Emission of Bisphenol A and Four New Analogs from Industrial Wastewater Treatment Plants in the Production Processes of Polypropylene and Polyethylene Terephthalate in South America
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sampling
2.3. Sample Preparation
2.4. Treatment of Samples by SPE
2.4.1. Pretreatment
2.4.2. Cleaning and Pre-Concentration
2.5. Instrumental Evaluation
2.6. QA and QC (Quality Assurance and Quality Control)
2.7. Removal Extension Calculation
3. Results
3.1. BP Concentrations in WWTPs
3.2. WWTP Removal Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Owczarek, K.; Kudłak, B.; Simeonov, V.; Mazerska, Z.; Namieśnik, J. Binary Mixtures of Selected Bisphenols in the Environment: Their Toxicity in Relationship to Individual Constituents. Molecules 2018, 23, 3226. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, I.; Fiory, F.; Perruolo, G.; Miele, C.; Beguinot, F.; Formisano, P.; Oriente, F. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease. Int. J. Mol. Sci. 2020, 21, 5761. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Yang, B.-J.; Li, N.; Feng, L.-M.; Shi, X.-Y.; Zhao, W.-H.; Liu, S.-J. Bisphenol A and Hormone-Associated Cancers: Current Progress and Perspectives. Medicine 2015, 94, e211. [Google Scholar] [CrossRef] [PubMed]
- Corrales, J.; Kristofco, L.A.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B.W. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose-Response Publ. Int. Hormesis Soc. 2015, 13, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Kadasala, N.R.; Narayanan, B.; Liu, Y. International Trade Regulations on BPA: Global Health and Economic Implications. Asian Dev. Policy Rev. 2016, 4, 134–142. [Google Scholar] [CrossRef]
- Frankowski, R.; Zgoła-Grześkowiak, A.; Grześkowiak, T.; Sójka, K. The Presence of Bisphenol A in the Thermal Paper in the Face of Changing European Regulations—A Comparative Global Research. Environ. Pollut. 2020, 265, 114879. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Liu, F.; Kannan, K. Bisphenol S, a New Bisphenol Analogue, in Paper Products and Currency Bills and Its Association with Bisphenol A Residues. Environ. Sci. Technol. 2012, 46, 6515–6522. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, E.; Yamashita, N.; Taniyasu, S.; Lam, J.; Lam, P.K.S.; Moon, H.-B.; Jeong, Y.; Kannan, P.; Achyuthan, H.; Munuswamy, N.; et al. Bisphenol A and Other Bisphenol Analogues Including BPS and BPF in Surface Water Samples from Japan, China, Korea and India. Ecotoxicol. Environ. Saf. 2015, 122, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.-L.; Wu, Y.; Widelka, M. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef] [PubMed]
- Delfosse, V.; Grimaldi, M.; Pons, J.-L.; Boulahtouf, A.; le Maire, A.; Cavailles, V.; Labesse, G.; Bourguet, W.; Balaguer, P. Structural and Mechanistic Insights into Bisphenols Action Provide Guidelines for Risk Assessment and Discovery of Bisphenol A Substitutes. Proc. Natl. Acad. Sci. USA 2012, 109, 14930–14935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, J.; Kannan, P.; Kumosani, T.A.; Al-Malki, A.L.; Kannan, K. Resin-Based Dental Sealants as a Source of Human Exposure to Bisphenol Analogues, Bisphenol A Diglycidyl Ether, and Its Derivatives. Environ. Res. 2018, 162, 35–40. [Google Scholar] [CrossRef]
- Goldinger, D.M.; Demierre, A.-L.; Zoller, O.; Rupp, H.; Reinhard, H.; Magnin, R.; Becker, T.W.; Bourqui-Pittet, M. Endocrine Activity of Alternatives to BPA Found in Thermal Paper in Switzerland. Regul. Toxicol. Pharmacol. 2015, 71, 453–462. [Google Scholar] [CrossRef]
- Lee, S.; Liao, C.; Song, G.-J.; Ra, K.; Kannan, K.; Moon, H.-B. Emission of Bisphenol Analogues Including Bisphenol A and Bisphenol F from Wastewater Treatment Plants in Korea. Chemosphere 2015, 119, 1000–1006. [Google Scholar] [CrossRef]
- Ziv-Gal, A.; Flaws, J.A. Evidence for Bisphenol A-Induced Female Infertility: A Review (2007–2016). Fertil. Steril. 2016, 106, 827–856. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Liu, Y.; Yan, K.; Wu, S.; Han, Z.; Guo, R.; Chen, M.; Yang, Q.; Zhang, S.; Chen, J. Bisphenol Analogues in Surface Water and Sediment from the Shallow Chinese Freshwater Lakes: Occurrence, Distribution, Source Apportionment, and Ecological and Human Health Risk. Chemosphere 2017, 184, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, Y.; Li, J.; Yang, M. Occurrence and Exposure Assessment of Bisphenol Analogues in Source Water and Drinking Water in China. Sci. Total Environ. 2019, 655, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Ruan, T.; Liang, D.; Song, S.; Song, M.; Wang, H.; Jiang, G. Evaluation of the in Vitro Estrogenicity of Emerging Bisphenol Analogs and Their Respective Estrogenic Contributions in Municipal Sewage Sludge in China. Chemosphere 2015, 124, 150–155. [Google Scholar] [CrossRef]
- Xue, J.; Kannan, K. Mass Flows and Removal of Eight Bisphenol Analogs, Bisphenol A Diglycidyl Ether and Its Derivatives in Two Wastewater Treatment Plants in New York State, USA. Sci. Total Environ. 2019, 648, 442–449. [Google Scholar] [CrossRef]
- Jin, H.; Zhu, L. Occurrence and Partitioning of Bisphenol Analogues in Water and Sediment from Liaohe River Basin and Taihu Lake, China. Water Res. 2016, 103, 343–351. [Google Scholar] [CrossRef]
- Karthikraj, R.; Kannan, K. Mass Loading and Removal of Benzotriazoles, Benzothiazoles, Benzophenones, and Bisphenols in Indian Sewage Treatment Plants. Chemosphere 2017, 181, 216–223. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, Y.; Li, Y.; Ashfaq, M.; Dai, L.; Xie, X.; Yu, C.-P. Fate and Mass Balance of Bisphenol Analogues in Wastewater Treatment Plants in Xiamen City, China. Environ. Pollut. 2017, 225, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Peña-Guzmán, C.; Ulloa-Sánchez, S.; Mora, K.; Helena-Bustos, R.; Lopez-Barrera, E.; Alvarez, J.; Rodriguez-Pinzón, M. Emerging Pollutants in the Urban Water Cycle in Latin America: A Review of the Current Literature. J. Environ. Manag. 2019, 237, 408–423. [Google Scholar] [CrossRef] [PubMed]
- Jardim, W.F.; Montagner, C.C.; Pescara, I.C.; Umbuzeiro, G.A.; Di Dea Bergamasco, A.M.; Eldridge, M.L.; Sodré, F.F. An Integrated Approach to Evaluate Emerging Contaminants in Drinking Water. Sep. Purif. Technol. 2012, 84, 3–8. [Google Scholar] [CrossRef]
- Fang, Y.-X.; Ying, G.-G.; Zhao, J.-L.; Chen, F.; Liu, S.; Zhang, L.-J.; Yang, B. Assessment of Hormonal Activities and Genotoxicity of Industrial Effluents Using in Vitro Bioassays Combined with Chemical Analysis. Environ. Toxicol. Chem. 2012, 31, 1273–1282. [Google Scholar] [CrossRef]
- Balabanič, D.; Filipič, M.; Krivograd Klemenčič, A.; Žegura, B. Raw and Biologically Treated Paper Mill Wastewater Effluents and the Recipient Surface Waters: Cytotoxic and Genotoxic Activity and the Presence of Endocrine Disrupting Compounds. Sci. Total Environ. 2017, 574, 78–89. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and Elimination of Substituted Synthetic Phenols and Volatile Organic Compounds in the Wastewater Treatment Plant during the Production of Industrial Scale Polypropylene. Chemosphere 2021, 263, 128027. [Google Scholar] [CrossRef]
- Hernández-Fernández, J. Quantification of Arsine and Phosphine in Industrial Atmospheric Emissions in Spain and Colombia. Implementation of Modified Zeolites to Reduce the Environmental Impact of Emissions. Atmos. Pollut. Res. 2021, 12, 167–176. [Google Scholar] [CrossRef]
- Hernández-Fernández, J. Quantification of Oxygenates, Sulphides, Thiols and Permanent Gases in Propylene. A Multiple Linear Regression Model to Predict the Loss of Efficiency in Polypropylene Production on an Industrial Scale. J. Chromatogr. A 2020, 1628, 461478. [Google Scholar] [CrossRef]
- Joaquin, H.-F.; Juan, L. Quantification of Poisons for Ziegler Natta Catalysts and Effects on the Production of Polypropylene by Gas Chromatographic with Simultaneous Detection: Pulsed Discharge Helium Ionization, Mass Spectrometry and Flame Ionization. J. Chromatogr. A 2020, 1614, 460736. [Google Scholar] [CrossRef]
- Joaquin, H.-F.; Juan, L.-M. Autocatalytic Influence of Different Levels of Arsine on the Thermal Stability and Pyrolysis of Polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385. [Google Scholar] [CrossRef]
- Hernández-Fernandez, J.; Rodríguez, E. Determination of Phenolic Antioxidants Additives in Industrial Wastewater from Polypropylene Production Using Solid Phase Extraction with High-Performance Liquid Chromatography. J. Chromatogr. A 2019, 1607, 460442. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and Validation of a Methodology for Quantifying Parts-per-Billion Levels of Arsine and Phosphine in Nitrogen, Hydrogen and Liquefied Petroleum Gas Using a Variable Pressure Sampler Coupled to Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2021, 1637, 461833. [Google Scholar] [CrossRef]
- Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Cortés Rodríguez, M.; Ortega-Toro, R. Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation. Appl. Sci. 2021, 11, 11057. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; López-Martínez, J. Experimental Study of the Auto-Catalytic Effect of Triethylaluminum and TiCl4 Residuals at the Onset of Non-Additive Polypropylene Degradation and Their Impact on Thermo-Oxidative Degradation and Pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, J.-L.; Zhang, C.-Y.; Rao, W.-L.; Liang, G.-H.; Zhang, H.; Liu, Y.-H.; Guan, Y.-F.; Zhang, H.-Y.; Ying, G.-G. Profile and Removal of Bisphenol Analogues in Hospital Wastewater, Landfill Leachate, and Municipal Wastewater in South China. Sci. Total Environ. 2021, 790, 148269. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhao, J.-L.; Yang, Y.-Y.; Jia, Y.-W.; Zhang, Q.-Q.; Chen, C.-E.; Liu, Y.-S.; Yang, B.; Xie, L.; Ying, G.-G. Occurrence, Mass Loads and Risks of Bisphenol Analogues in the Pearl River Delta Region, South China: Urban Rainfall Runoff as a Potential Source for Receiving Rivers. Environ. Pollut. 2020, 263, 114361. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Gao, X.; Huang, L.; Gan, X.-M.; Zhang, Y.-X.; Chen, Y.-P.; Peng, X.-Y.; Guo, J.-S. Occurrence and Fate of Pharmaceutically Active Compounds in the Largest Municipal Wastewater Treatment Plant in Southwest China: Mass Balance Analysis and Consumption Back-Calculated Model. Chemosphere 2014, 99, 160–170. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, Q.; Yan, X.; Liao, C.; Jiang, G. Occurrence, Fate and Risk Assessment of BPA and Its Substituents in Wastewater Treatment Plant: A Review. Environ. Res. 2019, 178, 108732. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, Z.; Zhang, J.; Huang, R.; Yin, H.; Dang, Z.; Wu, P.; Liu, Y. Insights into Removal Mechanisms of Bisphenol A and Its Analogues in Municipal Wastewater Treatment Plants. Sci. Total Environ. 2019, 692, 107–116. [Google Scholar] [CrossRef]
- Melcer, H.; Klečka, G. Treatment of Wastewaters Containing Bisphenol A: State of the Science Review. Water Environ. Res. 2011, 83, 650–666. [Google Scholar] [CrossRef] [PubMed]
ID | Formula | Name | Structure |
---|---|---|---|
BPA | C15H16O2 | 4,4′-(propane-2,2-diyl) diphenol | |
D-BPA-1 | C24H26O2 | 4-[2-[4-[2-(4-hydroxyphenyl)propan-2-yl]phenyl]propan-2-yl]phenol | |
D-BPA-2 | C16H18O2 | 4-[2-(4-hydroxyphenyl)propan-2-yl]-2-methylphenol | |
D-BPA-3 | C15H16O3 | 4-[2-(4-hydroxyphenyl)propan-2-yl]benzene-1,2-diol | |
D-BPA-4 | C18H2203 | 4-[2-(4-hydroxyphenyl)propan-2-yl]-2-(2-hydroxypropan-2-yl)phenol |
Compounds | Mean |
---|---|
n = 4 | |
D-BPA-1 | 75.4 ± 1.44 |
D-BPA-2 | 256 ± 1.32 |
D-BPA-3 | 45.3 ± 1.7 |
D-BPA-4 | 325 ± 5.14 |
Influents | Effluents | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sampling Point | Parameters | BPA | D-BPA-1 | D-BPA-2 | D-BPA-3 | D-BPA-4 | ƩBPs | BPA | D-BPA-1 | D-BPA-2 | D-BPA-3 | D-BPA-4 | ƩBPs |
PP Extruder | (n = 16) | ||||||||||||
Mean | 389.88 | 159.00 | 85.94 | 99.47 | 67.82 | 802.12 | 115.59 | 41.12 | 26.18 | 32.41 | 14.00 | 229.29 | |
Median | 386 | 163 | 86 | 93 | 43 | 797 | 112 | 39 | 25 | 34 | 14 | 227 | |
Range | 312–485 | 109–198 | 68–100 | 57–165 | 4–465 | 689–1202 | 104–148 | 32–57 | 16–40 | 18–43 | 430–40 | 202–249 | |
DR | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Desorber PP | (n = 16) | ||||||||||||
Mean | 448.35 | 153.71 | 86.00 | 213.35 | 109.71 | 1011.12 | 140.41 | 79.00 | 36.31 | 45.66 | 36.82 | 338.21 | |
Median | 444 | 153 | 89 | 206 | 105 | 1002 | 142 | 81 | 35 | 42.1 | 33.9 | 354.5 | |
Range | 402–499 | 112–197 | 49–124 | 189–263 | 76–142 | 923–1121 | 99–176 | 34–114 | 11.2–63.4 | 31.2–74.3 | 10.5–81.3 | 236.4–418.3 | |
DR | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
PET Production | (n = 16) | ||||||||||||
Mean | 1949.00 | 534.82 | 262.82 | 180.47 | 73.79 | 3000.91 | 325.06 | 254.94 | 53.00 | 46.76 | 42.29 | 722.05 | |
Median | 1254 | 536 | 265 | 169 | 75 | 2227 | 344 | 256 | 52 | 47 | 31 | 725.4 | |
Range | 1025–12,478 | 485–575 | 203–296 | 108–478 | 45–96 | 2014–13,514 | 210–391 | 198–301 | 45–59 | 40–52 | 20–142.5 | 592–845.5 | |
DR | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Fernández, J.; Cano-Cuadro, H.; Puello-Polo, E. Emission of Bisphenol A and Four New Analogs from Industrial Wastewater Treatment Plants in the Production Processes of Polypropylene and Polyethylene Terephthalate in South America. Sustainability 2022, 14, 10919. https://doi.org/10.3390/su141710919
Hernández-Fernández J, Cano-Cuadro H, Puello-Polo E. Emission of Bisphenol A and Four New Analogs from Industrial Wastewater Treatment Plants in the Production Processes of Polypropylene and Polyethylene Terephthalate in South America. Sustainability. 2022; 14(17):10919. https://doi.org/10.3390/su141710919
Chicago/Turabian StyleHernández-Fernández, Joaquín, Heidi Cano-Cuadro, and Esneyder Puello-Polo. 2022. "Emission of Bisphenol A and Four New Analogs from Industrial Wastewater Treatment Plants in the Production Processes of Polypropylene and Polyethylene Terephthalate in South America" Sustainability 14, no. 17: 10919. https://doi.org/10.3390/su141710919