Impact of Inventor’s Cooperation Network on Ambidextrous Innovation in Chinese AI Enterprises
Abstract
:1. Introduction
2. Theoretical Background and Hypothesis Development
2.1. Inventor Cooperation Network
2.2. Research Hypothesis
2.2.1. Inventor Cooperation Network Structure Hole and Ambidextrous Innovation
2.2.2. Inventor Cooperation Network Centrality and Ambidextrous Innovation
2.2.3. Inventor Cooperation Network and Technological Knowledge Base Variety
2.2.4. Mediating Effect of Technological Knowledge Base Variety
3. Methods
3.1. Data Source
3.2. Variables and Measures
3.2.1. Dependent Variables
3.2.2. Independent Variables
3.2.3. Mediator Variables
3.2.4. Control Variables
3.3. Theoretical Model
- (1)
- Testing the total effect model.
- (2)
- Testing the mediating effect model.
4. Results
4.1. Inventor Cooperation Network Position Recognition
4.2. Descriptive Statistics
4.3. Regression Analysis and Effect Test
4.3.1. Total Effect Test
4.3.2. Mediation Effect Test
4.4. Robustness Tests
5. Discussion
5.1. Managerial Implications
5.2. Theoretical Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jansen, J.J.; Van Den Bosch, F.A.; Volberda, H.W. Exploratory innovation, exploitative innovation, and performance: Effects of organizational antecedents and environmental moderators. Manag. Sci. 2006, 52, 1661–1674. [Google Scholar] [CrossRef]
- Guan, J.; Liu, N. Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy. Res. Policy 2016, 45, 97–112. [Google Scholar] [CrossRef]
- Wang, J.; Yang, N.; Guo, M. Dynamic positioning matters: Uncovering its fundamental role in organization’s innovation performance. J. Bus. Ind. Mark. 2019, 35, 785–793. [Google Scholar] [CrossRef]
- Yan, Y.; Guan, J. Social capital, exploitative and exploratory innovations: The mediating roles of ego-network dynamics. Technol. Forecast. Soc. Chang. 2018, 126, 244–258. [Google Scholar] [CrossRef]
- Liao, Y.C.; Tsai, K.H. Bridging market demand, proactivity, and technology competence with eco-innovations: The moderating role of innovation openness. Corp. Soc. Responsib. Environ. Manag. 2019, 26, 653–663. [Google Scholar] [CrossRef]
- Wen, J.; Qualls, W.J.; Zeng, D. To explore or exploit: The influence of inter-firm R&D network diversity and structural holes on innovation outcomes. Technovation 2021, 100, 102178. [Google Scholar]
- Tóth, J.; Migliore, G.; Balogh, J.M.; Rizzo, G. Exploring innovation adoption behavior for sustainable development: The case of Hungarian food sector. Agronomy 2020, 10, 612. [Google Scholar] [CrossRef]
- Ober, J.; Kochmańska, A. Adaptation of Innovations in the IT Industry in Poland: The Impact of Selected Internal Communication Factors. Sustainability 2021, 14, 140. [Google Scholar] [CrossRef]
- Valor, C.; Antonetti, P.; Crisafulli, B. Emotions and consumers’ adoption of innovations: An integrative review and research agenda. Technol. Forecast. Soc. Chang. 2022, 179, 121609. [Google Scholar] [CrossRef]
- Ardito, L.; Petruzzelli, A.M.; Albino, V. Investigating the antecedents of general purpose technologies: A patent perspective in the green energy field. J. Eng. Technol. Manag. 2016, 39, 81–100. [Google Scholar] [CrossRef]
- Rong, X.Y.; Yang, Z.K.; Liu, N. Variance Analysis on the Role Identification and Binary Innovation Abilities of inventor—Explanation from the Perspective of Social Capital. Sci. Technol. Prog. Policy 2020, 37, 1–8. (In Chinese) [Google Scholar]
- Sun, Y.T.; Cui, Y.Y. The two-sided effect of star Inventors on team innovation output: An empirical analysis in the field of graphene technology. Sci. Sci. Manag. S T 2021, 42, 167–180. (In Chinese) [Google Scholar]
- Liu, F.C.; Yang, S. Impact of inventor’s knowledge characteristics on the centrality of collaboration network—Analysis based on the social-knowledge two-mode network. R D Manag. 2020, 32, 73–83. (In Chinese) [Google Scholar]
- Singh, J.; Fleming, L. Lone inventors as sources of breakthroughs: Myth or reality? Manag. Sci. 2010, 56, 41–56. [Google Scholar] [CrossRef]
- Schillebeeckx, S.J.; Lin, Y.; George, G.; Alnuaimi, T. Knowledge recombination and inventor networks: The asymmetric effects of embeddedness on knowledge reuse and impact. J. Manag. 2021, 47, 838–866. [Google Scholar] [CrossRef]
- De Noni, I.; Orsi, L.; Belussi, F. The role of collaborative networks in supporting the innovation performances of lagging-behind European regions. Res. Policy 2018, 47, 1–13. [Google Scholar] [CrossRef]
- Zhang, G.; Duan, H.; Zhou, J. Network stability, connectivity and innovation output. Technol. Forecast. Soc. Chang. 2017, 114, 339–349. [Google Scholar] [CrossRef]
- Fu, Y.N.; Liu, F.C.; Ma, R.K. Influence Mechanism of Inventors’ Collaboration Network on Firm’s Exploratory Innovation–Moderating Effect of Knowledge Network. R D Manag. 2018, 30, 21–32. (In Chinese) [Google Scholar]
- Zang, J. Structural holes, exploratory innovation and exploitative innovation. Manag. Decis. 2018, 56, 1682–1695. [Google Scholar] [CrossRef]
- De Araujo, I.F.; Gonçalves, E.; Taveira, J.G. The role of patent co-inventorship networks in regional inventive performance. Int. Reg. Sci. Rev. 2019, 42, 235–280. [Google Scholar] [CrossRef]
- Paruchuri, S.; Awate, S. Organizational knowledge networks and local search: The role of intra-organizational inventor networks. Strateg. Manag. J. 2017, 38, 657–675. [Google Scholar] [CrossRef]
- Wang, M.C.; Chen, P.C.; Fang, S.C. A critical view of knowledge networks and innovation performance: The mediation role of firms’ knowledge integration capability. J. Bus. Res. 2018, 88, 222–233. [Google Scholar] [CrossRef]
- Tsai, W. Knowledge transfer in intra-organizational networks: Effects of network position and absorptive capacity on business unit innovation and performance. Acad. Manag. J. 2001, 44, 996–1004. [Google Scholar]
- Zhou, K.Z.; Li, C.B. How knowledge affects radical innovation: Knowledge base, market knowledge acquisition, and internal knowledge sharing. Strateg. Manag. J. 2012, 33, 1090–1102. [Google Scholar] [CrossRef]
- Krafft, J.; Quatraro, F.; Saviotti, P.P. The knowledge-base evolution in biotechnology: A social network analysis. Econ. Innov. New Technol. 2011, 20, 445–475. [Google Scholar] [CrossRef]
- Kogut, B.; Zander, U. Knowledge of the firm, combinative capabilities, and the replication of technology. Organ. Sci. 1992, 3, 383–397. [Google Scholar] [CrossRef]
- Burt, R.S. Structural holes and good ideas. Am. J. Sociol. 2004, 110, 349–399. [Google Scholar] [CrossRef]
- Ahuja, G. Collaboration networks, structural holes, and innovation: A longitudinal study. Adm. Sci. Q. 2000, 45, 425–455. [Google Scholar] [CrossRef]
- Colombo, M.G.; von Krogh, G.; Rossi-Lamastra, C.; Stephan, P.E. Organizing for radical innovation: Exploring novel insights. J. Prod. Innov. Manag. 2017, 34, 394–405. [Google Scholar] [CrossRef]
- Qi Dong, J.; McCarthy, K.J.; Schoenmakers, W.W. How central is too central? Organizing interorganizational collaboration networks for breakthrough innovation. J. Prod. Innov. Manag. 2017, 34, 526–542. [Google Scholar] [CrossRef]
- Wang, J.; Yang, N.; Guo, M. How social capital influences innovation outputs: An empirical study of the smartphone field. Innov. 2021, 23, 449–469. [Google Scholar] [CrossRef]
- Shipilov, A.V.; Li, S.X. Can you have your cake and eat it too? Structural holes’ influence on status accumulation and market performance in collaborative networks. Adm. Sci. Q. 2008, 53, 73–108. [Google Scholar] [CrossRef]
- Gui, Q.; Liu, C.; Du, D. Does network position foster knowledge production? Evidence from international scientific collaboration network. Growth Chang. 2018, 49, 594–611. [Google Scholar] [CrossRef]
- Karamanos, A.G. Leveraging micro-and macro-structures of embeddedness in alliance networks for exploratory innovation in biotechnology. R D Manag. 2012, 42, 71–89. [Google Scholar] [CrossRef]
- Ahuja, G.; Morris Lampert, C. Entrepreneurship in the large corporation: A longitudinal study of how established firms create breakthrough inventions. Strateg. Manag. J. 2001, 22, 521–543. [Google Scholar] [CrossRef]
- Shipilov, A.V. Firm scope experience, historic multimarket contact with partners, centrality, and the relationship between structural holes and performance. Organ. Sci. 2009, 20, 85–106. [Google Scholar] [CrossRef]
- Burt, R.S. Structural Holes: The Social Structure of Competition; Harvard University Press: Boston, MA, USA, 1995. [Google Scholar]
- Tan, J.; Zhang, H.; Wang, L. Network closure or structural hole? The conditioning effects of network–level social capital on innovation performance. Entrep. Theory Pract. 2015, 39, 1189–1212. [Google Scholar] [CrossRef]
- Gilsing, V.; Nooteboom, B. Exploration and exploitation in innovation systems: The case of pharmaceutical biotechnology. Res. Policy 2006, 35, 1–23. [Google Scholar] [CrossRef]
- Zhang, G.; Tang, C. How the egocentric alliance network impacts firm ambidextrous innovation: A three-way interaction model. Eur. J. Innov. Manag. 2020, 25, 19–38. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Gilsing, V.; Nooteboom, B.; Vanhaverbeke, W.; Duysters, G.; Van Den Oord, A. Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density. Res. Policy 2008, 37, 1717–1731. [Google Scholar] [CrossRef]
- Dong, J.Q.; Yang, C.H. Being central is a double-edged sword: Knowledge network centrality and new product development in US pharmaceutical industry. Technol. Forecast. Soc. Chang. 2016, 113, 379–385. [Google Scholar] [CrossRef]
- Gnyawali, D.R.; Madhavan, R. Cooperative networks and competitive dynamics: A structural embeddedness perspective. Academy Manag. Rev. 2001, 26, 431–445. [Google Scholar] [CrossRef]
- Hsu, B.X.; Chen, Y.M. Industrial policy, social capital, human capital, and firm-level competitive advantage. Int. Entrep. Manag. J. 2019, 15, 883–903. [Google Scholar] [CrossRef]
- Demirkan, I.; Demirkan, S. Network characteristics and patenting in biotechnology, 1990–2006. J. Manag. 2012, 38, 1892–1927. [Google Scholar] [CrossRef]
- Aggarwal, V.A. Resource congestion in alliance networks: How a firm’s partners’ partners influence the benefits of collaboration. Strateg. Manag. J. 2020, 41, 627–655. [Google Scholar] [CrossRef]
- Mavroudi, E.; Kesidou, E.; Pandza, K. Shifting back and forth: How does the temporal cycling between exploratory and exploitative R&D influence firm performance? J. Bus. Res. 2020, 110, 386–396. [Google Scholar]
- Laursen, K.; Salter, A. Open for innovation: The role of openness in explaining innovation performance among UK manufacturing firms. Strateg. Manag. J. 2006, 27, 131–150. [Google Scholar] [CrossRef]
- Ma, R.; Huang, Y.C. Opportunity-based strategic orientation, knowledge acquisition, and entrepreneurial alertness: The perspective of the global sourcing suppliers in China. J. Small Bus. Manag. 2016, 54, 953–972. [Google Scholar] [CrossRef]
- Forés, B.; Camisón, C. Does incremental and radical innovation performance depend on different types of knowledge accumulation capabilities and organizational size? J. Bus. Res. 2016, 69, 831–848. [Google Scholar] [CrossRef]
- Koka, B.R.; Prescott, J.E. Designing alliance networks: The influence of network position, environmental change, and strategy on firm performance. Strateg. Manag. J. 2008, 29, 639–661. [Google Scholar] [CrossRef]
- Eisenman, M.; Paruchuri, S. Inventor knowledge recombination behaviors in a pharmaceutical merger: The role of intra-firm networks. Long Range Plan. 2019, 52, 189–201. [Google Scholar] [CrossRef]
- He, Q.; Ghobadian, A.; Gallear, D. Knowledge acquisition in supply chain partnerships: The role of power. Int. J. Prod. Econ. 2013, 141, 605–618. [Google Scholar] [CrossRef]
- Li, Y.; Wei, Z.; Zhao, J.; Zhang, C.; Liu, Y. Ambidextrous organizational learning, environmental munificence and new product performance: Moderating effect of managerial ties in China. Int. J. Prod. Econ. 2013, 146, 95–105. [Google Scholar] [CrossRef]
- Wang, J. Knowledge creation in collaboration networks: Effects of tie configuration. Res. Policy 2016, 45, 68–80. [Google Scholar] [CrossRef]
- Fang, S.C.; Wang, M.C.; Chen, P.C. The influence of knowledge networks on a firm’s innovative performance. J. Manag. Organ. 2017, 23, 22–45. [Google Scholar] [CrossRef]
- Tortoriello, M. The social underpinnings of absorptive capacity: The moderating effects of structural holes on innovation generation based on external knowledge. Strateg. Manag. J. 2015, 36, 586–597. [Google Scholar] [CrossRef]
- Karamanos, A.G. Effects of a firm’s and their partners’ alliance ego–network structure on its innovation output in an era of ferment. R D Manag. 2016, 46, 261–276. [Google Scholar] [CrossRef]
- Yu, S.H. Social capital, absorptive capability, and firm innovation. Technol. Forecast. Soc. Chang. 2013, 80, 1261–1270. [Google Scholar] [CrossRef]
- Wang, C.H.; Hsu, L.C. Building exploration and exploitation in the high-tech industry: The role of relationship learning. Technol. Forecast. Soc. Chang. 2014, 81, 331–340. [Google Scholar] [CrossRef]
- Xie, X.; Gao, Y.; Zang, Z.; Meng, X. Collaborative ties and ambidextrous innovation: Insights from internal and external knowledge acquisition. Ind. Innov. 2020, 27, 285–310. [Google Scholar] [CrossRef]
- Rosenkopf, L.; Almeida, P. Overcoming local search through alliances and mobility. Manag. Sci. 2003, 49, 751–766. [Google Scholar] [CrossRef]
- Cohen, W.M.; Levinthal, D.A. Absorptive capacity: A new perspective on learning and innovation. Adm. Sci. Q. 1990, 35, 128–152. [Google Scholar] [CrossRef]
- Grant, R.M. Prospering in dynamically-competitive environments: Organizational capability as knowledge integration. Organ. Sci. 1996, 7, 375–387. [Google Scholar] [CrossRef]
- Caridi-Zahavi, O.; Carmeli, A.; Arazy, O. The influence of CEOs’ visionary innovation leadership on the performance of high-technology ventures: The mediating roles of connectivity and knowledge integration. J. Prod. Innov. Manag. 2016, 33, 356–376. [Google Scholar] [CrossRef]
- Simsek, Z. Organizational ambidexterity: Towards a multilevel understanding. J. Manag. Stud. 2009, 46, 597–624. [Google Scholar] [CrossRef]
- Fang, R.; Landis, B.; Zhang, Z.; Anderson, M.H.; Shaw, J.D.; Kilduff, M. Integrating personality and social networks: A meta-analysis of personality, network position, and work outcomes in organizations. Organ. Sci. 2015, 26, 1243–1260. [Google Scholar] [CrossRef]
- Dong, Y.; Wei, Z.; Liu, T.; Xing, X. The impact of R&D intensity on the innovation performance of artificial intelligence enterprises-based on the moderating effect of patent portfolio. Sustainability 2020, 13, 328. [Google Scholar]
- Katila, R.; Ahuja, G. Something old, something new: A longitudinal study of search behavior and new product introduction. Acad. Manag. J. 2002, 45, 1183–1194. [Google Scholar]
- Chen, Y.S.; Chang, K.C. Using the entropy-based patent measure to explore the influences of related and unrelated technological diversification upon technological competences and firm performance. Scientometrics 2012, 90, 825–841. [Google Scholar] [CrossRef]
- Wen, Z.; Hau, K.T.; Chang, L. A comparison of moderator and mediator and their applications. Acta Psychol. Sin. 2005, 37, 268–274. (In Chinese) [Google Scholar]
- Haans, R.F.; Pieters, C.; He, Z.L. Thinking about U: Theorizing and testing U-and inverted U-shaped relationships in strategy research. Strateg. Manag. J. 2016, 37, 1177–1195. [Google Scholar] [CrossRef]
Variable Type | Variable Name | Variable Symbol |
---|---|---|
Dependent variables | Exploratory innovation | ERA |
Exploitative innovation | EIT | |
Independent variables | The inventor cooperation network structural hole | INSH |
The inventor cooperation network centrality | INCE | |
Mediator variables | The unrelated variety of technological knowledge base | UTV |
The related variety of technological knowledge base | RTV | |
Control variables | Organizational age | AGE |
R & D intensity | RD |
ERA | EIT | INSH | INCE | UTV | RTV | AGE | RD | |
---|---|---|---|---|---|---|---|---|
ERA | 1.000 | |||||||
EIT | 0.669 *** | 1.000 | ||||||
INSH | −0.108 ** | −0.088 * | 1.000 | |||||
INCE | 0.254 *** | 0.315 *** | −0.169 *** | 1.000 | ||||
UTV | 0.486 *** | 0.487 *** | −0.216 *** | 0.293 *** | 1.000 | |||
RTV | 0.288 *** | 0.435 *** | −0.085 * | 0.163 *** | 0.531 *** | 1.000 | ||
AGE | 0.418 *** | 0.457 *** | −0.209 *** | 0.173 *** | 0.595 *** | 0.475 *** | 1.000 | |
RD | 0.455 *** | 0.818 *** | −0.111 ** | 0.307 *** | 0.539 *** | 0.477 *** | 0.575 *** | 1.000 |
MEAN | 7.71 | 8.35 | 1.45 | 6.89 | 0.96 | 0.19 | 4.93 | 10.84 |
SD | 12.65 | 20.15 | 0.34 | 7.90 | 0.83 | 0.32 | 3.70 | 21.72 |
VIF | 1.08 | 1.16 | 1.94 | 1.54 | 1.88 | 1.79 |
Variable | ERA | EIT | ||||
---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M5 | M6 | |
RD | 0.017 ** | 0.013 *** | 0.009 ** | 0.044 *** | 0.036 *** | 0.033 *** |
(2.470) | (2.800) | (2.300) | (4.810) | (5.190) | (4.150) | |
AGE | 0.097 *** | 0.071 *** | 0.093 *** | 0.063 ** | 0.047 | 0.065 ** |
(3.340) | (2.780) | (3.610) | (2.090) | (1.640) | (2.090) | |
INCE | 0.092 *** | 0.081 *** | ||||
(4.060) | (3.830) | |||||
INCE2 | −0.001 *** | −0.001 *** | ||||
(−3.470) | (−3.00) | |||||
INSH | 10.726 *** | 10.775 *** | ||||
(5.390) | (5.110) | |||||
INSH2 | −3.648 *** | −3.722 *** | ||||
(−5.510) | (−5.350) | |||||
_CONS | 1.167 *** | −6.204 *** | 0.689 *** | 0.724 *** | −6.563 *** | 0.304 |
(7.560) | (−4.530) | (5.100) | (4.170) | (−4.470) | (1.630) | |
Log likelihood | −1153.020 | −1134.029 | −1136.840 | −1035.100 | −1017.295 | −1023.005 |
Wald chi2 | 78.890 | 164.620 | 150.900 | 66.900 | 205.260 | 129.890 |
Prob > chi2 | 0 | 0 | 0 | 0 | 0 | 0 |
R-sq | 0.038 | 0.054 | 0.052 | 0.088 | 0.104 | 0.099 |
Variable | RTV | ERA | EIT | |||||
---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | |
RD | 0.005 ** | 0.005 *** | 0.014 *** | 0.008 ** | 0.012 *** | 0.038 *** | 0.028 *** | 0.034 *** |
(2.550) | (2.840) | (−2.780) | (2.100) | (2.670) | (5.190) | (3.730) | (4.890) | |
AGE | 0.130 *** | 0.108 *** | 0.092 *** | 0.091 *** | 0.068 ** | 0.041 | 0.049 | 0.032 |
(7.330) | (5.780) | (3.350) | (3.370) | (2.530) | (1.450) | (1.560) | (1.110) | |
INCE | 0.014 ** | 0.091 *** | 0.080 *** | |||||
(2.400) | (4.090) | (3.910) | ||||||
INCE2 | −0.001 *** | −0.001 *** | ||||||
(−3.47) | (−2.94) | |||||||
INSH | 9.652 *** | 10.647 *** | 10.394 *** | |||||
(3.180) | (5.430) | (4.960) | ||||||
INSH2 | −3.216 *** | −3.625 *** | −3.603 *** | |||||
(−3.240) | (−5.550) | (−5.200) | ||||||
RTV | 1.653 *** | 0.162 | 0.193 | 2.623 *** | 0.645 ** | 0.468 * | ||
(2.580) | (0.760) | (0.880) | (3.970) | (2.160) | (1.650) | |||
RTV2 | −1.389 *** | −2.014 *** | ||||||
(−2.900) | (−3.860) | |||||||
_CONS | −2.667 *** | −9.400 *** | 1.094 *** | 0.687 *** | −6.147 *** | 0.639 *** | 0.305 | −6.276 *** |
(−17.060) | (−4.180) | (8.240) | (5.090) | (−4.540) | (3.660) | (1.610) | (−4.300) | |
Log likelihood | −170.468 | −168.030 | −1147.930 | −1136.625 | −1133.721 | −1024.620 | −1020.434 | −1015.873 |
Wald chi2 | 159.700 | 147.770 | 112.040 | 153.760 | 166.940 | 99.990 | 145.890 | 225.710 |
Prob > chi2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
R-sq | 0.111 | 0.124 | 0.043 | 0.052 | 0.055 | 0.097 | 0.101 | 0.105 |
Variable | UTV | ERA | EIT | |||||
---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | |
RD | 0.003 ** | 0.004 *** | 0.005 * | 0.002 | 0.005 ** | 0.029 *** | 0.024 *** | 0.027 *** |
(2.210) | (3.010) | (1.780) | (0.860) | (2.020) | (4.810) | (4.170) | (5.240) | |
AGE | 0.093 *** | 0.068 *** | 0.050 * | 0.051 ** | 0.040 | −0.002 | 0.010 | −0.001 |
(10.000) | (7.400) | (1.840) | (1.990) | (1.620) | (−0.060) | (0.320) | (−0.050) | |
INCE | 0.016 *** | 0.068 *** | 0.051 *** | |||||
(4.590) | (3.610) | (3.110) | ||||||
INCE2 | −0.001 *** | −0.001 ** | ||||||
(−3.000) | (−2.080) | |||||||
INSH | 8.067 *** | 7.868 *** | 7.948 *** | |||||
(6.980) | (4.290) | (3.870) | ||||||
INSH2 | −2.840 *** | −2.661 *** | −2.735 *** | |||||
(−7.420) | (−4.320) | (−3.960) | ||||||
RTV | ||||||||
RTV2 | ||||||||
UTV | 0.633 *** | 0.543 *** | 0.500 *** | 0.721 *** | 0.626 *** | 0.572 *** | ||
(5.090) | (5.050) | (4.200) | (5.680) | (5.380) | (4.390) | |||
_CONS | −0.753 *** | −5.985 *** | 0.839 *** | 0.528 *** | −4.538 *** | 0.424 ** | 0.181 | −4.925 *** |
(−10.320) | (−7.030) | (6.360) | (3.850) | (−3.570) | (2.490) | (0.930) | (−3.530) | |
Log likelihood | −430.016 | −417.5485 | −1131.382 | −1120.984 | −1121.194 | −1014.734 | −1008.464 | −1005.036 |
Wald chi2 | 236.770 | 267.290 | 156.130 | 221.320 | 210.330 | 166.850 | 246.380 | 288.020 |
Prob > chi2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
R-sq | 0.102 | 0.128 | 0.057 | 0.065 | 0.065 | 0.106 | 0.112 | 0.115 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, K.; Zhou, H. Impact of Inventor’s Cooperation Network on Ambidextrous Innovation in Chinese AI Enterprises. Sustainability 2022, 14, 9996. https://doi.org/10.3390/su14169996
Li X, Li K, Zhou H. Impact of Inventor’s Cooperation Network on Ambidextrous Innovation in Chinese AI Enterprises. Sustainability. 2022; 14(16):9996. https://doi.org/10.3390/su14169996
Chicago/Turabian StyleLi, Xiaoli, Kun Li, and Hao Zhou. 2022. "Impact of Inventor’s Cooperation Network on Ambidextrous Innovation in Chinese AI Enterprises" Sustainability 14, no. 16: 9996. https://doi.org/10.3390/su14169996
APA StyleLi, X., Li, K., & Zhou, H. (2022). Impact of Inventor’s Cooperation Network on Ambidextrous Innovation in Chinese AI Enterprises. Sustainability, 14(16), 9996. https://doi.org/10.3390/su14169996