The Spatial Network Structure of Tourism Efficiency and Its Influencing Factors in China: A Social Network Analysis
Abstract
:1. Introduction
2. Data and Methods
2.1. Indicator Selection and Data Sources
2.2. SBM-DEA Model
2.3. Modified Gravity Model
2.4. Social Network Analysis (SNA)
2.5. Spatial Econometric Model
2.5.1. Model Building
2.5.2. Variable Assumptions
3. SNA Results of Provincial Tourism Efficiency
3.1. Provincial Tourism Efficiency Trends
3.2. Spatiotemporal Tourism Efficiency in China
3.3. Spatial Correlation Network Analysis of Provincial Efficiency
3.3.1. Overall Network Features
- Network strength
- 2.
- Network relevancy
3.3.2. Individual Network Features
- Point degree centrality
- 2.
- Proximity centrality
- 3.
- Intermediary centrality
3.3.3. Core-Edge Structure
4. Spatial Econometric Regression Analysis of the Impact of Provincial Tourism Efficiency in China
4.1. Model Measurement Results and Spatial Correlation Test
4.2. Estimation Results of the Spatial Panel Data Model
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
- (i)
- Strengthen the role of government guidance to promote tourism efficiency. National policy guidance is found to be an important influencing factor. The government should assist in the development planning of the tourism industry, improve the relevant supporting rules and regulations, monitor the infrastructure construction situation, and increase investment in the tourism industry to provide a good development environment for it. In addition, the government should play a macro-control role in tourism development. There are regional differences between provinces because of various influencing factors, such as geographical location and different development statuses. The government should innovate the management mode for different regional tourism development statuses, strengthen departmental collaboration, optimize resource allocation, and effectively promote the improvement in tourism efficiency.
- (ii)
- Strengthen inter-regional cooperation to improve the overall efficiency of tourism. From this work, it is clear that tourism efficiency exhibits a form of distribution that is higher in the central and eastern regions of the country and lower in the west. To improve overall tourism efficiency, we should pay attention to the influence of spatial dependence on the tourism efficiency between regions. On the one hand, it is necessary to break the restrictions of administrative divisions, encourage cross-regional cooperation, and facilitate the integration of advantageous resources. In particular, exotic tourism resources in the western region and natural scenery tourism in deserts and grasslands are integrated with the advantageous resources of efficient tourism in the central and eastern regions to realize the rational use of resources. On the other hand, the radiation-driven role of high-efficiency areas should be strengthened and the spatial correlation of tourism efficiency should be enhanced. It is also important to radiate and drive the surrounding low efficiency areas with high efficiency areas, strengthen the cooperative relationship with low efficiency areas, collaboratively and efficiently develop the surrounding tourism resources, narrow the regional gap, and effectively improve tourism efficiency.
- (iii)
- Prioritize ecological development and strengthen the innovative and rational use of resources. Ecosystems are closely correlated with and inseparable from tourism development; they are both the guarantee of tourism development and the key to human survival [44]. A good ecological environment can benefit the development of tourism and promote a virtuous cycle of ecology–tourism development. We recommend actively responding to the concept of sustainable development [45], focusing on the balanced development of ecology and resource development, and gradually optimizing the input–output structure while using tourism resources to achieve effective allocation of resources. It is necessary to strengthen the innovation of mutual integration of the ecological economy and the tourism economy, to realize the reasonable and efficient use of tourism resources under the priority condition of ecological protection, and to improve the utilization rate of resources.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faber, B.; Gaubert, C. Tourism and Economic Development: Evidence from Mexico’s Coastline. Am. Econ. Rev. 2019, 109, 2245–2293. [Google Scholar] [CrossRef] [Green Version]
- Teng, Y.; Cox, A.; Chatziantoniou, I. Environmental degradation, economic growth and tourism development in Chinese regions. Environ. Sci. Pollut. Res. Int. 2021, 28, 33781–33793. [Google Scholar] [CrossRef]
- Sun, X.; Gao, L.; Ren, H.; Ye, Y.; Li, A.; Stafford-Smith, M.; Connor, J.D.; Wu, J.; Bryan, B.A. China’s progress towards sustainable land development and ecological civilization. Landsc. Ecol. 2018, 33, 1647–1653. [Google Scholar] [CrossRef]
- Farrell, M.J. The Measures of Productive Efficiency. J. R. Stat. Soc. 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Arbelo-Pérez, M.; Arbelo, A.; Pérez-Gómez, P. Impact of quality on estimations of hotel efficiency. Tour. Manag. 2017, 61, 200–208. [Google Scholar] [CrossRef]
- Maha, L.-G.; Viorică, E.D.; Asandului, M.; Maha, A. Hotel Efficiency Analysis from the Customer’s Point of View in Romania: A Stochastic Production Frontier Approach. Emerg. Mark. Financ. Trade 2018, 54, 661–676. [Google Scholar] [CrossRef]
- Karakitsiou, A.; Kourgiantakis, M.; Mavrommati, A.; Migdalas, A. Regional efficiency evaluation by input-oriented data envelopment analysis of hotel and restaurant sector. Oper. Res. 2018, 20, 2041–2058. [Google Scholar] [CrossRef]
- Zhang, D.; Jinghua, T.; Zhou, L.; Yu, Z. Higher tourism specialization, better hotel industry efficiency? Int. J. Hosp. Manag. 2020, 87, 102509. [Google Scholar] [CrossRef]
- Köksal, C.D.; Aksu, A.A. Efficiency evaluation of A-group travel agencies with data envelopment analysis (DEA): A case study in the Antalya region, Turkey. Tour. Manag. 2007, 28, 830–834. [Google Scholar] [CrossRef]
- Fuentes, R. Efficiency of travel agencies: A case study of Alicante, Spain. Tour. Manag. 2011, 32, 75–87. [Google Scholar] [CrossRef]
- Li, B.; Ma, X.; Chen, K. Eco-efficiency measurement and spatial–temporal evolution of forest tourism. Arab. J. Geosci. 2021, 14, 568. [Google Scholar] [CrossRef]
- Choo, H.; Ahn, Y.-H.; Park, D.-B. Using the Data Envelopment Analysis to Measure and Benchmark the Efficiency of Small-scale Tourism Farms in South Korea. J. Rural Community Dev. 2018, 13, 1–15. [Google Scholar]
- Yuan, J.; Liu, Y. Evaluation of Tourism Efficiency in the Coastal Areas of China in the Context of the Happiness Industry. J. Coast. Res. 2020, 99, 144. [Google Scholar] [CrossRef]
- Li, R.; Guo, Q.; Wu, D.; Yin, H.; Zhang, H.; Zhu, T. Spatial characteristics of development efficiency for urban tourism in eastern China: A case study of six coastal urban agglomerations. J. Geogr. Sci. 2014, 24, 1175–1197. [Google Scholar] [CrossRef]
- Chaabouni, S. China’s regional tourism efficiency: A two-stage double bootstrap data envelopment analysis. J. Destin. Mark. Manag. 2019, 11, 183–191. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Li, K.; Zhao, J. Analysis of the Relationships between Tourism Efficiency and Transport Accessibility—A Case Study in Hubei Province, China. Sustainability 2021, 13, 8649. [Google Scholar] [CrossRef]
- Tang, R.; Xiu, P. The modern service industry agglomeration and tourism efficiency in China: Regional difference and influencing mechanism. J. Asia Pac. Econ. 2021, 1–20. [Google Scholar] [CrossRef]
- Choi, K.; Kang, H.J.; Kim, C. Evaluating the efficiency of Korean festival tourism and its determinants on efficiency change: Parametric and non-parametric approaches. Tour. Manag. 2021, 86, 104348. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Xu, J.; Fujiki, Y. Evolution characteristics of the spatial network structure of tourism efficiency in China: A province-level analysis. J. Destin. Mark. Manag. 2020, 18, 100509. [Google Scholar] [CrossRef]
- Niavis, S.; Tsiotas, D. Assessing the tourism performance of the Mediterranean coastal destinations: A combined efficiency and effectiveness approach. J. Destin. Mark. Manag. 2019, 14, 100379. [Google Scholar] [CrossRef]
- Cvetkoska, V.; Barišić, P. The efficiency of the tourism indusrty in the balkans. Zb. Rad. Ekon. Fak. U Istoc. Sarajev. 2017, 14, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Casanueva, C.; Gallego, Á.; García-Sánchez, M.-R. Social network analysis in tourism. Curr. Issues Tour. 2014, 19, 1190–1209. [Google Scholar] [CrossRef]
- Kang, S.; Lee, G.; Kim, J.; Park, D. Identifying the spatial structure of the tourist attraction system in South Korea using GIS and network analysis: An application of anchor-point theory. J. Destin. Mark. Manag. 2018, 9, 358–370. [Google Scholar] [CrossRef]
- Liu, B.; Huang, S.; Fu, H. An application of network analysis on tourist attractions: The case of Xinjiang, China. Tour. Manag. 2017, 58, 132–141. [Google Scholar] [CrossRef]
- Chu, C.-P.; Chou, Y.-H. Using cellular data to analyze the tourists’ trajectories for tourism destination attributes: A case study in Hualien, Taiwan. J. Transp. Geogr. 2021, 96, 103178. [Google Scholar] [CrossRef]
- Leung, X.Y.; Wang, F.; Wu, B.; Bai, B.; Stahura, K.A.; Xie, Z. A Social Network Analysis of Overseas Tourist Movement Patterns in Beijing: The Impact of the Olymoic Games. Int. J. Tour. Res. 2012, 14, 469–484. [Google Scholar] [CrossRef]
- Gan, C.; Voda, M.; Wang, K.; Chen, L.; Ye, J. Spatial network structure of the tourism economy in urban agglomeration: A social network analysis. J. Hosp. Tour. Manag. 2021, 47, 124–133. [Google Scholar] [CrossRef]
- Tan, Y.; Xiang, P.; Liu, S.; Yu, L. Evaluating provincial tourism competitiveness in China: An empirical application based on the EM-MGM-SNA model. Environ. Dev. Sustain. 2022, 1–22. [Google Scholar] [CrossRef]
- Munguia, R.; Davalos, J.; Urzua, S. Estimation of the Solow-Cobb-Douglas economic growth model with a Kalman filter: An observability-based approach. Heliyon 2019, 5, e01959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, W.; Zhang, Y. Evaluation of tourism efficiency in the middle and lower reaches of the Yellow River. J. Arid Land Resour. Environ. 2022, 36, 187–193. [Google Scholar] [CrossRef]
- Xie, C.; Fan, L.; Wu, G. Spatial network structure and influencing factors of urban tourism efficiency in the Yellow River Basin. J. Cent. China Norm. Univ. 2022, 56, 146–157. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Ren, Y.; Fang, C.; Lin, X.; Sun, S.; Li, G.; Fan, B. Evaluation of the eco-efficiency of four major urban agglomerations in coastal eastern China. J. Geogr. Sci. 2019, 29, 1315–1330. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ma, L.; Zhu, Z. The environmental-adjusted energy efficiency of China’s construction industry: A three-stage undesirable SBM-DEA model. Environ. Sci. Pollut. Res. Int. 2021, 28, 58442–58455. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.-F.; Wu, J.; Song, M.-L. An SBM-DEA model with parallel computing design for environmental efficiency evaluation in the big data context: A transportation system application. Ann. Oper. Res. 2016, 270, 105–124. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Cechura, L.; Kuzmenko, E. Investigating the dynamic eco-efficiency in agriculture sector of the European Union countries. Environ. Sci. Pollut. Res. Int. 2021, 28, 48942–48954. [Google Scholar] [CrossRef]
- Guangming, Y.; Qingqing, G.; Fengtai, Z.; Guofang, G.; Yunrui, Y. The Temporal and Spatial Characteristics and Influencing Factors of Low-Carbon Economy Efficiency and Science and Technology Development Level in China’s Provinces From the Perspective of Uncoordinated Coupling. Front. Environ. Sci. 2022, 10, 886886. [Google Scholar] [CrossRef]
- Keum, K. Tourism flows and trade theory: A panel data analysis with the gravity model. Ann. Reg. Sci. 2010, 44, 541–557. [Google Scholar] [CrossRef]
- Yang, G.; Gong, G.; Gui, Q. Exploring the Spatial Network Structure of Agricultural Water Use Efficiency in China: A Social Network Perspective. Sustainability 2022, 14, 2668. [Google Scholar] [CrossRef]
- Seok, H.; Barnett, G.A.; Nam, Y. A social network analysis of international tourism flow. Qual. Quant. 2020, 55, 419–439. [Google Scholar] [CrossRef]
- Ma, D.; Xiong, H.; Zhang, F.; Gao, L.; Zhao, N.; Yang, G.; Yang, Q. China’s industrial green total-factor energy efficiency and its influencing factors: A spatial econometric analysis. Environ. Sci. Pollut. Res. Int. 2021, 29, 18559–18577. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.D.; Vieira, A.C. Tourism and regional development: A spatial econometric model for Portugal at municipal level. Port. Econ. J. 2020, 19, 285–299. [Google Scholar] [CrossRef]
- Zhang, F.; Xiao, Y.; Gao, L.; Ma, D.; Su, R.; Yang, Q. How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs. Agric. Water Manag. 2022, 260, 107297. [Google Scholar] [CrossRef]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Bryan, B.A. Finding pathways to national-scale land-sector sustainability. Nature 2017, 544, 217–222. [Google Scholar] [CrossRef]
Type | Name | Unit | Meaning | Reference |
---|---|---|---|---|
Input Indicators | Fixed assets investment amount | Billion | Amount of factor capital investment in tourism industry | [12,13,15,16,19,20] |
Number of travel agencies | Individual | |||
Number of star-rated hotels | Individual | |||
Number of A-rated scenic spots | Individual | |||
Number of employees in the tertiary sector | Ten thousand | Amount of labor input | ||
Output Indicators | Total Tourism Revenue | Billion | Economic benefits generated by tourism flows, which can be converted into tourism capital | |
Total number of tourists | Ten thousand | Attractiveness of tourist destinations to tourist flows is strong or weak |
Name | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | Average Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 1 | 1 | 1 | 1 | 0.957 | 0.885 | 0.761 | 0.851 | 0.786 | 0.702 | 0.896 | 0.894 |
Tianjin | 1 | 1 | 1 | 1 | 1 | 1 | 0.701 | 1 | 1 | 1 | 1 | 0.973 |
Hebei | 0.529 | 0.537 | 0.438 | 0.481 | 0.535 | 0.506 | 0.578 | 0.56 | 0.601 | 0.659 | 0.632 | 0.551 |
Shanxi | 0.79 | 0.725 | 0.586 | 0.61 | 0.699 | 0.812 | 0.876 | 1 | 1 | 1 | 1 | 0.827 |
Inner Mongolia | 0.414 | 0.406 | 0.351 | 0.392 | 0.385 | 0.408 | 0.413 | 0.514 | 0.486 | 0.505 | 0.526 | 0.437 |
Liaoning | 1 | 1 | 0.855 | 0.921 | 0.908 | 0.909 | 0.713 | 0.684 | 0.768 | 0.659 | 0.757 | 0.834 |
Jilin | 0.491 | 0.512 | 0.44 | 0.55 | 0.534 | 0.573 | 0.423 | 0.655 | 0.679 | 0.639 | 0.609 | 0.555 |
Heilongjiang | 0.561 | 0.58 | 0.443 | 0.492 | 0.579 | 0.454 | 0.487 | 0.534 | 0.579 | 0.564 | 0.611 | 0.535 |
Shanghai | 1 | 1 | 1 | 1 | 1 | 1 | 0.92 | 1 | 0.917 | 0.836 | 0.902 | 0.961 |
Jiangsu | 0.823 | 0.84 | 0.778 | 0.854 | 0.8 | 0.745 | 0.764 | 0.756 | 0.812 | 0.72 | 0.758 | 0.786 |
Zhejiang | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Anhui | 0.572 | 0.59 | 0.527 | 0.701 | 0.665 | 0.692 | 0.613 | 0.695 | 0.779 | 0.714 | 0.703 | 0.659 |
Fujian | 0.629 | 0.624 | 0.57 | 0.636 | 0.626 | 0.616 | 0.567 | 0.598 | 0.569 | 0.579 | 0.664 | 0.607 |
Jiangxi | 0.709 | 0.763 | 0.534 | 0.512 | 0.511 | 0.564 | 0.612 | 0.706 | 0.823 | 0.726 | 0.781 | 0.658 |
Shandong | 0.681 | 0.685 | 0.614 | 0.659 | 0.624 | 0.615 | 0.514 | 0.606 | 0.545 | 0.577 | 0.63 | 0.614 |
Henan | 0.863 | 0.84 | 0.782 | 0.858 | 0.738 | 0.743 | 0.615 | 0.695 | 0.793 | 0.789 | 0.701 | 0.765 |
Hubei | 0.478 | 0.501 | 0.488 | 0.673 | 0.729 | 0.751 | 0.549 | 0.737 | 0.755 | 0.686 | 0.691 | 0.64 |
Hunan | 0.652 | 0.704 | 0.738 | 0.685 | 0.678 | 0.663 | 0.703 | 0.714 | 0.654 | 0.666 | 0.702 | 0.687 |
Guangdong | 0.597 | 0.637 | 0.679 | 0.733 | 0.751 | 0.768 | 0.587 | 0.746 | 0.675 | 0.575 | 0.665 | 0.674 |
Guangxi | 0.74 | 0.724 | 0.75 | 0.673 | 0.658 | 0.637 | 0.636 | 0.652 | 0.542 | 0.514 | 0.551 | 0.643 |
Hainan | 0.6 | 0.479 | 0.387 | 0.383 | 0.324 | 0.304 | 0.259 | 0.304 | 0.294 | 0.376 | 0.384 | 0.372 |
Chongqing | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.954 | 0.785 | 0.976 |
Sichuan | 0.928 | 1 | 0.966 | 0.966 | 0.989 | 0.98 | 1 | 1 | 0.922 | 0.791 | 0.775 | 0.938 |
Guizhou | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Yunnan | 0.661 | 0.604 | 0.582 | 0.545 | 0.619 | 0.581 | 0.53 | 0.566 | 0.575 | 0.611 | 0.615 | 0.59 |
Shaanxi | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Gansu | 0.315 | 0.338 | 0.315 | 0.348 | 0.361 | 0.379 | 0.407 | 0.448 | 0.43 | 0.508 | 0.558 | 0.401 |
Qinghai | 0.662 | 0.596 | 0.483 | 0.43 | 0.269 | 0.28 | 0.31 | 0.382 | 0.393 | 0.398 | 0.407 | 0.419 |
Ningxia | 0.379 | 0.363 | 0.291 | 0.245 | 0.213 | 0.231 | 0.194 | 0.182 | 0.242 | 0.253 | 0.249 | 0.258 |
Xinjiang | 0.371 | 0.292 | 0.345 | 0.46 | 0.512 | 0.668 | 0.523 | 0.535 | 0.551 | 0.551 | 0.578 | 0.49 |
Average value | 0.715 | 0.711 | 0.665 | 0.694 | 0.689 | 0.692 | 0.642 | 0.704 | 0.706 | 0.685 | 0.704 |
Provinces | Point Degree Centrality | Proximity Centrality | Intermediary Centrality | ||
---|---|---|---|---|---|
Degree of Point-Out | Degree of Point Entry | Degree of Centrality | |||
Beijing | 5 | 4 | 24.138 | 56.863 | 1.93 |
Tianjin | 5 | 4 | 17.241 | 54.717 | 1.769 |
Hebei | 5 | 7 | 27.586 | 58.000 | 0.674 |
Shanxi | 5 | 4 | 20.690 | 55.769 | 3.161 |
Inner Mongolia | 7 | 3 | 24.138 | 56.863 | 3.095 |
Liaoning | 5 | 2 | 20.690 | 55.769 | 0.123 |
Jilin | 6 | 1 | 20.690 | 55.769 | 0.523 |
Heilongjiang | 6 | 0 | 20.690 | 55.769 | 0.000 |
Shanghai | 3 | 2 | 10.345 | 51.786 | 0.74 |
Jiangsu | 4 | 27 | 93.103 | 93.548 | 6.896 |
Zhejiang | 4 | 17 | 58.621 | 70.732 | 2.889 |
Anhui | 3 | 3 | 10.345 | 51.786 | 0.875 |
Fujian | 5 | 1 | 17.241 | 54.717 | 0.212 |
Jiangxi | 6 | 6 | 24.138 | 56.863 | 5.929 |
Shandong | 6 | 24 | 82.759 | 85.294 | 16.237 |
Henan | 8 | 13 | 51.724 | 67.442 | 11.044 |
Hubei | 4 | 5 | 24.138 | 56.863 | 0.266 |
Hunan | 5 | 3 | 17.241 | 54.717 | 0.854 |
Guangdong | 9 | 21 | 72.414 | 74.359 | 28.489 |
Guangxi | 4 | 1 | 13.793 | 53.704 | 0.173 |
Hainan | 2 | 2 | 10.345 | 52.727 | 0.028 |
Chongqing | 6 | 2 | 20.690 | 55.769 | 2.091 |
Sichuan | 9 | 8 | 34.483 | 60.417 | 5.478 |
Guizhou | 7 | 3 | 24.138 | 56.863 | 3.327 |
Yunnan | 6 | 2 | 20.690 | 55.769 | 2.091 |
Shaanxi | 8 | 5 | 31.034 | 59.184 | 0.689 |
Gansu | 10 | 4 | 34.483 | 60.417 | 2.227 |
Qinghai | 10 | 2 | 34.483 | 60.417 | 0.185 |
Ningxia | 10 | 3 | 34.483 | 60.417 | 1.083 |
Xinjiang | 6 | 0 | 20.690 | 55.769 | 0.000 |
Average value | 5.967 | 5.967 | 30.575 | 59.969 | 3.436 |
Category | Chinese Provinces |
---|---|
Core Members (12) | Beijing Tianjin Hebei Shanxi Inner-Mongolia Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Fujian Jiangxi Shandong Henan Hubei Hunan Guangdong Chongqing Sichuan Guizhou Yunnan Shaanxi Gansu Qinghai Ningxia Xinjiang |
Fringe members (2) | Guangxi Hainan |
Category | Core Area | Fringe Area |
---|---|---|
Core area | 0.226 | 0.036 |
Fringe area | 0.089 | 0.500 |
Variable | No Fixed Effect | Spatial Fixed Effect | Time Fixed Effect | Two-Way Fixed Effect |
---|---|---|---|---|
PAT | 0.1352 *** (5.2154) | 0.0545 *** (2.5458) | 0.0989 *** (3.9040) | 0.0608 *** (2.8228) |
URB | 0.3318 ** (2.1706) | 0.5189 * (1.6705) | 0.0140 (0.0897) | 0.3560 (1.1402) |
TRA | 0.0809 *** (2.8139) | 0.0576 * (1.6443) | −0.0231 * (−0.6994) | 0.0965 ** (2.1822) |
FIR | −0.0913 *** (−1.9394) | −0.0717 * (−1.9444) | 0.0433 (0.8652) | 0.0931 (1.4083) |
GMR | 0.5364 *** (6.2347) | 0.1275 *** (2.9443) | 0.5943 *** (7.2443) | 0.1336 *** (3.2110) |
INV | −0.1178 *** (−4.3200) | −0.0532 (−2.2398) | −0.0060 (−0.1889) | −0.0561 ** (−2.2890) |
ENE | −0.0005 (−0.0195) | −0.0270 (−0.4390) | −0.0604 ** (−2.2282) | −0.0274 (−0.4452) |
R-squared | 0.4172 | 0.8582 | 0.4821 | 0.8885 |
Log-L | 115.0680 | 390.4708 | 135.9534 | 410.1193 |
DW | 2.1575 | 2.0393 | 2.4896 | 2.0734 |
LM-lag | 12.8753 *** | 1.0223 | 2.8683 * | 7.6222 *** |
Robust LM-lag | 0.3178 | 0.4044 | 0.6854 | 2.1370 |
LM-err | 19.9686 *** | 0.8423 | 6.6059 *** | 10.2776 *** |
Robust LM-err | 7.4111 *** | 0.2243 | 4.4231 *** | 4.7924 ** |
Variable | SAR | SEM |
---|---|---|
PAT | 0.0606 *** (2.9129) | 0.0639 *** (3.2642) |
URB | 0.3976 (1.3152) | 0.4024 (1.4405) |
TRA | 0.0860 ** (2.0101) | 0.0883 ** (2.0712) |
FIR | 0.1090 * (1.7061) | 0.1224 ** (2.0897) |
GMR | 0.1251 *** (3.1111) | 0.1151 *** (2.9067) |
INV | −0.0718 *** (−3.0256) | −0.0919 (−4.1274) |
ENE | −0.0153 (−0.2577) | −0.0015 (−0.0259) |
W*dep.var | −0.2670 *** (−3.5243) | |
Spat.aut. | −0.3509 *** (−4.4499) | |
R-squared | 0.9069 | 0.9017 |
Log-L | 414.9080 | 417.6547 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Yang, Y.; Gong, G.; Gui, Q. The Spatial Network Structure of Tourism Efficiency and Its Influencing Factors in China: A Social Network Analysis. Sustainability 2022, 14, 9921. https://doi.org/10.3390/su14169921
Yang G, Yang Y, Gong G, Gui Q. The Spatial Network Structure of Tourism Efficiency and Its Influencing Factors in China: A Social Network Analysis. Sustainability. 2022; 14(16):9921. https://doi.org/10.3390/su14169921
Chicago/Turabian StyleYang, Guangming, Yunrui Yang, Guofang Gong, and Qingqing Gui. 2022. "The Spatial Network Structure of Tourism Efficiency and Its Influencing Factors in China: A Social Network Analysis" Sustainability 14, no. 16: 9921. https://doi.org/10.3390/su14169921