Modeling the Impact of Deficit Irrigation on Corn Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Calibration
2.2. Crop Model Validation
2.3. Model Simulation
2.4. Water Productivity
3. Results
3.1. DSSAT CERES-Maize Model Calibration Results
3.2. AquaCrop (4.7) Model Calibration Results
3.3. Results of the Validation of Calibrated Models
3.4. Model Simulation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ertek, A.; Kara, B. Yield and quality of sweet corn under deficit irrigation. Agric. Water Manag. 2013, 129, 138–144. [Google Scholar] [CrossRef]
- English, M.J.; Solomon, K.H.; Hoffman, G.J. A paradigm shift in irrigation management. J. Irrig. Drain. Eng. 2002, 128, 267–277. [Google Scholar] [CrossRef]
- Traore, S.B.; Carlson, R.E.; Pilcher, C.D.; Rice, M.E. Bt and non-Bt maize growth and development as affected by temperature and drought stress. Agron. J. 2000, 92, 1027–1035. [Google Scholar] [CrossRef]
- Jama, A.O.; Ottman, M.J. Timing of the first irrigation in corn and water stress conditioning. Agron. J. 1993, 85, 1159–1164. [Google Scholar] [CrossRef]
- Gavloski, J.E.; Whitfield, G.H.; Ellis, C.R. Effect of restricted watering on sap flow and growth in corn (Zea mays L.). Can. J. Plant Sci. 1992, 72, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. Special issue on ‘Integrated approaches to sustain and improve plant production under drought stress’. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.M.; Ortuño, M.F.; Chaves, M.M. Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture. J. Integr. Plant Biol. 2007, 49, 1421–1434. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit Irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Lamm, F.R.; Manges, H.L.; Stone, L.R.; Khan, A.H.; Rogers, D.H. Water requirement of subsurface drip-irrigated corn in Northwest Kansas. Trans. ASAE 1995, 38, 441–448. [Google Scholar] [CrossRef]
- Rodrigues, G.C.; Paredes, P.; Goncalves, J.M.; Alves, I.; Pereira, L.S. Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multi criteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns. Agric. Water Manag. 2013, 126, 85–96. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Namaona, W.; Traore, S.; Zhang, Z. Seasonal temperature-based models for evapotranspiration estimation under semi-arid conditions of Malawi. Afr. J. Agric. Res. 2009, 4, 878–886. [Google Scholar]
- Gary, C.; Jones, J.W.; Tchamitchian, M. Crop modelling in horticulture: State of the art. Sci. Hortic. 1998, 74, 3–20. [Google Scholar] [CrossRef]
- Soler, C.M.T.; Sentelhas, P.C.; Hoogenboom, G. Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. Eur. J. Agron. 2007, 27, 165–177. [Google Scholar] [CrossRef]
- Hoogenboom, G. Contribution of agrometeorology to the simulation of crop production and its applications. Agric. For. Meteorol. 2000, 103, 137–157. [Google Scholar] [CrossRef]
- Bondad, R.M.; Ella, V.B.; Saludes, R.B.; Reyes, M.R.; Mercado, A.R. Simulating the impact of conservation agriculture on corn yield in the Philippines using the DSSAT CERES-Maize model. Phil. Agric. Sci. 2015, 98, 190–201. [Google Scholar]
- Lansigan, F.P.; Salvacion, A.R. Assessing the Effect of Climate Change on Rice and Corn Yields in Selected Provinces in the Philippines. Int. J. Sci. Basic Appl. Res. 2015, 23, 54–68. [Google Scholar]
- Painagan, M.S.; Gutierrez, H.M. Simulation of Corn Yield in Carmen, North Cotabato Philippines, using AquaCrop Model. USM RD J. 2014, 2, 1–8. Available online: https://publications.waset.org/abstracts/search?q=Marilyn%20Painagan (accessed on 11 July 2022).
- Ella, V.B. Annual Report for the CHED-PCARI Project Entitled “Development of Wireless Sensor Network-Based Water Information System for Efficient Irrigation Water Management in the Philippines”. 01 June 2019. Available online: https://agris.fao.org/agris-search/search.do?recordID=PH2020000486 (accessed on 11 July 2022).
- Anothai, J.; Soler, C.M.T.; Green, A.; Trout, T.J.; Hoogenboom, G. Evaluation of two evapotranspiration approaches simulated with the CSM–CERES–Maize model under different irrigation strategies and the impact on maize growth, development and soil moisture content for semi-arid conditions. Agric. For. Meteorol. 2013, 176, 64–76. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Demissie, M. Hydrologic modeling of the Iroquois river watershed using HSPF and SWAT. J. Am. Water Resour. Assoc. 2004, 41, 343–360. [Google Scholar] [CrossRef]
- Denmead, O.T.; Shaw, R.H. The effects of Soil Moisture Stress at Different Stages of Growth on the Development and Yield of Corn. Agron. J. 1960, 3064, 272–274. [Google Scholar] [CrossRef]
- Lizaso, J.I.; Boote, K.J.; Cherr, C.M.; Scholberg, J.M.S.; Casanova, J.J.; Judge, J.; Jones, J.W.; Hoogenboom, G. Developing a sweet corn simulation model to predict fresh market yield and quality of ears. J. Am. Soc. Hortic. Sci. 2007, 132, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Greaves, G.E.; Wang, Y.-M. Assessment of FAO AquaCrop model for simulating maize growth and productivity under deficit irrigation in a tropical environment. Water 2016, 8, 557. [Google Scholar] [CrossRef]
- Greaves, G.E.; Wang, Y.-M. Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment. Agric. Water Manag. 2017, 188, 115–125. [Google Scholar] [CrossRef]
- Piper, E.L.; Weiss, A. Evaluating CERES-Maize for reduction in plant population or leaf area during the growing season. Agric. Syst. 1990, 33, 199–213. [Google Scholar] [CrossRef]
- Jagtap, S.S.; Mornu, M.; Kang, B.T. Simulation of growth, development, and yield of maize in the transition zone of Nigeria. Agric. Syst. 1993, 41, 215–229. [Google Scholar] [CrossRef]
- Ritchie, J.T.; Alagarswamy, G. Model concepts to express genetic differences in maize yield components. Agron. J. 2003, 95, 4–9. [Google Scholar] [CrossRef]
- Payero, J.O.; Tarkalson, D.D.; Irmak, S.; Davison, D.; Petersen, J.L. Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate. Agric. Water Manag. 2008, 95, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Howell, T.A.; Schneider, A.D.; Evett, S.R. Subsurface and surface micro-irrigation of corn-Southern High Plains. Trans. ASAE 1997, 40, 635–641. [Google Scholar] [CrossRef]
Variable | Unit | GSS0966 sh2 | Saturn sh2 | BSS0977 sh2 | Calibrated Coefficient |
---|---|---|---|---|---|
Default sweet corn genetic coefficient | |||||
P1 | Growing degree days (GDD) | 150 | 180 | 175 | 164.0 |
P2 | expressed as days | 0.30 | 0.30 | 0.30 | 0.30 |
P5 | expressed in degree days above a base temperature of 8 °C | 680 | 738 | 700 | 472.0 |
G2 | number | 600 | 850 | 500 | 550.0 |
G3 | mg/day | 5.50 | 15 | 5.0 | 3.0 |
PHINT | degree days | 43.0 | 35 | 50 | 43.0 |
AquaCrop Non-Conservative Parameters | Default Values | Calibrated Values |
---|---|---|
Maximum canopy cover (CCx) in fraction soil cover | 0.80 | 0.70 |
Calendar Days: from sowing to emergence | 5 | 5 |
Calendar Days: from sowing to maximum rooting depth | 100 | 53 |
Calendar Days: from sowing to start senescence | 110 | 70 |
Calendar Days: from sowing to maturity (length of crop cycle) | 125 | 80 |
Calendar Days: from sowing to flowering | 70 | 52 |
Length of the flowering stage (days) | 10 | 10 |
Building up of Harvest Index starting at flowering (days) | 50 | 22 |
Water Productivity normalized for ETo and CO2 (WP) (gram m−2) | 17.0 | 33.7 |
Crop performance under elevated atmospheric CO2 concentration (%) | 50 | 50 |
Reference Harvest Index (HIo) (%) | 50 | 45 |
Number of plants per hectare | 185,000 | 25,000 |
Minimum effective rooting depth (m) | 0.30 | 0.30 |
Maximum effective rooting depth (m) | 1 | 1 |
No. of Dataset | RMSE | NRMSE (%) | R2 | d-Stat | NSE | |
---|---|---|---|---|---|---|
Silking day (DAP) | 3 | 0.8165 day | 1.60 | |||
Maturity day (DAP) | 9 | 2.2 days | 24.44 | |||
Leaf dry mass (kg ha−1) | 5 | 115.8 | 8.49 | 0.75 | 0.927 | 0.736 |
Stem dry mass (kg ha−1) | 5 | 118.61 | 9.245 | 0.97 | 0.992 | 0.97 |
Variables | Mean Observed | Mean Simulated | RMSE | NRMSE | R2 | d-Stat Value | NSE |
---|---|---|---|---|---|---|---|
Above-ground biomass (ton ha−1) | 4.437 | 4.439 | 0.226 ton ha−1 | 5.1% | 0.901 | 0.895 | 0.98 |
Soil water content (mm) | 275.4 | 280.1 | 5.2 mm | 1.9% | 0.897 | 0.845 | 0.69 |
Treatment (Depletion of ASWC) | Simulated Fresh Ear Mass (kg ha−1) Using DSSAT | Simulated Fresh Ear Mass (kg ha−1) Using AquaCrop | Observed Ear Mass (kg ha−1) |
---|---|---|---|
40% | 7350.0 | 6909.9 | 7293.475 |
50% | 6482.7 | 6842.34 | 6863.675 |
60% | 6442.8 | 6779.3 | 6827.275 |
70% | 6239.1 | 6756.8 | 6797.175 |
80% | 6119.4 | 6734.2 | 6576.15 |
Depth of Irrigation (mm) | Grain Yield (kg ha−1) | Water Productivity (kg/m3) | Phenological Stage Applied with Irrigation |
---|---|---|---|
134.4 | 4356 | 3.2 | all |
97.2 | 4356 | 4.5 | Emergence to early grain filling |
85.1 | 4537 | 5.3 | V10 to grain filling |
81.2 | 4860 | 5.9 | V12 to grain filling |
77.3 | 5009 | 6.5 | Start of tasseling to grain filling |
72.4 | 3494 | 4.8 | Emergence to late tasseling |
69.9 | 5006 | 7.1 | During tasseling to grain filling |
60.3 | 4983 | 8.2 | End of tasseling to grain filling |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Painagan, M.S.; Ella, V.B. Modeling the Impact of Deficit Irrigation on Corn Production. Sustainability 2022, 14, 10401. https://doi.org/10.3390/su141610401
Painagan MS, Ella VB. Modeling the Impact of Deficit Irrigation on Corn Production. Sustainability. 2022; 14(16):10401. https://doi.org/10.3390/su141610401
Chicago/Turabian StylePainagan, Marilyn S., and Victor B. Ella. 2022. "Modeling the Impact of Deficit Irrigation on Corn Production" Sustainability 14, no. 16: 10401. https://doi.org/10.3390/su141610401