Designing a Seed Health Strategy for Organic Cropping Systems, Based on a Dynamic Perspective on Seed and Plant Health
Abstract
:1. Introduction
2. Contributions of Seed Vigour and Microbiota to Seed and Plant Health
2.1. Seed Vigour
2.2. Seed Microbiota
3. Implications—And Open Questions—For Plant Breeding, Seed Production and Seed Sanitation
- Plant breeding
- Seed production
- Seed treatments
- Legal framework: Plant Health regulations and pathogen thresholds
4. Strategy to Improve Seed Health from a Dynamic Perspective: Next Steps
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Storkey, J. Modelling Seedling Growth Rates of 18 Temperate Arable Weed Species as a Function of the Environment and Plant Traits. Ann. Bot. 2004, 93, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, J. Barley Seed Vigour and Mechanical Weed Control. Weed Res. 2008, 40, 219–230. [Google Scholar] [CrossRef]
- European Council. Council Directive 2002/55/EC on the Marketing of Vegetable Seed; European Council: Brussels, Belgium, 2002. [Google Scholar]
- European Council. Council Directive 66/402/EEC of 14 June 1966 on the Marketing of Cereal Seed; European Council: Brussels, Belgium, 1966. [Google Scholar]
- European Parliament and Council. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007; European Parliament and Council: Brussels, Belgium, 2018. [Google Scholar]
- Döring, T.F.; Pautasso, M.; Finckh, M.R.; Wolfe, M.S. Concepts of Plant Health—Reviewing and Challenging the Foundations of Plant Protection. Plant Pathol. 2012, 61, 1–15. [Google Scholar] [CrossRef]
- Klaedtke, S.; Mélard, F.; Chable, V.; Stassart, P.M. Les artisans semenciers, les haricots et leurs agents pathogènes. La biodiversité cultivée et la santé des plantes au cœur d’une identité professionnelle. Etudes Rural. 2018, 202, 36–55. [Google Scholar] [CrossRef]
- Altieri, M.A. Agroecology: The Science of Sustainable Agriculture, 2nd ed.; Westview Press: Boulder, CO, USA; IT Publications: London, UK, 1995; ISBN 978-0-8133-1717-5. [Google Scholar]
- Stassart, P.M.; Baret, P.V.; Grégoire, J.-C.; Hance, T.; Mormont, M.; Reheul, D.; Stilmant, D.; Vanloqueren, G. Visser L’agroécologie: Trajectoire et potentiel—Pour une transition vers des systèmes alimentaires durables. In Agroécologie Entre Pratiques et Sciences Sociales; Educagri éditions: Dijon, France, 2012; ISBN 978-2-84444-876-7. [Google Scholar]
- ISTA. International Rules for Seed Testing. Full Issue Engl. Fr. 2022, 2022, i-19–8(8). [Google Scholar] [CrossRef]
- Song, C.; Zhu, F.; Carrión, V.J.; Cordovez, V. Beyond Plant Microbiome Composition: Exploiting Microbial Functions and Plant Traits via Integrated Approaches. Front. Bioeng. Biotechnol. 2020, 8, 896. [Google Scholar] [CrossRef]
- Vandenkoornhuyse, P.; Quaiser, A.; Duhamel, M.; Le Van, A.; Dufresne, A. The Importance of the Microbiome of the Plant Holobiont. New Phytol. 2015, 206, 1196–1206. [Google Scholar] [CrossRef]
- Shade, A.; Jacques, M.-A.; Barret, M. Ecological Patterns of Seed Microbiome Diversity, Transmission, and Assembly. Curr. Opin. Microbiol. 2017, 37, 15–22. [Google Scholar] [CrossRef]
- Vayssier-Taussat, M.; Albina, E.; Citti, C.; Cosson, J.-F.; Jacques, M.-A.; Lebrun, M.-H.; Le Loir, Y.; Ogliastro, M.; Petit, M.-A.; Roumagnac, P.; et al. Shifting the Paradigm from Pathogens to Pathobiome: New Concepts in the Light of Meta-Omics. Front. Cell. Infect. Microbiol. 2014, 4, 29. [Google Scholar] [CrossRef]
- Wassermann, B.; Cernava, T.; Müller, H.; Berg, C.; Berg, G. Seeds of Native Alpine Plants Host Unique Microbial Communities Embedded in Cross-Kingdom Networks. Microbiome 2019, 7, 108. [Google Scholar] [CrossRef] [Green Version]
- LIVESEED Project. Boosting Organic Seed and Plant Breeding across Europe, European Union Horizon 2020 Research and Innovation Programme Grant Agreement No 727230; Swiss State Secretariat for Education, Research and Innovation Contract Number 17.00090. 2017. Available online: https://www.liveseed.eu/ (accessed on 30 June 2022).
- Groot, S.P.C.; Klaedtke, S.; Messmer, M.; Rey, F. Organic Seed Health. An Inventory of Issues and a Report on Case Studies. LIVESEED Project. 2020. Available online: https://orgprints.org/id/eprint/39423 (accessed on 29 August 2022).
- Stevens, R.B. Cultural Practices in Disease Control. In Plant Pathology, an Advanced Treatise; Horsfall, J.G., Dimond, A.E., Eds.; Academic Press: New York, NY, USA, 1960; Volume 3, pp. 357–429. [Google Scholar]
- Francl, L.J. The Disease Triangle: A Plant Pathological Paradigm Revisited. Plant Health Instr. 2001. [Google Scholar] [CrossRef]
- Browning, J.A.; Simons, M.D.; Torres, E. Managing Host Genes: Epidemiologic and Genetic Concepts. In How Disease is Managed; Elsevier: Amsterdam, The Netherlands, 1977; pp. 191–212. ISBN 978-0-12-356401-6. [Google Scholar]
- Agrios, G.N. Plant Pathology, 5th ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2005; ISBN 978-0-12-044565-3. [Google Scholar]
- Andrade-Piedra, J.L.; Cáceres, P.A.; Forbes, G.A.; Pumisacho, M. Humans: The Neglected Corner of the Disease Tetrahedron—Developing a Training Guide for Resource-Poor Farmers to Control Potato Late Blight. Acta Hortic. 2009, 401, 111–122. [Google Scholar] [CrossRef]
- Hickey, C.; Brannen, P.M.; Blaauw, B.R. Pierce’s Disease of Grape: Identification and Management. UGA Coop. Ext. Bull 2019, 1514, 1–6. Available online: https://extension.uga.edu/publications/detail.html?number=B1514 (accessed on 30 August 2022).
- Finch-Savage, W.E.; Bassel, G.W. Seed Vigour and Crop Establishment: Extending Performance beyond Adaptation. J. Exp. Bot. 2016, 67, 567–591. [Google Scholar] [CrossRef] [PubMed]
- Yamane, K.; Garcia, R.; Imayoshi, K.; Mabesa-Telosa, R.C.; Banayo, N.P.M.C.; Vergara, G.; Yamauchi, A.; Sta Cruz, P.; Kato, Y. Seed Vigour Contributes to Yield Improvement in Dry Direct-Seeded Rainfed Lowland Rice: Seed Vigour under Drought in Rice. Ann. Appl. Biol. 2018, 172, 100–110. [Google Scholar] [CrossRef]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-4692-7. [Google Scholar]
- Rajjou, L.; Debeaujon, I. Seed Longevity: Survival and Maintenance of High Germination Ability of Dry Seeds. Comptes Rendus. Biol. 2008, 331, 796–805. [Google Scholar] [CrossRef]
- Groot, S.P.C.; Birnbaum, Y.; Rop, N.; Jalink, H.; Forsberg, G.; Kromphardt, C.; Werner, S.; Koch, E. Effect of Seed Maturity on Sensitivity of Seeds towards Physical Sanitation Treatments. Seed Sci. Technol. 2006, 34, 403–413. [Google Scholar] [CrossRef]
- Finch-Savage, W.E.; Clay, H.A.; Lynn, J.R.; Morris, K. Towards a Genetic Understanding of Seed Vigour in Small-Seeded Crops Using Natural Variation in Brassica oleracea. Plant Sci. 2010, 179, 582–589. [Google Scholar] [CrossRef]
- Li, C.S.; Shao, G.S.; Wang, L.; Wang, Z.F.; Mao, Y.J.; Wang, X.Q.; Zhang, X.H.; Liu, S.T.; Zhang, H.S. QTL Identification and Fine Mapping for Seed Storability in Rice (Oryza sativa L.). Euphytica 2017, 213, 127. [Google Scholar] [CrossRef]
- Lee, J.-S.; Velasco-Punzalan, M.; Pacleb, M.; Valdez, R.; Kretzschmar, T.; McNally, K.L.; Ismail, A.M.; Cruz, P.C.S.; Sackville Hamilton, N.R.; Hay, F.R. Variation in Seed Longevity among Diverse Indica Rice Varieties. Ann. Bot. 2019, 124, 447–460. [Google Scholar] [CrossRef]
- Mohamed-Yasseen, Y.; Barringer, S.A.; Splittstoesser, W.E.; Costanza, S. The Role of Seed Coats in Seed Viability. Bot. Rev. 1994, 60, 426–439. [Google Scholar] [CrossRef]
- Das Gupta, P.R.; Austenson, H.M. Analysis of Interrelationships among Seedling Vigor, Field Emergence, and Yield in Wheat. Agron. J. 1973, 65, 417–422. [Google Scholar] [CrossRef]
- Magnée, K.J.H.; Scholten, O.E.; Postma, J.; Lammerts van Bueren, E.T.; Groot, S.P.C. Sensitivity of Spinach Seed Germination to Moisture Is Driven by Oxygen Availability and Influenced by Seed Size and Pericarp. Seed Sci. Technol. 2020, 48, 117–131. [Google Scholar] [CrossRef]
- Magnée, K.J.H. From Seed to Seedling—Damping-off Tolerance in Spinacia oleracea L. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2022. [Google Scholar]
- White, J.F.; Kingsley, K.L.; Butterworth, S.; Brindisi, L.; Gatei, J.W.; Elmore, M.T.; Verma, S.K.; Yao, X.; Kowalski, K.P. Seed-Vectored Microbes: Their Roles in Improving Seedling Fitness and Competitor Plant Suppression. In Seed Endophytes; Verma, S.K., White, J.F., Jr., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 3–20. ISBN 978-3-030-10503-7. [Google Scholar]
- Nelson, E.B. The Seed Microbiome: Origins, Interactions, and Impacts. Plant Soil 2018, 422, 7–34. [Google Scholar] [CrossRef]
- Matsumoto, H.; Fan, X.; Wang, Y.; Kusstatscher, P.; Duan, J.; Wu, S.; Chen, S.; Qiao, K.; Wang, Y.; Ma, B.; et al. Bacterial Seed Endophyte Shapes Disease Resistance in Rice. Nat. Plants 2021, 7, 60–72. [Google Scholar] [CrossRef]
- Irizarry, I.; White, J.F. Application of Bacteria from Non-Cultivated Plants to Promote Growth, Alter Root Architecture and Alleviate Salt Stress of Cotton. J. Appl. Microbiol. 2017, 122, 1110–1120. [Google Scholar] [CrossRef] [PubMed]
- Morella, N.M.; Zhang, X.; Koskella, B. Tomato Seed-Associated Bacteria Confer Protection of Seedlings Against Foliar Disease Caused by Pseudomonas syringae. Phytobiomes J. 2019, 3, 177–190. [Google Scholar] [CrossRef]
- Hone, H.; Mann, R.; Yang, G.; Kaur, J.; Tannenbaum, I.; Li, T.; Spangenberg, G.; Sawbridge, T. Profiling, Isolation and Characterisation of Beneficial Microbes from the Seed Microbiomes of Drought Tolerant Wheat. Sci. Rep. 2021, 11, 11916. [Google Scholar] [CrossRef] [PubMed]
- Mitter, B.; Pfaffenbichler, N.; Flavell, R.; Compant, S.; Antonielli, L.; Petric, A.; Berninger, T.; Naveed, M.; Sheibani-Tezerji, R.; von Maltzahn, G.; et al. A New Approach to Modify Plant Microbiomes and Traits by Introducing Beneficial Bacteria at Flowering into Progeny Seeds. Front. Microbiol. 2017, 8, 11. [Google Scholar] [CrossRef]
- Song, Y.; Haney, C.H. Drought Dampens Microbiome Development. Nat. Plants 2021, 7, 994–995. [Google Scholar] [CrossRef]
- Rezki, S.; Campion, C.; Iacomi-Vasilescu, B.; Preveaux, A.; Toualbia, Y.; Bonneau, S.; Briand, M.; Laurent, E.; Hunault, G.; Simoneau, P.; et al. Differences in Stability of Seed-Associated Microbial Assemblages in Response to Invasion by Phytopathogenic Microorganisms. PeerJ 2016, 4, e1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalaf, E.M.; Raizada, M.N. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew. Front. Microbiol. 2018, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhang, R.; Wu, X.; Xu, T.; Ahmad, S.; Zhang, X.; Zhao, J.; Liu, Y. An Endophytic Strain of the Genus Bacillus Isolated from the Seeds of Maize (Zea mays L.) Has Antagonistic Activity against Maize Pathogenic Strains. Microb. Pathog. 2020, 142, 104074. [Google Scholar] [CrossRef]
- Bergna, A.; Cernava, T.; Rändler, M.; Grosch, R.; Zachow, C.; Berg, G. Tomato Seeds Preferably Transmit Plant Beneficial Endophytes. Phytobiomes J. 2018, 2, 183–193. [Google Scholar] [CrossRef]
- Johnston-Monje, D.; Gutiérrez, J.P.; Lopez-Lavalle, L.A.B. Seed-Transmitted Bacteria and Fungi Dominate Juvenile Plant Microbiomes. Front. Microbiol. 2021, 12, 737616. [Google Scholar] [CrossRef] [PubMed]
- Maeder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil Fertility and Biodiversity in Organic Farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [PubMed]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil Health and Sustainable Agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Moeskops, B.; Sukristiyonubowo; Buchan, D.; Sleutel, S.; Herawaty, L.; Husen, E.; Saraswati, R.; Setyorini, D.; De Neve, S. Soil Microbial Communities and Activities under Intensive Organic and Conventional Vegetable Farming in West Java, Indonesia. Appl. Soil Ecol. 2010, 45, 112–120. [Google Scholar] [CrossRef]
- Wei, Z.; Jousset, A. Plant Breeding Goes Microbial. Trends Plant Sci. 2017, 22, 555–558. [Google Scholar] [CrossRef]
- Vujanovic, V.; Germida, J. Seed Endosymbiosis: A Vital Relationship in Providing Prenatal Care to Plants. Can. J. Plant Sci. 2017, 97, 972–981. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; van Themaat, E.V.L.; Schulze-Lefert, P. Structure and Functions of the Bacterial Microbiota of Plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Romero, E.; Aguirre-Noyola, J.L.; Taco-Taype, N.; Martínez-Romero, J.; Zuñiga-Dávila, D. Plant Microbiota Modified by Plant Domestication. Syst. Appl. Microbiol. 2020, 43, 126106. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Jin, K.; Raaijmakers, J.M. Designing a Home for Beneficial Plant Microbiomes. Curr. Opin. Plant Biol. 2021, 62, 102025. [Google Scholar] [CrossRef] [PubMed]
- Tosi, M.; Mitter, E.K.; Gaiero, J.; Dunfield, K. It Takes Three to Tango: The Importance of Microbes, Host Plant, and Soil Management to Elucidate Manipulation Strategies for the Plant Microbiome. Can. J. Microbiol. 2020, 66, 413–433. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, W.; Jaradat, A.A.; Hurburgh, C.; Pollak, L.M.; Goodman, M. Breeding Maize under Biodynamic-Organic Conditions for Nutritional Value and N Efficiency/N2 Fixation. Open Agric. 2019, 4, 322–345. [Google Scholar] [CrossRef]
- Abdelrazek, S.; Simon, P.; Colley, M.; Mengiste, T.; Hoagland, L. Crop Management System and Carrot Genotype Affect Endophyte Composition and Alternaria dauci Suppression. PLoS ONE 2020, 15, e0233783. [Google Scholar] [CrossRef] [PubMed]
- Gopal, M.; Gupta, A. Microbiome Selection Could Spur Next-Generation Plant Breeding Strategies. Front. Microbiol. 2016, 7, 1971. [Google Scholar] [CrossRef]
- Rybakova, D.; Mancinelli, R.; Wikström, M.; Birch-Jensen, A.-S.; Postma, J.; Ehlers, R.-U.; Goertz, S.; Berg, G. The Structure of the Brassica napus Seed Microbiome Is Cultivar-Dependent and Affects the Interactions of Symbionts and Pathogens. Microbiome 2017, 5, 104. [Google Scholar] [CrossRef]
- Mayer, J.; Gunst, L.; Mäder, P.; Samson, M.-F.; Carcea, M.; Narducci, V.; Thomsen, I.K.; Dubois, D. Productivity, Quality and Sustainability of Winter Wheat under Long-Term Conventional and Organic Management in Switzerland. Eur. J. Agron. 2015, 65, 27–39. [Google Scholar] [CrossRef]
- Wen, D.; Hou, H.; Meng, A.; Meng, J.; Xie, L.; Zhang, C. Rapid Evaluation of Seed Vigor by the Absolute Content of Protein in Seed within the Same Crop. Sci. Rep. 2018, 8, 5569. [Google Scholar] [CrossRef]
- Li, W.; He, X.; Chen, Y.; Jing, Y.; Shen, C.; Yang, J.; Teng, W.; Zhao, X.; Hu, W.; Hu, M.; et al. A Wheat Transcription Factor Positively Sets Seed Vigour by Regulating the Grain Nitrate Signal. New Phytol. 2020, 225, 1667–1680. [Google Scholar] [CrossRef]
- Lammerts van Bueren, E.T.; Østergård, H.; Goldringer, I.; Scholten, O. Plant Breeding for Organic and Sustainable, Low-Input Agriculture: Dealing with Genotype–Environment Interactions. Euphytica 2008, 163, 321–322. [Google Scholar] [CrossRef]
- Roberts, M.R.; López Sánchez, A. Plant Epigenetic Mechanisms in Response to Biotic Stress. In Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications; Alvarez-Venegas, R., De-la-Peña, C., Casas-Mollano, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 65–113. ISBN 978-3-030-14759-4. [Google Scholar]
- Zhu, Q.-H.; Shan, W.-X.; Ayliffe, M.A.; Wang, M.-B. Epigenetic Mechanisms: An Emerging Player in Plant-Microbe Interactions. Mol. Plant-Microbe Interact. 2016, 29, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Zhi, P.; Chang, C. Exploiting Epigenetic Variations for Crop Disease Resistance Improvement. Front. Plant Sci. 2021, 12, 692328. [Google Scholar] [CrossRef]
- Dasgupta, P.R.; Austenson, H.M. Relations between Estimates of Seed Vigor and Field Performance in Wheat. Can. J. Plant Sci. 1973, 53, 43–46. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S. Decentralized-Participatory Plant Breeding: An Example of Demand Driven Research. Euphytica 2007, 155, 349–360. [Google Scholar] [CrossRef]
- Noël, R. Etude de Schémas de Sélection Paysanne. Oral Presentation at the Final Meeting of the Project “Covalience” on 6 June 2021. Available online: https://maison-de-la-semence-paysanne-dordogne.netlify.app/post/mds-gc/publication/reponse_selection/#presentation-et-resultats (accessed on 30 August 2022).
- Klaedtke, S.; Jacques, M.-A.; Raggi, L.; Préveaux, A.; Bonneau, S.; Negri, V.; Chable, V.; Barret, M. Terroir Is a Key Driver of Seed-Associated Microbial Assemblages: Terroir Shapes the Seed Microbiota. Environ. Microbiol. 2016, 18, 1792–1804. [Google Scholar] [CrossRef]
- Berg, G.; Raaijmakers, J.M. Saving Seed Microbiomes. ISME J. 2018, 12, 1167–1170. [Google Scholar] [CrossRef]
- Brush, S.B. Genes in the Field: On-Farm Conservation of Crop Diversity; International Plant Genetic Resources Institute: Rome, Italy ; International Development Research Centre: Ottawa, ON, Canada; Lewis Publishers: Boca Raton, FL, USA, 2000; ISBN 978-0-88936-884-2. [Google Scholar]
- Andersen, R.; Shrestha, P.; Otieno, G.; Nishikawa, Y.; Kasasa, P.; Mushita, A. Community Seed Banks: Sharing Experiences from North and South. Report from a Side Event Held 1 November 2017, during the Seventh Session of the Governing Body of the International Treaty on Plant Genetic Resources for Food and Agriculture; Kigali, Rwanda. 2017. Available online: https://cgspace.cgiar.org/bitstream/handle/10568/92510/Community_Andersen_2018.pdf?sequence=1&isAllowed=y (accessed on 6 June 2022).
- Vernooy, R.; Sthapit, B.; Otieno, G.; Shrestha, P.; Gupta, A. The Roles of Community Seed Banks in Climate Change Adaption. Dev. Pract. 2017, 27, 316–327. [Google Scholar] [CrossRef]
- Chandel, A.; Mann, R.; Kaur, J.; Norton, S.; Edwards, J.; Spangenberg, G.; Sawbridge, T. Implications of Seed Vault Storage Strategies for Conservation of Seed Bacterial Microbiomes. Front. Microbiol. 2021, 12, 784796. [Google Scholar] [CrossRef]
- van der Wolf, J.M.; Birnbaum, Y.; van der Zouwen, P.S.; Groot, S.P.C. Disinfection of Vegetable Seed by Treatment with Essential Oils, Organic Acids and Plant Extracts. Seed Sci. Technol. 2008, 36, 76–88. [Google Scholar] [CrossRef]
- Scheuerell, S.; Mahaffee, W. Compost Tea: Principles and Prospects For Plant Disease Control. Compost Sci. Util. 2002, 10, 313–338. [Google Scholar] [CrossRef]
- Vaish, S.; Garg, N.; Ahmad, I.Z. Microbial Basis of Organic Farming Systems with Special Reference to Biodynamic Preparations. Indian J. Agric. Sci. 2020, 90, 1219–1225. [Google Scholar]
- Acosta Almanzar, H.A. Microorganismos Eficientes de Montaña: Evaluación de su Potencial Bajo Manejo Agroecológico de Tomate en Costa Rica. Master′s Thesis, Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica, 2012. [Google Scholar]
- European Parliament and Council. Regulation (EU) 2016/2031 of the European Parliament and of the Council of 26 October 2016 on Protective Measures against Pests of Plants, Amending Regulations (EU) No 228/2013, (EU) No 652/2014 and (EU) No 1143/2014 of the European Parliament and of the Council and Repealing Council Directives 69/464/EEC, 74/647/EEC, 93/85/EEC, 98/57/EC, 2000/29/EC, 2006/91/EC and 2007/33/EC; European Parliament and Council: Brussels, Belgium, 2016. [Google Scholar]
- van Bruggen, A.H.C.; Goss, E.M.; Havelaar, A.; van Diepeningen, A.D.; Finckh, M.R.; Morris, J.G. One Health—Cycling of Diverse Microbial Communities as a Connecting Force for Soil, Plant, Animal, Human and Ecosystem Health. Sci. Total Environ. 2019, 664, 927–937. [Google Scholar] [CrossRef]
- van Bruggen, A.H.C.; Finckh, M.R. Plant Diseases and Management Approaches in Organic Farming Systems. Annu. Rev. Phytopathol. 2016, 54, 25–54. [Google Scholar] [CrossRef]
- Good Seed and Plant Practices. Available online: https://gspp.eu/ (accessed on 6 June 2022).
- IFOAM Organics International Principles of Organic Agriculture. 2005. Available online: https://www.ifoam.bio/principles-organic-agriculture-brochure (accessed on 6 June 2022).
- Klaedtke, S. Governance of Plant Health and Management of Crop Diversity—The Case of Common Bean Health Management among Members of the Association Croqueurs de Carottes; Université de Liège: Liège, Belgium; Agrocampus Ouest: Rennes, France, 2017. [Google Scholar]
- Dachverband Kulturpflanzen—Und Nutztiervielfalt e.V., Board. Evaluation of Article 79 (Plant Passport) of the Plant Health Regulation 2016/2031/EU. 2021. Available online: https://kulturpflanzen-nutztiervielfalt.org/sites/kulturpflanzen-nutztiervielfalt.org/files/Dachverband_Plant_Health_Art79.pdf (accessed on 3 June 2022).
- Meißner, U. Gut zu wissen: Neues im Pflanzengesundheitsrecht. Specie Rara Polit. Int. 2022. Available online: https://www.prospecierara.de/news/news-detail/news/gut-zu-wissen-neues-im-pflanzengesundheitsrecht.html (accessed on 3 June 2022).
- Fitzpatrick, C.R.; Salas-González, I.; Conway, J.M.; Finkel, O.M.; Gilbert, S.; Russ, D.; Teixeira, P.J.P.L.; Dangl, J.L. The Plant Microbiome: From Ecology to Reductionism and Beyond. Annu. Rev. Microbiol. 2020, 74, 81–100. [Google Scholar] [CrossRef]
- Roossinck, M.J. A New Look at Plant Viruses and Their Potential Beneficial Roles in Crops: Beneficial Viruses for Crops. Mol. Plant Pathol. 2015, 16, 331–333. [Google Scholar] [CrossRef]
- Elsharkawy, M.M.; Shimizu, M.; Takahashi, H.; Ozaki, K.; Hyakumachi, M. Induction of Systemic Resistance against Cucumber Mosaic Virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1. Plant Pathol. J. 2013, 29, 193–200. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Behiry, S.I.; Al-Askar, A.A. Bacillus velezensis PEA1 Inhibits Fusarium oxysporum Growth and Induces Systemic Resistance to Cucumber Mosaic Virus. Agronomy 2020, 10, 1312. [Google Scholar] [CrossRef]
- Abo-Zaid, G.A.; Matar, S.M.; Abdelkhalek, A. Induction of Plant Resistance against Tobacco Mosaic Virus Using the Biocontrol Agent Streptomyces cellulosae Isolate Actino 48. Agronomy 2020, 10, 1620. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–Microbiome Interactions: From Community Assembly to Plant Health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef] [PubMed]
Actions | Aimed Outcome |
---|---|
| Higher organic seed vigour. |
| Knowledge on how to favour optimised seed microbiota; recommendations for an effective preservation and conservation of endemic seed microbiota. |
| Knowledge on essential consortia of seed microbiota for resilient seedlings and crops; knowledge on the role of microbial consortia in the local adaptation of crops. |
| Reintroduction of natural seed microbiota into depleted environments, in particular after seed disinfection. |
| Recommendations and methodologies for organic breeding programmes which preserve and make the most of biological diversity at all levels, including crops, cropping systems and microbial ecology. |
| More precision when comparing the performance of different plant cultivars by accounting for differences in initial seed vigour; improved organic seed quality and seedling resilience. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klaedtke, S.M.; Rey, F.; Groot, S.P.C. Designing a Seed Health Strategy for Organic Cropping Systems, Based on a Dynamic Perspective on Seed and Plant Health. Sustainability 2022, 14, 10903. https://doi.org/10.3390/su141710903
Klaedtke SM, Rey F, Groot SPC. Designing a Seed Health Strategy for Organic Cropping Systems, Based on a Dynamic Perspective on Seed and Plant Health. Sustainability. 2022; 14(17):10903. https://doi.org/10.3390/su141710903
Chicago/Turabian StyleKlaedtke, Stephanie M., Frédéric Rey, and Steven P. C. Groot. 2022. "Designing a Seed Health Strategy for Organic Cropping Systems, Based on a Dynamic Perspective on Seed and Plant Health" Sustainability 14, no. 17: 10903. https://doi.org/10.3390/su141710903