ 
Shortwave radiation  ${\mathrm{q}}_{\mathrm{s}\mathrm{w}}=(1{\mathsf{\alpha}}_{1})\cdot \mathrm{I}$ 
Sensible heat from the traffic  ${\mathrm{q}}_{\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}}=0$ 
Fluid temperature reduction in each segment  ${\mathrm{T}}_{\mathrm{f}}^{\mathrm{k}}={\mathrm{T}}_{0}^{\mathrm{k}}+({\mathrm{T}}_{\mathrm{f}}^{\mathrm{k}1}{\mathrm{T}}_{0}^{\mathrm{k}}){\mathrm{e}}^{\mathrm{L}\mathrm{s}\mathrm{e}\mathrm{g}/\mathrm{l}\mathrm{c}}$ ${\mathrm{T}}_{0}^{\mathrm{k}}=2{\mathrm{R}}_{0}(\frac{{\mathrm{T}}_{\mathrm{i},\mathrm{j}}^{\mathrm{k}}}{{\mathrm{R}}_{\mathrm{i},\mathrm{j}}^{\mathrm{p}\mathrm{i}\mathrm{p}\mathrm{e}}}+\frac{{\mathrm{T}}_{\mathrm{i},\mathrm{j}+1}^{\mathrm{k}}}{{\mathrm{R}}_{\mathrm{i},\mathrm{j}+1}^{\mathrm{p}\mathrm{i}\mathrm{p}\mathrm{e}}})$ ${\mathrm{R}}_{0}={[2(\frac{1}{{\mathrm{R}}_{\mathrm{i},\mathrm{j}}^{\mathrm{p}\mathrm{i}\mathrm{p}\mathrm{e}}}+\frac{1}{{\mathrm{R}}_{\mathrm{i},\mathrm{j}+1}^{\mathrm{p}\mathrm{i}\mathrm{p}\mathrm{e}}})]}^{1}$ 
Heat flux from one segment  ${\mathrm{q}}_{\mathrm{f}}^{\mathrm{k}}=\frac{({\mathsf{\nu}}_{\mathrm{f}}\mathsf{\pi}{\mathrm{r}}_{\mathrm{p}\mathrm{i}}^{2})\cdot {\mathsf{\rho}}_{\mathrm{f}}\cdot {\mathrm{c}}_{\mathrm{f}}({\mathrm{T}}_{\mathrm{f}}^{\mathrm{k}1}{\mathrm{T}}_{\mathrm{f}}^{\mathrm{k}})}{{\mathrm{L}}_{\mathrm{s}\mathrm{e}\mathrm{g}}}$ 
Heat flux nearby the pipe  ${\mathrm{q}}_{\mathrm{i},\mathrm{j}}^{{\mathrm{k}}^{\mathrm{s}\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{c}\mathrm{e}}}={\mathrm{q}}_{\mathrm{f}}^{\mathrm{k}}\frac{{\mathrm{R}}_{0}}{{\mathrm{R}}_{\mathrm{i},\mathrm{j}}^{\mathrm{p}\mathrm{i}\mathrm{p}\mathrm{e}}}+\frac{{\mathrm{T}}_{0}^{\mathrm{k}}{\mathrm{T}}_{\mathrm{i},\mathrm{j}}^{\mathrm{k}}}{{\mathrm{R}}_{\mathrm{i},\mathrm{j}}^{\mathrm{p}\mathrm{i}\mathrm{p}\mathrm{e}}}$ 
Researchers  Type  Region  Method  Working Fluid  Key Findings 

Liu et al. [26,27]  Hybrid horizontal and vertical  Canada  Numerical model  Water 

Yu et al. [28]  Horizontal  USA  Experiment testing  Water 

Fabrice et al. [30]  Vertical  Switzerland  Numerical model  Water 

Kong et al. [31]  Horizontal  China  Experiment testing  Water 

Mirzanamadi et al. [32,33,34]  Horizontal  Sweden  Numerical model and experiment testing  Ethylene glycolwater solution 

AdlZarrabi et al. [35]  Horizontal  Sweden  Numerical model  Water 

Xu et al. [36]  Horizontal  China  Numerical model and experiment testing  Ethylene glycolwater solution 

Han and Yu [37,38]  Vertical  USA  Numerical model  Ethylene glycolwater solution 

Ho and Dickson [39]  Horizontal  USA  Numerical model  Ethylene glycolwater solution 

Yang et al. [40]  Horizontal  China  Numerical model  Ethylene glycolwater solution 

Chiarelli et al. [41,42]  Horizontal  UK  Numerical model and experiment testing  Water 

Mäkiranta and Hiltunen [43]  Vertical  Finland  Experiment testing  Ethylene glycolwater solution 

Balbay and Esen [44,45]  Vertical  Turkey  Numerical model and experiment testing  Propylene glycol 

Ho et al. [46]  Horizontal  USA  Numerical model  Water 

TotaMaharaj et al. [47]  Vertical  UK  Experiment testing  Water 

Zhang et al. [48]  Horizontal  China  Experiment testing  Ethylene glycolwater solution 

Wang et al. [49]  Vertical  China  Numerical model  Ammonia 

Mauro and Grossman [50]  Vertical  Italy  Numerical model  Ethylene glycolwater solution 

Researchers  Type  Region  Method  Working Fluid  Key Findings 

Chiarelli et al. [25]  Vertical  Finland  Experiment testing  Atmospheric air 

Guldentops et al. [51]  Horizontal  USA  Numerical model and experiment testing  Atmospheric air 

Saad et al. [52]  Hybrid horizontal and vertical  Canada  Numerical model  Atmospheric air 

Johnsson and AdlZarrabi [53,54]  Horizontal  USA  Experiment testing  Ethylene glycolwater solution 

Zaim et al. [55]  Horizontal  Sweden  Numerical model and experiment testing  Water 

AlonsoEstébanez et al. [56]  Horizontal  Sweden  Numerical model  Water 

Daniels et al. [57]  Horizontal  China  Numerical model and experiment testing  Ethylene glycolwater solution 

García and Partl [58]  Vertical  USA  Numerical model  Atmospheric air 

Wu et al. [59]  Horizontal  UK  Numerical model and experiment testing  Water 

Du et al. [60]  Vertical  Turkey  Numerical model and experiment testing  Water 

Dakessian et al. [61]  Horizontal  Lebanon  Numerical model and experiment testing  Water 

System  Researchers  Impact Factors  

Climate Condition  Pipe Arrangement Type  Pile Diameter and Depth  Distance between Pipe  Evaporator Section Length  Flow Rate  Initial Fluid Temperature  Thermal Conductivity of Wearing Layer  Thermal Conductivity of Soil  Emissivity of Road Surface  Absorptivity of Road Surface  Thermal Recharging Analysis  Preheating Time  
GRES  Liu et al. [26,27]  ✓  ✖  ✓  ✖  ✖  ✓  ✓  ✖  ✖  ✖  ✖  ✓  ✖ 
Yu et al. [28,29]  ✓  ✖  ✓  ✓  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  
Fabrice et al. [30]  ✓  ✖  ✓  ✓  ✖  ✓  ✓  ✖  ✖  ✖  ✖  ✖  ✖  
Kong et al. [31]  ✓  ✖  ✖  ✖  ✖  ✖  ✓  ✖  ✖  ✖  ✖  ✖  ✖  
Mirzanamadi et al. [32,33,34]  ✓  ✖  ✓  ✓  ✖  ✓  ✓  ✓  ✓  ✓  ✓  ✖  ✖  
AdlZarrabi et al. [35]  ✓  ✖  ✓  ✓  ✖  ✓  ✓  ✖  ✓  ✖  ✖  ✖  ✓  
Xu et al. [36]  ✓  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✓  
Han and Yu [37,38]  ✓  ✓  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  
Ho and Dickson [39]  ✓  ✖  ✓  ✓  ✖  ✓  ✓  ✖  ✓  ✖  ✖  ✖  ✖  
Yang et al. [40]  ✖  ✖  ✖  ✖  ✖  ✓  ✖  ✖  ✖  ✖  ✖  ✖  ✖  
Chiarelli et al. [41,42]  ✓  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  
Mäkiranta and Hiltunen [43]  ✓  ✖  ✓  ✖  ✖  ✖  ✖  ✖  ✓  ✖  ✖  ✖  ✖  
Balbay and Esen [44,45]  ✖  ✖  ✓  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  
Ho et al. [46]  ✓  ✖  ✖  ✖  ✖  ✓  ✓  ✖  ✖  ✖  ✖  ✖  ✖  
TotaMaharaj et al. [47]  ✓  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  
Zhang et al. [48]  ✓  ✖  ✓  ✓  ✓  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  
Wang et al. [49]  ✖  ✖  ✖  ✓  ✖  ✖  ✓  ✖  ✖  ✖  ✖  ✖  ✖  
Mauro and Grossman [50]  ✓  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖ 
System  Researchers  Impact Factors  

Climate Conditions  Pipe Arrangement Type  Pile Diameter  Pipe Depth  Distance between Pipe  Chimney Height  Chimney Inlet Temperature  Air Flow Rate  Fluid Flow Rate  Slab Thickness  Wind Speed  Thermal Conductivity of Slab Concrete  Pavement Surface Absorptivity  
SRES  Chiarelli et al. [25]  ✓  ✓  ✓  ✖  ✓  ✖  ✖  ✓  ✖  ✖  ✖  ✖  ✖ 
Guldentops et al. [51]  ✖  ✖  ✖  ✓  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✓  ✓  
Saad et al. [52]  ✖  ✖  ✖  ✖  ✖  ✓  ✓  ✓  ✖  ✖  ✓  ✖  ✖  
Johnsson and AdlZarrabi [53,54]  ✓  ✖  ✖  ✖  ✓  ✖  ✖  ✖  ✓  ✖  ✖  ✖  ✖  
Zaim et al. [55]  ✓  ✓  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✓  ✖  ✖  
AlonsoEstébanez et al. [56]  ✖  ✖  ✓  ✖  ✖  ✖  ✖  ✖  ✓  ✓  ✖  ✖  ✖  
Daniels et al. [57]  ✓  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✓  ✖  ✖  
García and Partl [58]  ✖  ✖  ✖  ✖  ✖  ✓  ✓  ✓  ✖  ✖  ✖  ✖  ✖  
Wu et al. [59]  ✖  ✖  ✖  ✓  ✖  ✖  ✖  ✖  ✓  ✖  ✖  ✖  ✖  
Du et al. [60]  ✓  ✖  ✓  ✓  ✓  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  
Dakessian et al. [61]  ✓  ✖  ✖  ✓  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖  ✖ 
Researchers  Type  Region  Key Findings 

Liu et al. [27]  GRES  Canada 

Han and Yu [38]  GRES  USA 

Yang et al. [40]  GRES  China 

Mauro and Grossman [50]  GRES  Italy 

HabibzadehBigdarvish [62]  GRES  USA 

Nahvi et al. [63]  GRES  USA 

Dakessian et al. [61]  SRES  Lebanon 

Sable [64]  SRES  India 

Researchers  Types  Regions  Influence Factors  

Initial Investment  Discounted Rate  Inflation Rate  Internal Rate of Return  Maintenance and Operation Cost  Number of Operations and Delay Durations  Percentage of Weather Related Delay  
Liu et al. [27]  GRES  Canada  ✓  ✖  ✓  ✖  ✓  ✖  ✖ 
Han and Yu [38]  GRES  USA  ✓  ✖  ✖  ✖  ✓  ✖  ✖ 
Yang et al. [40]  GRES  China  ✓  ✖  ✖  ✓  ✓  ✖  ✖ 
Mauro and Grossman [50]  GRES  Italy  ✓  ✖  ✖  ✖  ✓  ✖  ✖ 
HabibzadehBigdarvish [62]  GRES  USA  ✓  ✓  ✖  ✖  ✓  ✖  ✖ 
Nahvi et al. [63]  GRES  USA  ✓  ✓  ✖  ✖  ✓  ✓  ✓ 
Dakessian et al. [61]  SRES  Lebanon  ✓  ✖  ✖  ✖  ✓  ✓  ✖ 
Sable [64]  SRES  India  ✓  ✖  ✓  ✖  ✓  ✖  ✖ 
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Zhang, F.; Shao, Y.; Twaha, S.; Tong, H. TechnoEconomic Comprehensive Review of StateoftheArt Geothermal and Solar Roadway Energy Systems. Sustainability 2022, 14, 10974. https://doi.org/10.3390/su141710974
Cui Y, Zhang F, Shao Y, Twaha S, Tong H. TechnoEconomic Comprehensive Review of StateoftheArt Geothermal and Solar Roadway Energy Systems. Sustainability. 2022; 14(17):10974. https://doi.org/10.3390/su141710974
Chicago/Turabian StyleCui, Yuanlong, Fan Zhang, Yiming Shao, Ssennoga Twaha, and Hui Tong. 2022. "TechnoEconomic Comprehensive Review of StateoftheArt Geothermal and Solar Roadway Energy Systems" Sustainability 14, no. 17: 10974. https://doi.org/10.3390/su141710974