The Relationship between Soil Particle Size Fractions, Associated Carbon Distribution and Physicochemical Properties of Historical Land-Use Types in Newly Formed Reservoir Buffer Strips
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site
2.2. Sample Collection
2.3. Physicochemical Properties of Soils
2.4. Particle-Size Fraction and Associated Carbon Separation
2.5. Soil Stability Calculation and Statistical Analysis
3. Results
4. Discussion
4.1. Soil Aggregates Stability Characteristics of Historical Land-Use Types in Reservoir Buffer Strips
4.2. Particle-Size Associated Nutrient Distribution of Historical Land-Use Types in Reservoir Buffer Strips
4.3. Relationship between Soil Particle Fractions and Chemical Properties in Historical Land-Use Types in Reservoir Buffer Strips
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seavy, N.E.; Gardali, T.; Golet, G.H.; Griggs, F.T.; Howell, C.A.; Kelsey, R.; Small, S.L.; Viers, J.H.; Weigand, J.F. Why climate change makes riparian restoration more important than ever: Recommendations for practice and research. Ecol. Restor. 2009, 27, 330–338. [Google Scholar] [CrossRef]
- Fattet, M.; Fu, Y.; Ghestem, M.; Ma, W.; Foulonneau, M.; Nespoulous, J.; Bissonnais, Y.L.; Stokes, A. Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength. Catena 2011, 87, 60–69. [Google Scholar] [CrossRef]
- Ye, C.; Cheng, X.; Liu, W.; Zhang, Q. Revegetation impacts soil nitrogen dynamics in the water level fluctuation zone of the Three Gorges Reservoir, China. Sci. Total Environ. 2015, 517, 76–85. [Google Scholar] [CrossRef]
- Liu, P.; Li, X.; Zhang, R.; Yao, M.; Chen, J.; Li, Y.; Jia, X.; Xing, Y. Influence of reservoir construction on surrounding vegetation cover. Int. J. Agric. Biol. Eng. 2021, 14, 214–220. [Google Scholar] [CrossRef]
- Dybala, K.E.; Matzek, V.; Gardali, T.; Seavy, N.E. Carbon sequestration in riparian forests: A global synthesis and meta-analysis. Glob. Chang. Biol. 2019, 25, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Laceby, J.P.; Saxton, N.E.; Smolders, K.; Kemp, J.; Faggotter, S.J.; Ellison, T.; Ward, D.; Stewart, M.; Burford, M.A. The effect of riparian restoration on channel complexity and soil nutrients. Mar. Freshw. Res. 2017, 68, 2041–2051. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Duan, L.; Li, Y.; Li, Z. Research progress of organic carbon in soil aggregates. Chin. Agric. Sci. Bull. 2021, 37, 86–90, (Abstract in English). [Google Scholar]
- Nsabimana, G.; Bao, Y.H.; He, X.B.; Nambajimana, J.D.; Wang, M.F.; Yang, L.; Li, J.L.; Zhang, S.J.; Khurram, D. Impact of water level fluctuations on soil aggregate stability in the Three Gorges Reservoir, China. Sustainability 2020, 12, 9107. [Google Scholar] [CrossRef]
- Mafa-Attoye, T.G.; Baskerville, M.A.; Ofosu, E.; Oelbermann, M.; Thevathasan, N.V.; Dunfield, K.E. Riparian land-use systems impact soil microbial communities and nitrous oxide emissions in an agro-ecosystem. Sci. Total Environ. 2020, 724, 138148. [Google Scholar] [CrossRef]
- Ding, L.; Zhou, J.; Li, Q.; Tang, J.; Chen, X. Effects of land-use type and flooding on the soil microbial community and functional genes in reservoir riparian zones. Microb. Ecol. 2022, 83, 393–407. [Google Scholar] [CrossRef]
- Sun, S.; Huang, J.; Han, X.; Lin, G. Comparisons in water relations of plants between newly formed riparian and non-riparian habitats along the bank of Three Gorges Reservoir, China. Trees 2008, 22, 717–728. [Google Scholar] [CrossRef]
- King, S.E.; Osmond, D.L.; Smith, J.; Burchell, M.R.; Dukes, M.; Evans, R.O.; Knies, S.; Kunickis, S. Effects of Riparian Buffer Vegetation and Width: A 12-Year Longitudinal Study. J. Environ. Qual. 2016, 45, 1243–1251. [Google Scholar] [CrossRef] [Green Version]
- Cardinali, A.; Carletti, P.; Nardi, S.; Zanin, G. Design of riparian buffer strips affects soil quality parameters. Appl. Soil Ecol. 2014, 80, 67–76. [Google Scholar] [CrossRef]
- Totsche, K.U.; Amelung, W.; Gerzabek, M.H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Prechtel, A.; et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 2017, 181, 104–136. [Google Scholar] [CrossRef] [Green Version]
- Cole, L.J.; Stockan, J.; Helliwell, R. Managing riparian buffer strips to optimize ecosystem services: A review. Agric. Ecosyst. Environ. 2020, 296, 106891. [Google Scholar] [CrossRef]
- Stutter, M.I.; Chardon, W.J.; Kronvang, B. Riparian buffer strips as a multifunctional management tool in agricultural landscapes: Introduction. J. Environ. Qual. 2012, 41, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.; Talukdar, S.; Ghosh, R. Damming effect on habitat quality of riparian corridor. Ecol. Indic. 2020, 114, 106300. [Google Scholar] [CrossRef]
- Sirabahenda, Z.; St-Hilaire, A.; Courtenay, S.C.; Van Den Heuvel, M.R. Assessment of the effective width of riparian buffer strips to reduce suspended sediment in an agricultural landscape using ANFIS and SWAT models. Catena 2020, 195, 104762. [Google Scholar] [CrossRef]
- Rasmussen, J.J.; Baattrup-Pedersen, A.; Wiberg-Larsen, P.; McKnight, U.S.; Kronvang, B. Buffer strip width and agricultural pesticide contamination in Danish lowland streams: Implications for stream and riparian management. Ecol. Eng. 2011, 37, 1990–1997. [Google Scholar] [CrossRef] [Green Version]
- Shan, N.; Ruan, X.H.; Xu, J.; Pan, Z.R. Estimating the optimal width of buffer strip for nonpoint source pollution control in the Three Gorges Reservoir Area, China. Ecol. Model. 2014, 276, 51–63. [Google Scholar] [CrossRef]
- Walton, C.R.; Zak, D.; Audet, J.; Petersen, R.J.; Lange, J.; Oehmke, C.; Wichtmann, W.; Kreyling, J.; Grygoruk, M.; Jabłońska, E.; et al. Wetland buffer zones for nitrogen and phosphorus retention: Impacts of soil type, hydrology and vegetation. Sci. Total Environ. 2020, 727, 138709. [Google Scholar] [CrossRef] [PubMed]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; Wesemael, B.V.; Robot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Souza, I.F.; Almeida, L.F.J.; Jesus, G.L.; Kleber, M.; Silva, I.R. The mechanisms of organic carbon protection and dynamics of C-saturation in O xisols vary with particle-size distribution. Eur. J. Soil Sci. 2017, 68, 726–739. [Google Scholar] [CrossRef]
- Lützow, M.V.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions–A review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Kögel-Knabner, I.; Kleber, M. Mineralogical, physicochemical, and microbiological controls on soil organic matter stabilization and turnover. In Handbook of Soil Sciences Resource Management and Environmental Impacts; CRC Press: Boca Raton, FL, USA, 2011; p. 830. [Google Scholar]
- Han, L.; Sun, K.; Jin, J.; Xing, B. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biol. Biochem. 2016, 94, 107–121. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, A.; Wang, X.; Song, M.; Zhao, Y.; Xie, H.; Russell, J.M.; Chen, F. Unmixing grain-size distributions in lake sediments: A new method of endmember modeling using hierarchical clustering. Quat. Res. 2018, 89, 365–373. [Google Scholar] [CrossRef]
- Shein, E.V. The particle-size distribution in soils: Problems of the methods of study, interpretation of the results, and classification. Eurasian Soil Sci. 2009, 42, 284–291. [Google Scholar] [CrossRef]
- Gao, Y.; Jia, J.; Lu, Y.; Sun, X.; Wen, X.; He, N.; Yang, T. Progress in watershed geography in the Yangtze River Basin and the affiliated ecological security perspective in the past 20 years, China. J. Geogr. Sci. 2020, 30, 867–880. [Google Scholar] [CrossRef]
- Xie, W.P.; Yang, J.S.; Yao, R.J.; Wang, X.P. Impact Study of Impoundment of the Three Gorges Reservoir on Salt-Water Dynamics and Soil Salinity in the Yangtze River Estuary. J. Environ. Inform. 2020, 36, 11–13. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, M.; Wu, S.; Ran, Y.; Wang, X.; Huang, P. Soil aggregates as effected by wetting-drying cycle: A review. Soil 2018, 50, 4–16, (Abstract in English). [Google Scholar]
- Hu, X.; Chen, J.; Zhu, L. Soil aggregate size distribution and stability of farmland as affected by dry and wet sieving methods. Zemdirb. Agric. 2020, 107, 179–184. [Google Scholar] [CrossRef]
- Li, Y.; Hu, J.; Han, X.; Li, Y.; Li, Y.; He, B.; Duan, X. Effects of past land use on soil organic carbon changes after dam construction. Sci. Total Environ. 2019, 686, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Haydu-Houdeshell, C.A.; Graham, R.C.; Hendrix, P.F.; Peterson, A.C. Soil aggregate stability under chaparral species in southern California. Geoderma 2018, 310, 201–208. [Google Scholar] [CrossRef]
- McNally, S.R.; Beare, M.H.; Curtin, D.; Meenken, E.D.; Kelliher, F.M.; Calvelo Pereira, R.; Shen, Q.H.; Baldock, J. Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand. Glob. Chang. Biol. 2017, 23, 4544–4555. [Google Scholar] [CrossRef]
- Beare, M.H.; McNeill, S.J.; Curtin, D.; Parfitt, R.L.; Jones, H.S.; Dodd, M.B.; Sharp, J. Estimating the organic carbon stabilisation capacity and saturation deficit of soils: A New Zealand case study. Biogeochemistry 2014, 120, 71–87. [Google Scholar] [CrossRef]
- Rasmussen, C.; Heckman, K.; Wieder, W.R.; Keiluweit, M.; Lawrence, C.R.; Berhe, A.A.; Blankinship, J.C.; Crow, S.E.; Druhan, J.L.; Hicks Pries, C.E.; et al. Beyond clay: Towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 2018, 137, 297–306. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Denef, K.; Six, J.; Bossuyt, H.; Frey, S.D.; Paustian, K. Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 2001, 33, 1599–1611. [Google Scholar] [CrossRef]
- Park, E.J.; Sul, W.J.; Smucker, A. Glucose additions to aggregates subjected to drying/wetting cycles promote carbon sequestration and aggregate stability. Soil Biol. Biochem. 2007, 39, 2758–2768. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Marschner, P. Effect of drying and rewetting on phosphorus transformations in red brown soils with different soil organic matter content. Soil Biol. Biochem. 2005, 37, 1573–1576. [Google Scholar] [CrossRef]
- Wu, X.; Wei, Y.; Wang, J.; Wang, D.; She, L.; Wang, J.; Cai, C. Effects of soil physicochemical properties on aggregate stability along a weathering gradient. Catena 2017, 156, 205–215. [Google Scholar] [CrossRef]
- Yan, T.F.; Kremenetska, Y.O.; He, S.L.; Zhang, B.; Yu, Z.; Hu, Q.; Liang, X.; Fu, M.; Wang, Z. Early and timing restoration will be an effective way to repair the riparian habitat. Authorea 2021. [Google Scholar] [CrossRef]
- Xie, D.B.; Wang, P.; Wang, T.F.; Niu, H.D.; Chu, J.; Lei, Y.K. Plant configuration based on spatial analysis of soil parameters in the dam site of Chushandian Reservoir. North. Hortic. 2020, 11, 91–98, (Abstract in English). [Google Scholar]
- Mori, T.; Wang, S.; Wang, C.; Mo, J.; Zhang, W. Is microbial biomass measurement by the chloroform fumigation extraction method biased by experimental addition of N and P? iFor.-Biogeosci. For. 2021, 14, 408–412. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, B.; Zhu, L.; Yang, Y.; Li, M. Soil and vegetation development along a 10-year restoration chronosequence in tailing dams in the Xiaoqinling gold region of Central China. Catena 2018, 167, 250–256. [Google Scholar] [CrossRef]
- Tiessen, H. Changes in Soil Organic Matter and Phosphorus during Cultivation of Grassland Soils; The University of Saskatchewan: Saskatoon, SK, Canada, 1982. [Google Scholar]
- Wu, Y.; Schoenau, J.J.; Li, F.; Qian, P.; Wang, F.; Malhi, S.S. Soil particle size fractionation with centrifugation method. Chin. J. Appl. Ecol. 2004, 15, 477–481, (Abstract in English). [Google Scholar]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis: Part 1 Physical Mineral Methods, 5.1, Second Edition; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Yang, Z.; Singh, B.R.; Hansen, S. Aggregate associated carbon, nitrogen and sulfur and their ratios in long-term fertilized soils. Soil Tillage Res. 2007, 95, 161–171. [Google Scholar] [CrossRef]
- Hefting, M.; Clément, J.; Dowrick, D.; Cosandey, A.C.; Bernal, S.; Cimpian, C.; Tatur, A.; Burt, T.P.; Pinay, G. Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient. Biogeochemistry 2004, 67, 113–134. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, Z.; Li, T.; Yan, L. Effects of ages of tea plantations on distribution of nitrogen, phosphorus and potassium contents in soil aggregates. Acta Pedol. Sin. 2013, 19, 1393–1402. [Google Scholar]
- Mao, R.; Zhang, X.H.; Meng, H.N. Effect of Suaeda salsa on Soil Aggregate-Associated Organic Carbon and Nitrogen in Tidal Salt Marshes in the Liaohe Delta, China. Wetlands 2014, 34, 189–195. [Google Scholar] [CrossRef]
- Qian, J.; Liu, J.; Wang, P.; Chao, H.; Jing, L. Effects of riparian land use changes on soil aggregates and organic carbon. Ecol. Eng. 2018, 112, 82–88. [Google Scholar] [CrossRef]
- Zhu, K.; Li, W.; Yang, S.; Ran, Y.; Lei, X.; Ma, M.; Wu, S.; Huang, P. Intense wet-dry cycles weakened the carbon sequestration of soil aggregates in the riparian zone. Catena 2022, 212, 106117. [Google Scholar] [CrossRef]
- Sarah, P.; Rodeh, Y. Soil structure variations under manipulations of water and vegetation. J. Arid Environ. 2004, 58, 43–57. [Google Scholar] [CrossRef]
- Zhang, Q.; Shao, M.A.; Jia, X.; Zhang, C. Understory vegetation and drought effects on soil aggregate stability and aggregate-associated carbon on the Loess Plateau in China. Soil Sci. Soc. Am. J. 2018, 82, 106–114. [Google Scholar] [CrossRef]
- Zhao, D.; Xu, M.; Liu, G.; Ma, L.; Zhang, S.; Xiao, T.; Peng, G. Effect of vegetation type on microstructure of soil aggregates on the Loess Plateau, China. Agric. Ecosyst. Environ. 2017, 242, 1–8. [Google Scholar] [CrossRef]
- Puget, P.; Chenu, C.; Balesdent, J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. Eur. J. Soil Sci. 2000, 51, 595–605. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, M.; Ran, Y.; Yi, X.; Wu, S.; Huang, P. Disentangling the effects of edaphic and vegetational properties on soil aggregate stability in riparian zones along a gradient of flooding stress. Geoderma 2021, 385, 114883. [Google Scholar] [CrossRef]
- Ran, Y.; Ma, M.; Liu, Y.; Zhu, K.; Huang, P. Physicochemical determinants in stabilizing soil aggregates along a hydrological stress gradient on reservoir riparian habitats: Implications to soil restoration. Ecol. Eng. 2020, 143, 105664. [Google Scholar] [CrossRef]
- Ahmadi, A.; Neyshabouri, M.R.; Rouhipour, H.; Asadi, H. Fractal dimension of soil aggregates as an index of soil erodibility. J. Hydrol. 2011, 400, 305–311. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, F.; Zhang, M.; Chen, S.; Tan, X.; Liu, M.; Hu, Z. The effects of the reverse seasonal flooding on soil texture within the hydro-fluctuation belt in the Three Gorges reservoir, China. J. Soils Sediments 2018, 18, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability—A literature analysis. Soil Biol. Biochem. 2009, 41, 1–12. [Google Scholar] [CrossRef]
- Wang, S.; Li, T.; Zheng, Z. Effect of tea plantation age on the distribution of soil organic carbon and nutrient within micro-aggregates in the hilly region of western Sichuan, China. Ecol. Eng. 2016, 90, 113–119. [Google Scholar] [CrossRef]
- Ran, Y.; Ma, M.; Liu, Y.; Zhou, Y.; Sun, X.; Wu, S.; Huang, P. Hydrological stress regimes regulate effects of binding agents on soil aggregate stability in the riparian zones. Catena 2020, 196, 104815. [Google Scholar] [CrossRef]
- Kumari, M.; Chakraborty, D.; Gathala, M.K.; Pathak, H.; Dwivedi, B.S.; Tomar, R.K.; Garg, R.N.; Singh, R.; Ladha, J.K. Soil aggregation and associated organic carbon fractions as affected by tillage in a rice–wheat rotation in North India. Soil Sci. Soc. Am. J. 2011, 75, 560–567. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Douelle, A.; Kwaw-Mensah, D. Soil microaggregate and macroaggregate decay over time and soil carbon change as influenced by different tillage systems. J. Soil Water Conserv. 2014, 69, 574–580. [Google Scholar] [CrossRef] [Green Version]
- Dorji, T.; Field, D.J.; Odeh, I.O. Soil aggregate stability and aggregate-associated organic carbon under different land use or land cover types. Soil Use Manag. 2020, 36, 308–319. [Google Scholar] [CrossRef]
- Hu, R.; Ma, H.; Luo, C.; Hu, T. Forest soil organic carbon fraction and its measure methods. Chin. J. Soil Sci. 2010, 41, 1018–1024, (Abstract in English). [Google Scholar]
- Humberto, B.C.; Rattan, L. Mechanisms of Carbon Sequestration in Soil Aggregates. Crit. Rev. Plant Sci. 2004, 23, 481–504. [Google Scholar]
- Zhao, L.; Sun, Y.; Zhang, X.; Yang, X.; Drury, C.F. Soil organic carbon in clay and silt sized particles in Chinese mollisols: Relationship to the predicted capacity. Geoderma 2006, 132, 315–323. [Google Scholar] [CrossRef]
- Krause, L.; Rodionov, A.; Schweizer, S.A.; Siebers, N.; Lehndorff, E.; Klumpp, E.; Amelung, W. Microaggregate stability and storage of organic carbon is affected by clay content in arable Luvisols. Soil Tillage Res. 2018, 182, 123–129. [Google Scholar] [CrossRef]
- Mander, U.; Tournebize, J. Riparian Buffer Zones: Functions and Dimensioning. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2015; p. 24. ISBN 978-0-12-409547-2. [Google Scholar]
- Enanga, E.M.; Shivoga, W.A.; Maina-Gichaba, C.; Creed, I.F. Observing changes in riparian buffer strip soil properties related to land use activities in the River Njoro Watershed, Kenya. Water Air Soil Pollut. 2011, 218, 587–601. [Google Scholar] [CrossRef]
- Vidon, P.; Allan, C.; Burns, D.; Duval, T.P.; Gurwick, N.; Inamdar, S.; Lowrance, R.; Okay, J.; Scott, D.; Sebestyen, S. Hot spots and hot moments in riparian zones: Potential for improved water quality management. J. Am. Water Resour. Assoc. 2010, 46, 278–298. [Google Scholar] [CrossRef]
- Tan, W.F.; Zhang, R.; Cao, H.; Huang, C.Q.; Yang, Q.K. Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China. Catena 2014, 121, 22–30. [Google Scholar] [CrossRef]
- Zhang, S.J.; He, X.B.; Bao, Y.H.; Tang, Q. Change characteristics of soil aggregate at different water level in the water-fluctuation zone of the Three Gorges Reservoir. Res. Soil Water Conserv. 2021, 28, 25–30. [Google Scholar]
- Zhang, Y.; Liu, F.; Zhong, S. Research progress on soil inorganic carbon. Hubei Agric. Sci. 2021, 60, 5–9+14, (Abstract in English). [Google Scholar]
- Campbell, D.A.; Cole, C.A.; Brooks, R.P. A comparison of created and natural wetlands in Pennsylvania, USA. Wetl. Ecol. Manag. 2002, 10, 41–49. [Google Scholar] [CrossRef]
- Wolf, K.L.; Ahn, C.; Noe, G.B. Development of Soil Properties and Nitrogen Cycling in Created Wetlands. Wetlands 2011, 31, 699–712. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, S.; Hu, R.; Li, Y. Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides. Soil Tillage Res. 2017, 167, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Paustian, K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biol. Biochem. 2014, 68, A4–A9. [Google Scholar] [CrossRef]
- Crawford, J.W.; Deacon, L.; Grinev, D.; Harris, J.A.; Ritz, K.; Singh, B.K.; Young, I. Microbial diversity affects self-organization of the soil–microbe system with consequences for function. J. R. Soc. Interface 2012, 9, 1302–1310. [Google Scholar] [CrossRef] [Green Version]
- Hemkemeyer, M.; Pronk, G.J.; Heister, K.; Kögel-Knabner, I.; Martens, R.; Tebbe, C.C. Artificial soil studies reveal domain-specific preferences of microorganisms for the colonisation of different soil minerals and particle size fractions. FEMS Microbiol. Ecol. 2014, 90, 770–782. [Google Scholar] [CrossRef]
- Qin, Y.; Xin, Z.; Wang, D.; Xiao, Y. Soil organic carbon storage and its influencing factors in the riparian woodlands of a Chinese karst area. Catena 2017, 153, 21–29. [Google Scholar] [CrossRef]
- Wu, H.P.; Chen, J.; Xu, J.J.; Zeng, G.M.; Sang, L.H.; Liu, Q.; Yin, Z.J.; Dai, J.; Yin, D.C.; Liang, J.; et al. Effects of dam construction on biodiversity: A review. J. Clean. Prod. 2019, 221, 480–489. [Google Scholar] [CrossRef]
Cropland | Grassland | Woodland | |||||||
---|---|---|---|---|---|---|---|---|---|
C0 | C2 | C20 | G0 | G2 | G20 | W0 | W2 | W20 | |
pH | 6.35 ± 0.19 a | 5.92 ± 0.18 ab | 5.48 ± 0.37 ab | 5.83 ± 0.07 ab | 5.18 ± 0.10 b | 5.28 ± 0.09 ab | 6.15 ± 0.10 ab | 5.86 ± 0.08 ab | 6.15 ± 0.37 ab |
BD | NA | 1.41 ± 0.12 a | 1.32 ± 0.02 a | NA | 1.35 ± 0.04 a | 1.36 ± 0.08 a | NA | 1.18 ± 0.10 ab | 1.02 ± 0.04 b |
STC | 9.04 ± 0.91 b | 10.18 ± 1.30 b | 8.46 ± 0.34 b | 8.12 ± 0.32 b | 7.25 ± 0.35 b | 5.63 ± 0.19 b | 8.65 ± 0.89 b | 29.08 ± 4.01 a | 9.60 ± 1.38 b |
STN | 1.03 ± 0.13 b | 1.02 ± 0.08 b | 0.90 ± 0.05 b | 0.92 ± 0.02 b | 0.80 ± 0.05 b | 0.64 ± 0.03 b | 0.89 ± 0.04 b | 2.13 ± 0.28 a | 0.91 ± 0.09 b |
STP | 0.27 ± 0.09 a | 0.32 ± 0.07 a | 0.42 ± 0.02 a | 0.42 ± 0.00 a | 0.38 ± 0.023 a | 0.23 ± 0.08 a | 0.26 ± 0.01 a | 0.28 ± 0.01 a | 0.45 ± 0.20 a |
C/N | 8.84 ± 0.27 b | 9.88 ± 0.70 ab | 9.46 ± 0.39 ab | 8.85 ± 0.21 b | 9.05 ± 0.38 b | 8.81 ± 0.12 b | 9.72 ± 0.54 ab | 12.18 ± 0.30 a | 10.57 ± 1.12 ab |
DOC | 17.23 ± 1.28 b | 17.16 ± 0.73 b | 16.93 ± 1.73 b | 14.58 ± 0.81 b | 15.12 ± 0.17 b | 11.84 ± 0.69 b | 13.95 ± 0.04 b | 17.79 ± 1.06 ab | 23.38 ± 2.08 a |
MBC | 180.29 ± 9.64 b | 145.04 ± 13.11 b | 186.10 ± 13.12 b | 146.19 ± 2.52 b | 137.82 ± 7.49 b | 148.58 ± 6.40 b | 146.80 ± 1.30 b | 152.88 ± 13.82 b | 418.89 ± 17.29 a |
MBN | 18.75 ± 1.78 b | 19.85 ± 1.90 b | 19.36 ± 0.56 b | 23.67 ± 3.83 b | 17.63 ± 0.39 b | 21.79 ± 2.20 b | 20.42 ± 3.33 b | 24.83 ± 0.36 b | 35.99 ± 1.07 a |
Sand (53–2000 μm) | Silt (2–53 μm) | Clay (<2 μm) | MWD (μm) | OCP (g/m2) | |
---|---|---|---|---|---|
C0 | 21.39 ± 9.60 Babc | 61.24 ± 9.64 Aab | 17.36 ± 6.84 Ba | 236.53 ± 96.54 bc | - |
C2 | 13.70 ± 3.79 Babc | 66.98 ± 4.67 Aa | 19.31 ± 8.23 Ba | 159.21 ± 40.00 c | 3226.31 ± 453.67 b |
C20 | 23.07 ± 1.77 Babc | 58.65 ± 2.67 Aab | 18.28 ± 1.54 Ba | 253.01 ± 17.55 bc | 2577.61 ± 291.02 bc |
G0 | 9.32 ± 2.10 Bbc | 68.46 ± 4.28 Aa | 22.22 ± 2.58 Ba | 114.58 ± 20.48 c | - |
G2 | 7.57 ± 1.28 Cc | 68.68 ± 2.93 Aa | 23.75 ± 2.89 Ba | 96.74 ± 12.99 c | 2382.44 ± 283.78 bc |
G20 | 7.70 ± 2.79 Cc | 73.70 ± 5.33 Aa | 18.60 ± 7.99 Ba | 99.44 ± 30.01 c | 2012.17 ± 155.91 bc |
W0 | 55.00 ± 12.03 Aa | 26.54 ± 12.05 Ac | 18.46 ± 1.46 Ba | 572.00 ± 120.24 a | - |
W2 | 46.84 ± 16.72 Aabc | 39.31 ± 15.56 Abc | 13.86 ± 5.90 Ba | 491.65 ± 167.60 ab | 1685.19 ± 149.89 c |
W20 | 51.49 ± 7.49 Aab | 38.41 ± 6.65 Abc | 10.10 ± 0.97 Ba | 539.14 ± 75.11 a | 4468.07 ± 641.82 a |
Aggregate Properties | Linear Regression Model with Partial Correlation Coefficient | R2 |
---|---|---|
Sand | 21.120 − 15.751TN1 (21.15) + 5.102TC2 (49.27) − 3.384TC3 (16.04) + 21.925TN3 (7.76) + 44.428STP (5.98) + 1.135DOC (1.87) − 0.178MBC (10.90) | 0.8618 |
Silt | 37.597 + 13.974TN1 (10.84) − 4.359TC2 (25.26) + 0.903TC3 (2.87) − 25.209STP (1.91) + 0.169MBC (6.51) | 0.7044 |
Clay | 45.08 − 9.665TN2 (10.79) + 0.873TC3 (2.78) − 13.028TN3 (5.83) − 0.482STC (4.68) − 15.571STP (1.86) | 0.4556 |
MWD | 230.063 − 157.679TN1 (21.25) + 51.162TC2 (49.70) − 34.269TC3 (16.49) + 222.819TN3 (8.04) + 447.551STP (6.09) + 11.472DOC (1.91) − 1.776MBC (10.90) | 0.8632 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, T.; Kremenetska, Y.; Zhang, B.; He, S.; Wang, X.; Yu, Z.; Hu, Q.; Liang, X.; Fu, M.; Wang, Z. The Relationship between Soil Particle Size Fractions, Associated Carbon Distribution and Physicochemical Properties of Historical Land-Use Types in Newly Formed Reservoir Buffer Strips. Sustainability 2022, 14, 8448. https://doi.org/10.3390/su14148448
Yan T, Kremenetska Y, Zhang B, He S, Wang X, Yu Z, Hu Q, Liang X, Fu M, Wang Z. The Relationship between Soil Particle Size Fractions, Associated Carbon Distribution and Physicochemical Properties of Historical Land-Use Types in Newly Formed Reservoir Buffer Strips. Sustainability. 2022; 14(14):8448. https://doi.org/10.3390/su14148448
Chicago/Turabian StyleYan, Tengfei, Yevheniia Kremenetska, Biyang Zhang, Songlin He, Xinfa Wang, Zelong Yu, Qiang Hu, Xiangpeng Liang, Manyi Fu, and Zhen Wang. 2022. "The Relationship between Soil Particle Size Fractions, Associated Carbon Distribution and Physicochemical Properties of Historical Land-Use Types in Newly Formed Reservoir Buffer Strips" Sustainability 14, no. 14: 8448. https://doi.org/10.3390/su14148448