Urban Wastewater Reuse for Citrus Irrigation in Algarve, Portugal—Environmental Benefits and Carbon Fluxes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Characterization
2.3. Groundwater and Tretaed Effluent Characterization
2.4. Carbon Emissions Related to the Urban Wastewater Treatment
2.5. Assessment of Environmental Benefits Related to Urban Wastewater Reuse
- (1)
- Considering the current irrigation dose during the experimental period, the energy consumption to groundwater extraction for irrigation was compared with the energy consumption for transporting the treated effluent from the WWTP to the orchard, assuming the same characteristics of the currently installed pump (submersible with a flow rate of 30 m3 h−1 and 7.5 kW). Then, we calculated the CE related to both energy consumptions, considering the carbon emission factor for electricity in Portugal during 2019, 248.65 g CO2eq kWh−1 (EDP, 2020), including emissions of CO2, CH4, and N2O.
- (2)
- Attending to the amount of synthetic N and P-fertilizers applied by fertigation during the experimental period (when groundwater was used for irrigation), and to the nutrient concentrations (N and P) in the treated effluent, we calculated the necessary adjustment of synthetic fertilizers, to ensure the same nutrient supply to the citrus trees. The CE related to the different amounts of synthetic fertilizers applied in both irrigation conditions was quantified using the CFP of N and P-fertilizers production in Europe at plant gate, calculated according to ISO 14067 [53] (N-fertilizer CFP = 1.14 kg CO2e/kg and P-fertilizer CFP = 0.71 kg CO2e/kg). The CE related to the transportation of fertilizers was not considered in these calculations.
3. Results and Discussion
3.1. Soil Characterization
3.2. Climate Conditions and Water Consumption on Irrigation
3.3. Groundwater and Treated Wastewater Characterization
3.4. Orange Production and Carbon Fluxes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Libutti, A.; Gatta, G.; Gagliardi, A.; Vergine, P.; Pollice, A.; Beneduce, L.; Disciglio, G.; Tarantino, E. Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions. Agric. Water Manag. 2018, 196, 1–14. [Google Scholar] [CrossRef]
- Rebelo, A.; Quadrado, M.; Franco, A.; Lacasta, N.; Machado, P. Water reuse in Portugal: New legislation trends to support the definition of water quality standards based on risk characterization. Water Cycle 2020, 1, 41–53. [Google Scholar] [CrossRef]
- Parris, K. Sustainable Management of Water Resources in Agriculture.; OECD Publishing: Paris, France, 2010. [Google Scholar]
- Becerra-Castro, C.; Lopes, A.R.; Vaz-Moreira, I.; Silva, E.F.; Manaia, C.M.; Nunes, O.C. Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health. Environ. Int. 2015, 75, 117–135. [Google Scholar] [CrossRef] [PubMed]
- Chartzoulakis, K.; Bertaki, M. Sustainable Water Management in Agriculture under Climate Change. Agric. Agric. Sci. Procedia 2015, 4, 88–98. [Google Scholar] [CrossRef]
- Karandish, F.; Šimůnek, J. A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies. Agric. Water Manag. 2016, 178, 291–303. [Google Scholar] [CrossRef]
- Jenkins, M.W.; Sugden, S. Human Development Report 2006; United Nations Development Programme: New York, NY, USA, 2006; Volume 36. [Google Scholar]
- Fatta-Kassinos, D.; Kalavrouziotis, I.K.; Koukoulakis, P.H.; Vasquez, M.I. The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci. Total Environ. 2011, 409, 3555–3563. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, X.; Huang, Q.; Huo, Z.; Huang, G. Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model. Agric. Water Manag. 2016, 178, 76–88. [Google Scholar] [CrossRef]
- Santana, M.V.E.; Cornejo, P.K.; Rodríguez-Roda, I.; Buttiglieri, G.; Corominas, L. Holistic life cycle assessment of water reuse in a tourist-based community. J. Clean. Prod. 2019, 233, 743–752. [Google Scholar] [CrossRef]
- Bixio, D.; Thoeye, C.; Wintgens, T.; Ravazzini, A.; Miska, V.; Muston, M.; Chikurel, H.; Aharoni, A.; Joksimovic, D.; Melin, T. Water reclamation and reuse: Implementation and management issues. Desalination 2008, 218, 13–23. [Google Scholar] [CrossRef]
- Garcia, X.; Pargament, D. Reusing wastewater to cope with water scarcity: Economic, social and environmental considerations for decision-making. Resour. Conserv. Recycl. 2015, 101, 154–166. [Google Scholar] [CrossRef]
- Nas, B.; Uyanik, S.; Aygün, A.; Doğan, S.; Erul, G.; Nas, K.B.; Turgut, S.; Cop, M.; Dolu, T. Wastewater reuse in Turkey: From present status to future potential. Water Supply 2020, 20, 73–82. [Google Scholar] [CrossRef]
- Adrover, M.; Farrús, E.; Moyà, G.; Vadell, J. Chemical properties and biological activity in soils of Mallorca following twenty years of treated wastewater irrigation. J. Environ. Manag. 2012, 95, S188–S192. [Google Scholar] [CrossRef] [PubMed]
- Syakila, A.; Kroeze, C.; Slomp, C.P. Neglecting sinks for N 2 O at the earth’s surface: Does it matter? J. Integr. Environ. Sci. 2010, 7, 79–87. [Google Scholar] [CrossRef]
- Chojnacka, K.; Kowalski, Z.; Kulczycka, J.; Dmytryk, A.; Górecki, H.; Ligas, B.; Gramza, M. Carbon footprint of fertilizer technologies. J. Environ. Manag. 2019, 231, 962–967. [Google Scholar] [CrossRef]
- Procuradoria-Geral Distrital de Lisboa. Decreto Lei 119/2019. Regime Jurídico de Produção de Água Para Reutilização Obtida a Partir do Tratamento de Águas Residuais e Sua Utilização; Procuradoria-Geral Distrital de Lisboa: Lisbon, Portugal, 2019; pp. 21–44. [Google Scholar]
- U.S. Environmental Protection Agency. Guidelines for Water Reuse; Environmental Protection Agency (EPA): Washington, DC, USA, 2012. [Google Scholar]
- Cirelli, G.L.; Consoli, S.; Licciardello, F.; Aiello, R.; Giuffrida, F.; Leonardi, C. Treated municipal wastewater reuse in vegetable production. Agric. Water Manag. 2012, 104, 163–170. [Google Scholar] [CrossRef]
- Melloul, A.A.; Hassani, L.; Rafouk, L. Salmonella contamination of vegetables irrigated with untreated wastewater. World J. Microbiol. Biotechnol. 2001, 17, 207–209. [Google Scholar] [CrossRef]
- Duarte, A.; Fernandes, J.; Bernardes, J.; Miguel, G. Citrus as a Component of the Mediterranean Diet. J. Spat. Organ. Dyn. 2016, IV, 289–304. [Google Scholar]
- Hugman, R.; Stigter, T.Y.; Monteiro, J.P.; Costa, L.; Nunes, L.M. Modeling the spatial and temporal distribution of coastal groundwater discharge for different water use scenarios under epistemic uncertainty: Case study in South Portugal. Environ. Earth Sci. 2015, 73, 2657–2669. [Google Scholar] [CrossRef]
- Estrela, T.; Marcuello, C.; Iglesias, A. Water Resources Problem in Southern EUROPE—An Overview Report; Office for Offcial Publications of the European Communities: Luxembourg, 1996. [Google Scholar]
- INE. Instituto Nacional de Estatística Bases de Dados. Available online: https://www.ine.pt (accessed on 23 May 2022).
- Edenhofer, O. (Ed.) Intergovernmental Panel on Climate Change. Climate Change 2014 Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2014; ISBN 9781107654815. [Google Scholar]
- Liu, C.; Wang, K.; Meng, S.; Zheng, X.; Zhou, Z.; Han, S.; Chen, D.; Yang, Z. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat–maize rotation field in northern China. Agric. Ecosyst. Environ. 2011, 140, 226–233. [Google Scholar] [CrossRef]
- Scheer, C.; Grace, P.R.; Rowlings, D.W.; Payero, J. Nitrous oxide emissions from irrigated wheat in Australia: Impact of irrigation management. Plant Soil 2012, 359, 351–362. [Google Scholar] [CrossRef]
- Brouwer, C.; Prins, K.; Kay, M.; Heibloem, M. Irrigation Water Management: Irrigation Methods; FAO: Rome, Italy, 1989. [Google Scholar]
- Kennedy, T.L.; Suddick, E.C.; Six, J. Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation. Agric. Ecosyst. Environ. 2013, 170, 16–27. [Google Scholar] [CrossRef]
- Shcherbak, I.; Millar, N.; Robertson, G.P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, U.K.; Nath, A.J.; Lalnunpuii, K. Biomass estimation models, biomass storage and ecosystem carbon stock in sweet orange orchards: Implications for land use management. Acta Ecol. Sin. 2021, 41, 57–63. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. Net carbon flux from agricultural ecosystems: Methodology for full carbon cycle analyses. Environ. Pollut. 2002, 116, 439–444. [Google Scholar] [CrossRef]
- Núñez-Florez, R.; Pérez-Gómez, U.; Fernández-Méndez, F. Functional diversity criteria for selecting urban trees. Urban For. Urban Green. 2019, 38, 251–266. [Google Scholar] [CrossRef]
- Mo, W.; Zhang, Q. Can municipal wastewater treatment systems be carbon neutral? J. Environ. Manag. 2012, 112, 360–367. [Google Scholar] [CrossRef]
- Almeida, C.; Mendonça, J.J.L.; Jesus, M.R.; Gomes, A.J. Sistemas aquíferos de Portugal Continental [Aquifer systems in Portugal mainland]; INAG: Lisbon, Portugal, 2000. [Google Scholar]
- Nunes, L.; Monteiro, J.P.; Cunha, M.C.; Vieira, J.; Lucas, H.; Ribeiro, L. The water crisis in southern Portugal: How did we get there and how should we solve it. In Management of Natural Resources, Sustainable Development and Ecological Hazards; WIT Press: Southampton, UK, 2006; Volume I, pp. 435–444. [Google Scholar]
- Day, P.R. Particle Fractionation and Particle-Size Analysis. Methods Soil Anal. 2015, 9, 545–567. [Google Scholar]
- Schumacher, B.A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments, EPA/600/R-02/069 (NTIS PB2003-100822); U.S. Environmental Protection Agency: Washington, DC, USA, 2002. [Google Scholar]
- Bremner, J.M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- ISO 10390; Soil Quality Determination of PH. International Organization for Standardization: Genève, Switzerland, 2021.
- EN13038; Soil Improvers and Growing Media—Determination of Electrical Conductivity. CEN, European Committee for Standardization: Brussels, Belgium, 1999.
- Hesse, P.R. A Text Book of Soil Chemical Analysis; Chemical Publishing: New York, NY, USA, 1972. [Google Scholar]
- Baird, R.B.; Eaton, A.D.; Rice, E.W. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Water Environment Federation: Alexandria, VA, USA; American Public Health Association: Washington, DC, USA; American Water Works Association: Denver, CO, USA, 2017. [Google Scholar]
- Sarkar, D.; Sheikh, A.A.; Batabyal, K.; Mandal, B. Boron Estimation in Soil, Plant, and Water Samples using Spectrophotometric Methods. Commun. Soil Sci. Plant Anal. 2014, 45, 1538–1550. [Google Scholar] [CrossRef]
- Sims, J.T. Recommended soil test for boron. Coop. Bull. 2011, 493, 49–54. [Google Scholar]
- Schollenberger, C.J.; Simon, R.H. Determination of exchange capacity and exchangeable bases in soil—Ammonium acetate method. Soil Sci. 1945, 59, 13–24. [Google Scholar] [CrossRef]
- Lakanen, E.; Erviö, R. A comparison of eight extractants for determination of plant available micronutrients in soil. Acta Agron. Fenn. 1971, 123, 223–232. [Google Scholar]
- Rodier, J.; Legube, B.; Merlet, N. L’analyse de L’eau, 10th ed.; Dunod: Paris, France, 2016. [Google Scholar]
- BS EN ISO 9308-1:2014+A1; Water Quality—Enumeration of Escherichia coli and coliform bacteria Membrane Filtration Method for Waters with Low Bac-Terial Background Flora. International Organisation for Standardisation (ISO): Geneva, Switzerland, 2017.
- Parravicini, V.; Nielsen, P.H.; Thornberg, D.; Pistocchi, A. Evaluation of greenhouse gas emissions from the European urban wastewater sector, and options for their reduction. Sci. Total Environ. 2022, 838, 156322. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Miao, J.; Abulimiti, A.; Jing, X.; Ren, N. Carbon neutrality of wastewater treatment—A systematic concept beyond the plant boundary. Environ. Sci. Ecotechnol. 2022, 11, 100180. [Google Scholar] [CrossRef]
- Crawford, G.G.; Johnson, T.D.; Johnson, B.R.; Krause, T.H.W. CHEApet Users Manual, OWSO4R07; Water Environment Research Foundation: Alexandria, VA, USA, 2011. [Google Scholar]
- Brentrup, F.; Lammel, J.; Stephani, T.; Christensen, B. Updated carbon footprint values for mineral fertilizer from different world regions. In Proceedings of the 11th International Conference LCA of Food, Bangkok, Thailand, 17–19 October 2018. [Google Scholar]
- The European Parliament and the Council Regulation (EU). Minimum requirements for water reuse. Off. J. Eur. Union 2020, 177, 32–55. [Google Scholar]
- McGrath, S.P.; Micó, C.; Zhao, F.J.; Stroud, J.L.; Zhang, H.; Fozard, S. Predicting molybdenum toxicity to higher plants: Estimation of toxicity threshold values. Environ. Pollut. 2010, 158, 3085–3094. [Google Scholar] [CrossRef] [PubMed]
- Baldock, J.A.; Nelson, P.N. Soil Organi Matter. In Handbook of Soil Scienc; Sumner, M.E., Ed.; CRC Pres: Boca Raton, FL, USA, 2000; pp. B-25–B-84. [Google Scholar]
- Sparks, D.L. Environmental Soil Chemistry, 2nd ed.; Academic Press: Cambridge, MA, USA, 2003; ISBN 9780126564464. [Google Scholar]
- Li, C.; Xiong, Y.; Huang, Q.; Xu, X.; Huang, G. Impact of irrigation and fertilization regimes on greenhouse gas emissions from soil of mulching cultivated maize (Zea mays L.) field in the upper reaches of Yellow River, China. J. Clean. Prod. 2020, 259, 120873. [Google Scholar] [CrossRef]
- Ribal, J.; Sanjuan, N.; Clemente, G.; Fenollosa, M.L. Medición de la ecoeficiencia en procesos productivos en el sector agrario. Caso de estudio sobre producción de cítricos. Econ. Agrar. Recur. Nat. 2009, 9, 125–148. [Google Scholar] [CrossRef]
- Mordini, M.; Nemecek, T.; Gaillard, G. Carbon & Water Footprint of Oranges and Strawberries: A Literature Review; Federal Department of Economic Affairs: Zurich, Switzerland, 2009; Volume 76. [Google Scholar]
Parameter | Limit Values Discharge Permit | Min–Max Average ± SD |
---|---|---|
Biochemical Oxygen Demand (BOD5, 20 °C) mg L−1 O2 | 25 | <5 (1)–11 <5 (1) |
Chemical Oxygen Demand (COD) mg L−1 O2 | 125 | 18–110 34 ± 11 |
Total Nitrogen mg L−1 N | Not Applicable | <3 (1)–34 11.3 ± 7.8 |
Total Phosphorous mg L−1 P | Not Applicable | <0.50 (1)–5.3 1.4 ± 0.9 |
Total Suspended Solids mg L−1 | 35 | 2–33 5 ± 4 |
Fecal coliforms MPN 100 mL−1 | 300 | 3–260 103 ± 75 |
Influent Flow Rate m3 day−1 | 4585 ± 996 |
Parameter | Method | GW | TE |
---|---|---|---|
Ammonia mg L−1 NH₄+ | Molecular absorption spectrometry, SMEWW 4500-NH3 F [43]. | ✓ | ✓ |
BOD5, 20 °C mg L−1 O2 | Respirometric method, SMEWW 5210 D [43]. | ✗ | ✓ |
B mg L−1 | Molecular absorption, spectrometry, LAE-7.10.3 [48]. | ✓ | ✓ |
Ca, Fe, Li, Mg, K, Na mg L−1 | Flame atomic absorption spectrometry, SMEWW 3111 B [43]. | ✓ | ✓ |
✓ | ✓ | ||
✓ | ✓ | ||
Chlorides mg L−1 Cl− | Argentometric method, SMEWW 4500 Cl-B [43]. | ✓ | ✗ |
EC, 20 °C µS cm−1 | Electrometry, SMEWW 2510 B [43]. | ✓ | ✓ |
Phosphates mg L−1 P | Molecular absorption spectrometry, SMEWW 4500-P E [43]. | ✓ | ✓ |
Mn, Mo, Se, V mg L−1 | Graphite furnace atomic absorption spectrometry, SMEWW 3113 B [43] | ✗ | ✓ |
Fluorides mg L−1 | Electrometry, SMEWW 4500-F− C [43]. | ✗ | ✓ |
Nitrates mg L−1 NO₃−1 | Molecular absorption spectrometry, SMEWW 4500-NO3 B [43]. | ✓ | ✓ |
Oxidability mg L−1 O2 | Titrometry, LAE-9.1 [42]. | ✓ | ✗ |
pH Sorenson scale | Potentiometry, SMEWW 4500-H+ B [43]. | ✓ | ✓ |
Sulphates mg L−1 SO₄2− | Molecular absorption spectrometry, LAE-7.50.2 [48]. | ✓ | ✓ |
Total Dissolved Solids mg L−1 | Gravimetry, SMEWW 2540 C [43]. | ✓ | ✓ |
Total Suspended Solids mg L−1 | Gravimetry, SMEWW 2540 B [43]. | ✓ | ✓ |
Turbidity (NTU) | Turbidimetry, ISO 7027:2019. | ✗ | ✓ |
Escherichia coli (CFU 100 mL−1) | Membrane filtration [49]. | ✓ | ✓ |
Parameter | Sector I | Sector II | Sector III | Mean Sectors I, II, III |
---|---|---|---|---|
pH | 8.4 a ± 0.1 | 7.6 b ± 0.1 | 7.5 b ± 0.1 | 7.8 ± 0.5 * |
EC, 20 °C dS m−1 | 2.90 a ± 0.06 | 1.99 b ± 0.01 | 6.62 c ± 0.04 | 3.84 ± 2.12 * |
TN mg kg−1 N-NH4+ | 624 a ± 12 | 448 b ± 36 | 520 c ± 28 | 531 ± 80 * |
Cl− mg kg−1 | 676 a ± 71 | 193 b ± 183 | 534 a ± 97 | 468 ± 241 * |
B mg g−1 | 0.60 a ± 0.04 | 0.57 b ± 0.03 | 0.67 c ± 0.04 | 0.61 ± 0.05 * |
P2O5 mg kg−1 | 689 a ± 71 | 403 b ± 17 | 477 b ± 17 | 523 ± 134 * |
OM% m.m−1 | 1.4 a ± 0.1 | 1.2 b ± 0.1 | 1.1 b ± 0.1 | 1.2 ± 0.2 * |
Ca mg kg−1 | 560 a ± 8 | 345 b ± 18 | 382 b ± 3 | 429 ± 100 * |
Fe mg kg−1 | 39.0 a ± 1.4 | 78.3 b ± 5.5 | 78.1 b ± 1.9 | 65.1 ± 19.8 * |
Cu mg kg−1 | 14.1 a ± 0.3 | 14.2 a ± 0.6 | 19.1 b ± 0.7 | 15.8 ± 2.5 * |
Mg mg kg−1 | 493 a ± 2 | 247 b ± 2 | 250 b ± 2 | 330 ± 122 * |
K2O mg kg−1 | 1092 a ± 7 | 932 b ± 10 | 1261 c ± 26 | 1095 ± 143 * |
Na mg kg−1 | 48.3 a ± 2.9 | 14.2 b ± 0.6 | 44.5 a ± 1.1 | 35.7 ± 16.3 * |
Mn mg kg−1 | 30.6 a ± 0.9 | 22.7 b ± 1.5 | 23.9 b ± 0.6 | 25.7 ± 3.8 * |
Mo mg kg−1 | 1.25 a ± 0.02 | 2.10 b ± 0.15 | 2.45 b ± 0.02 | 1.93 ± 0.54 * |
Zn mg kg−1 | 13.8 a ± 0.2 | 12.4 b ± 0.4 | 14.4 a ± 0.2 | 13.4 ± 0.9 * |
Parameter | Groundwater (GW) | Natural Water for Irrigation MRV (1) | Treated Effluent (TE) | Water Reuse QS (2) |
---|---|---|---|---|
Ammonia mg L−1 NH₄+ | 0.023 ± 0.020 | -- | 3.92 ± 1.59 | 10 |
BOD5, 20 °C mg L−1 O2 | ✗ | -- | 10.1 ± 5.3 | ≤25 |
B mg L−1 | 0.08 ± 0.02 | 0.3 | 0.16 ± 0.03 | -- |
Ca mg L−1 | 52.5 ± 1.1 | -- | 34.1 ± 1.1 | -- |
Fe mg L−1 | ✗ | 5.0 | 0.44 ± 0.03 | 2.0 |
Li mg L−1 | ✗ | 2.5 | 0.11 ± 0.01 | 2.5 |
Mg mg L−1 | 51.2 ± 11.4 | -- | 34.9 ± 7.0 | -- |
K mg L−1 | 35.6 ± 19.4 | -- | 23.4 ± 11.7 | -- |
Na mg L−1 | 123 ± 6 | -- | 142 ± 25 | -- |
Chlorides mg L−1 Cl− | 395 ± 138 | 70 | 311 ± 94 | -- |
EC, 20 °C dS m−1) | 1.45 ± 0.04 | 1 | 1.29 ± 0.23 | -- |
Phosphates mg L−1 P | <0.125 (3) | -- | 0.5 ± 0.34 | 5 (Total Phosphorous) |
Mn mg L−1 Mn | ✗ | 0.20 | 0.02 ± 0.01 | 0.2 |
Mo mg L−1 | ✗ | 0.005 | 0.21 ± 0.15 | 0.01 |
Se mg L−1 | ✗ | 0.02 | <0.01 (3) | 0.02 |
V mg L−1 | ✗ | 0.10 | <0.01 (3) | 0.1 |
Fluorides mg L−1 | ✗ | 1.0 | 0.15 ± 0.02 | 2.0 |
Nitrates mg L−1 NO₃− | <4 (3) | 50 | 4 ± 1 | 15 (Total Nitrogen) |
Oxidability mg L−1 O2 | 1.3 ± 0.7 | -- | ✗ | -- |
pH Sorenson scale | 7.41 ± 0.17 | 6.5–8.4 | 7.87 ± 0.14 | -- |
SAR | 3.6 ± 0.8 | 8 | 4.1 ± 0.6 | -- |
Sulphates mg L−1 SO₄2− | 217 ± 18 | 575 | 171 ± 15 | -- |
TDS mg L−1 | 1044 ± 163 | 640 | 830 ± 166 | -- |
TSS mg L−1 | 1.0 ± 0.8 | 60 | 3.5 ± 1.8 | ≤35 |
Turbidity NTU | ✗ | -- | 7.5 ± 2.4 | -- |
Escherichia coli CFU/100 mL | 0 to 2 | 100 | 2 to 100 | ≤100 |
Water Source for Irrigation | Energy Consumption in Water Pumping kW | Synthetic Fertilization | Carbon Emissions | ||
---|---|---|---|---|---|
N-Fertilizer kg | P-Ferilizer kg | kg CO2e | g CO2e. kg−1 of Oranges | ||
Groundwater | 3449 | 870 | 733 | 858.968 | 7.32 |
Treated effluent | 1734 | 76.7 | 683 | 431.662 | 3.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira da Silva, M.; Resende, F.C.; Freitas, B.; Aníbal, J.; Martins, A.; Duarte, A. Urban Wastewater Reuse for Citrus Irrigation in Algarve, Portugal—Environmental Benefits and Carbon Fluxes. Sustainability 2022, 14, 10715. https://doi.org/10.3390/su141710715
Moreira da Silva M, Resende FC, Freitas B, Aníbal J, Martins A, Duarte A. Urban Wastewater Reuse for Citrus Irrigation in Algarve, Portugal—Environmental Benefits and Carbon Fluxes. Sustainability. 2022; 14(17):10715. https://doi.org/10.3390/su141710715
Chicago/Turabian StyleMoreira da Silva, Manuela, Flávia C. Resende, Bárbara Freitas, Jaime Aníbal, António Martins, and Amílcar Duarte. 2022. "Urban Wastewater Reuse for Citrus Irrigation in Algarve, Portugal—Environmental Benefits and Carbon Fluxes" Sustainability 14, no. 17: 10715. https://doi.org/10.3390/su141710715