Technological Innovation Efficiency in China: Dynamic Evaluation and Driving Factors
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Research Methods
3.2. Index Selection and Data Sources
4. Results
4.1. Calculation Results of TIE
4.2. Analysis of Time Dimension Evolution Based on Kernel Density Estimation
4.3. Empirical Analysis of the Driving Factors of TIE
5. Discussion
6. Conclusions
6.1. For Government
6.2. For Practice
6.3. For Society
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Category | Variable | Meaning | Calculation Method and Data Resources | Units |
---|---|---|---|---|
Input variables | Equ | Talent investment | Full-time equivalent of R&D personnel of industrial enterprises above designated size a | year/person |
Ifu | Capital investment | Funds for R&D expenditure a | 10,000 yuan | |
Energy | Energy input | Total energy consumption c | standard coal thermal value (kJ/kg) | |
Output variables | Paper | Science and technology output | Published scientific and technological papers (including papers published abroad) a | piece |
Patent | Number of patent applications a | piece | ||
Pro | Economic output | Sales revenue of new products of industrial enterprises above designated size a | 10,000 yuan | |
Pollu | Unexpected output | Environmental pollution index d | tun | |
Environmental variables | Pgdp | Level of economic development | The logarithm of real GDP per capital b | CNY/person |
Rely | Degree of regional openness | The ratio of total imports and exports to regional GDP b | % | |
Compet | Market competition intensity | The number of industrial enterprises above the designated size a | UNITS | |
Tech | Enterprise entrepreneurship level | The proportion of high-tech enterprises in industrial enterprises above designated size b | % | |
Internet | Level of information infrastructure | Internet penetration rate b | % | |
Fund | Government funds | The ratio of government R&D expenditure to regional R&D expenditure b | % |
Year | DMU | Score | Year | DMU | Score | Year | DMU | Score | Year | DMU | Score | Year | DMU | Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | Anhui | 0.869 | 2019 | Guizhou | 0.808 | 2019 | Hunan | 0.832 | 2019 | Ningxia | 0.801 | 2019 | Sichuan | 0.86 |
2018 | Anhui | 0.886 | 2018 | Guizhou | 0.816 | 2018 | Hunan | 0.852 | 2018 | Ningxia | 0.802 | 2018 | Sichuan | 0.854 |
2017 | Anhui | 0.896 | 2017 | Guizhou | 0.818 | 2017 | Hunan | 0.866 | 2017 | Ningxia | 0.776 | 2017 | Sichuan | 0.866 |
2016 | Anhui | 0.905 | 2016 | Guizhou | 0.827 | 2016 | Hunan | 0.87 | 2016 | Ningxia | 0.722 | 2016 | Sichuan | 0.861 |
2015 | Anhui | 0.884 | 2015 | Guizhou | 0.796 | 2015 | Hunan | 0.862 | 2015 | Ningxia | 0.686 | 2015 | Sichuan | 0.863 |
2014 | Anhui | 0.886 | 2014 | Guizhou | 0.811 | 2014 | Hunan | 0.857 | 2014 | Ningxia | 0.669 | 2014 | Sichuan | 0.857 |
2013 | Anhui | 0.875 | 2013 | Guizhou | 0.801 | 2013 | Hunan | 0.851 | 2013 | Ningxia | 0.734 | 2013 | Sichuan | 0.853 |
2012 | Anhui | 0.866 | 2012 | Guizhou | 0.808 | 2012 | Hunan | 0.839 | 2012 | Ningxia | 0.691 | 2012 | Sichuan | 0.848 |
2011 | Anhui | 0.874 | 2011 | Guizhou | 0.804 | 2011 | Hunan | 0.831 | 2011 | Ningxia | 0.688 | 2011 | Sichuan | 0.847 |
2019 | Beijing | 1.01 | 2019 | Hainan | 1.005 | 2019 | Jilin | 1.01 | 2019 | Qinghai | 0.822 | 2019 | Tianjin | 0.903 |
2018 | Beijing | 1.001 | 2018 | Hainan | 0.955 | 2018 | Jilin | 0.944 | 2018 | Qinghai | 1.002 | 2018 | Tianjin | 0.898 |
2017 | Beijing | 1 | 2017 | Hainan | 0.987 | 2017 | Jilin | 0.969 | 2017 | Qinghai | 0.858 | 2017 | Tianjin | 0.9 |
2016 | Beijing | 1.003 | 2016 | Hainan | 0.924 | 2016 | Jilin | 0.951 | 2016 | Qinghai | 0.763 | 2016 | Tianjin | 0.906 |
2015 | Beijing | 1 | 2015 | Hainan | 0.934 | 2015 | Jilin | 0.916 | 2015 | Qinghai | 0.753 | 2015 | Tianjin | 0.907 |
2014 | Beijing | 1.002 | 2014 | Hainan | 0.94 | 2014 | Jilin | 0.922 | 2014 | Qinghai | 0.7 | 2014 | Tianjin | 0.912 |
2013 | Beijing | 0.989 | 2013 | Hainan | 0.979 | 2013 | Jilin | 0.861 | 2013 | Qinghai | 0.69 | 2013 | Tianjin | 0.909 |
2012 | Beijing | 0.992 | 2012 | Hainan | 0.938 | 2012 | Jilin | 0.952 | 2012 | Qinghai | 0.666 | 2012 | Tianjin | 0.897 |
2011 | Beijing | 1.001 | 2011 | Hainan | 1.015 | 2011 | Jilin | 0.972 | 2011 | Qinghai | 0.683 | 2011 | Tianjin | 0.912 |
2019 | Fujian | 0.835 | 2019 | Hebei | 0.834 | 2019 | Jiangsu | 0.889 | 2019 | Shandong | 0.849 | 2019 | Xinjiang | 0.912 |
2018 | Fujian | 0.841 | 2018 | Hebei | 0.825 | 2018 | Jiangsu | 0.888 | 2018 | Shandong | 0.846 | 2018 | Xinjiang | 0.852 |
2017 | Fujian | 0.847 | 2017 | Hebei | 0.815 | 2017 | Jiangsu | 0.889 | 2017 | Shandong | 0.853 | 2017 | Xinjiang | 0.847 |
2016 | Fujian | 0.846 | 2016 | Hebei | 0.81 | 2016 | Jiangsu | 0.893 | 2016 | Shandong | 0.851 | 2016 | Xinjiang | 0.868 |
2015 | Fujian | 0.846 | 2015 | Hebei | 0.801 | 2015 | Jiangsu | 0.891 | 2015 | Shandong | 0.848 | 2015 | Xinjiang | 0.869 |
2014 | Fujian | 0.837 | 2014 | Hebei | 0.799 | 2014 | Jiangsu | 0.893 | 2014 | Shandong | 0.848 | 2014 | Xinjiang | 0.868 |
2013 | Fujian | 0.836 | 2013 | Hebei | 0.787 | 2013 | Jiangsu | 0.884 | 2013 | Shandong | 0.857 | 2013 | Xinjiang | 0.862 |
2012 | Fujian | 0.838 | 2012 | Hebei | 0.787 | 2012 | Jiangsu | 0.885 | 2012 | Shandong | 0.852 | 2012 | Xinjiang | 0.849 |
2011 | Fujian | 0.858 | 2011 | Hebei | 0.775 | 2011 | Jiangsu | 0.876 | 2011 | Shandong | 0.845 | 2011 | Xinjiang | 0.84 |
2019 | Gansu | 0.889 | 2019 | Henan | 0.841 | 2019 | Jiangxi | 0.874 | 2019 | Shanxi | 0.842 | 2019 | Yunnan | 0.817 |
2018 | Gansu | 0.844 | 2018 | Henan | 0.857 | 2018 | Jiangxi | 0.868 | 2018 | Shanxi | 0.854 | 2018 | Yunnan | 0.824 |
2017 | Gansu | 0.849 | 2017 | Henan | 0.857 | 2017 | Jiangxi | 0.875 | 2017 | Shanxi | 0.84 | 2017 | Yunnan | 0.824 |
2016 | Gansu | 0.841 | 2016 | Henan | 0.852 | 2016 | Jiangxi | 0.87 | 2016 | Shanxi | 0.837 | 2016 | Yunnan | 0.82 |
2015 | Gansu | 0.89 | 2015 | Henan | 0.849 | 2015 | Jiangxi | 0.847 | 2015 | Shanxi | 0.797 | 2015 | Yunnan | 0.819 |
2014 | Gansu | 0.899 | 2014 | Henan | 0.833 | 2014 | Jiangxi | 0.834 | 2014 | Shanxi | 0.783 | 2014 | Yunnan | 0.826 |
2013 | Gansu | 0.892 | 2013 | Henan | 0.841 | 2013 | Jiangxi | 0.834 | 2013 | Shanxi | 0.794 | 2013 | Yunnan | 0.811 |
2012 | Gansu | 0.893 | 2012 | Henan | 0.805 | 2012 | Jiangxi | 0.811 | 2012 | Shanxi | 0.795 | 2012 | Yunnan | 0.826 |
2011 | Gansu | 0.893 | 2011 | Henan | 0.806 | 2011 | Jiangxi | 0.773 | 2011 | Shanxi | 0.792 | 2011 | Yunnan | 0.827 |
2019 | Guangdong | 0.904 | 2019 | Heilongjiang | 0.832 | 2019 | Liaoning | 0.878 | 2019 | Shaanxi | 0.878 | 2019 | Zhejiang | 0.892 |
2018 | Guangdong | 0.896 | 2018 | Heilongjiang | 0.824 | 2018 | Liaoning | 0.882 | 2018 | Shaanxi | 0.864 | 2018 | Zhejiang | 0.892 |
2017 | Guangdong | 0.901 | 2017 | Heilongjiang | 0.818 | 2017 | Liaoning | 0.874 | 2017 | Shaanxi | 0.859 | 2017 | Zhejiang | 0.894 |
2016 | Guangdong | 0.896 | 2016 | Heilongjiang | 0.789 | 2016 | Liaoning | 0.882 | 2016 | Shaanxi | 0.841 | 2016 | Zhejiang | 0.9 |
2015 | Guangdong | 0.881 | 2015 | Heilongjiang | 0.78 | 2015 | Liaoning | 0.861 | 2015 | Shaanxi | 0.831 | 2015 | Zhejiang | 0.894 |
2014 | Guangdong | 0.88 | 2014 | Heilongjiang | 0.778 | 2014 | Liaoning | 0.871 | 2014 | Shaanxi | 0.84 | 2014 | Zhejiang | 0.896 |
2013 | Guangdong | 0.88 | 2013 | Heilongjiang | 0.788 | 2013 | Liaoning | 0.871 | 2013 | Shaanxi | 0.839 | 2013 | Zhejiang | 0.877 |
2012 | Guangdong | 0.859 | 2012 | Heilongjiang | 0.778 | 2012 | Liaoning | 0.853 | 2012 | Shaanxi | 0.834 | 2012 | Zhejiang | 0.873 |
2011 | Guangdong | 0.854 | 2011 | Heilongjiang | 0.771 | 2011 | Liaoning | 0.845 | 2011 | Shaanxi | 0.846 | 2011 | Zhejiang | 0.873 |
2019 | Guangxi | 0.899 | 2019 | Hubei | 0.898 | 2019 | In. Mong. | 0.77 | 2019 | Shanghai | 0.954 | 2019 | Chongqing | 0.881 |
2018 | Guangxi | 0.911 | 2018 | Hubei | 0.907 | 2018 | In. Mong | 0.774 | 2018 | Shanghai | 0.948 | 2018 | Chongqing | 0.878 |
2017 | Guangxi | 0.929 | 2017 | Hubei | 0.9 | 2017 | In. Mong | 0.76 | 2017 | Shanghai | 0.955 | 2017 | Chongqing | 0.893 |
2016 | Guangxi | 0.917 | 2016 | Hubei | 0.895 | 2016 | In. Mong | 0.733 | 2016 | Shanghai | 0.953 | 2016 | Chongqing | 0.907 |
2015 | Guangxi | 0.91 | 2015 | Hubei | 0.891 | 2015 | In. Mong | 0.708 | 2015 | Shanghai | 0.944 | 2015 | Chongqing | 0.898 |
2014 | Guangxi | 0.878 | 2014 | Hubei | 0.886 | 2014 | In. Mong | 0.685 | 2014 | Shanghai | 1 | 2014 | Chongqing | 0.879 |
2013 | Guangxi | 0.886 | 2013 | Hubei | 0.884 | 2013 | In. Mong | 0.728 | 2013 | Shanghai | 0.953 | 2013 | Chongqing | 0.882 |
2012 | Guangxi | 0.859 | 2012 | Hubei | 0.869 | 2012 | In. Mong | 0.711 | 2012 | Shanghai | 0.958 | 2012 | Chongqing | 0.864 |
2011 | Guangxi | 0.845 | 2011 | Hubei | 0.864 | 2011 | In. Mong | 0.705 | 2011 | Shanghai | 0.96 | 2011 | Chongqing | 0.885 |
References
- Chen, Q.; Lin, S.; Zhang, X. The effect of China’s incentive policies for technological innovation: Incentivising quantity or quality. China Ind. Econ. 2020, 4, 79–96. [Google Scholar]
- Trzeciak, M.; Kopec, T.P.; Kwilinski, A. Constructs of Project Programme Management Supporting Open Innovation at the Strategic Level of the Organisation. J. Open Innov. Technol. Mark. Complex. 2022, 8, 58. [Google Scholar] [CrossRef]
- Shkarlet, S.; Kholiavko, N.; Dubyna, M. Information economy: Management of educational, innovation, and research determinants. Mark. Manag. Innov. 2019, 3, 126–141. [Google Scholar] [CrossRef]
- Fiľa, M.; Levicky, M.; Mura, L.; Maros, M.; Korenkova, M. Innovations for Business Management: Motivation and Barriers. Mark. Manag. Innov. 2020, 4, 266–278. [Google Scholar] [CrossRef]
- Vasylieva, T.A.; Kasyanenko, V.O. Integral assessment of innovation potential of ukraine’s national economy: A scientific methodical approach and practical calculations. Actual Probl. Econ. 2013, 144, 50–59. [Google Scholar]
- National Bureau of Statistics of China. 2022. Available online: http://www.stats.gov.cn/english/ (accessed on 1 March 2022).
- Basu, P.; Getachew, Y. Redistributive innovation policy, inequality, and efficiency. J. Public Econ. Theory 2019, 22, 532–554. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Cui, J.B. Low-carbon cities and firms’ green technological innovation. China Ind. Econ. 2020, 12, 178–196. [Google Scholar]
- Zhang, L.; Huang, L. Research on Proactive GTIE Evaluation of Industrial Enterprises: Analysis Based on Improved Three Stage SBM-Dea Model. Stat. Inf. Forum 2020, 35, 50–61. [Google Scholar]
- Chygryn, O.; Lyulyov, O.; Pimonenko, T.; Mlaabdal, S. Efficiency of oil-production: The role of institutional factors. Eng. Manag. Prod. Serv. 2020, 12, 92–104. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, J.-F.; Pei, R.-M.; Yi, B.-W.; Yang, G.-L. Assessing the technological innovation efficiency of China’s high-tech industries with a two-stage network DEA approach. Socio-Econ. Plan. Sci. 2020, 71, 100810. [Google Scholar] [CrossRef]
- Bi, K.; Huang, P.; Wang, X. Innovation performance and influencing factors of low-carbon technological innovation under the global value chain: A case of Chinese manufacturing industry. Technol. Forecast. Soc. Change 2016, 111, 275–284. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Wang, C.; Wang, Y.; Coffey, V. An evaluation of the impact of environmental regulation on the efficiency of technology innovation using the combined DEA model: A case study of Xi’an, China. Sustain. Cities Soc. 2018, 42, 355–369. [Google Scholar] [CrossRef]
- Cruz-Cázares, C.; Bayona-Sáez, C.; Garcίa-Marco, T. You can’t manage right what you can’t measure well: Technological innovation efficiency. Res. Policy 2013, 42, 1239–1250. [Google Scholar] [CrossRef]
- Zuo, Z.; Guo, H.; Li, Y.; Cheng, J. A two-stage DEA evaluation of Chinese mining industry technological innovation efficiency and eco-efficiency. Environ. Impact Assess. Rev. 2022, 94, 106762. [Google Scholar] [CrossRef]
- Albort-Morant, G.; Leal-Millán, A.; Cepeda-Carrión, G. The antecedents of green innovation performance: A model of learning and capabilities. J. Bus. Res. 2016, 69, 4912–4917. [Google Scholar] [CrossRef]
- Aghion, P.; Askenazy, P.; Berman, N.; Cette, G.; Eymard, L. Credit constraints and the cyclicality of r&d investment: Evidence from france. J. Eur. Econ. Assoc. 2012, 10, 1001–1024. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, H. Local-neighborhood effect of green technology of environmental regulation. China Ind. Econ. 2019, 1, 100–118. [Google Scholar]
- Sharma, S.; Thomas, V.J. Inter-country R&D efficiency analysis: An application of data envelopment analysis. Scientometrics 2008, 76, 483–501. [Google Scholar] [CrossRef]
- Qian, L.; Wang, W.; Xiao, R. Analysis on the Regional Differences and Loss Sources of Green Innovation Efficiency of Chinese Enterprises Under Technology Heterogeneity. Sci. Res. Manag. 2021, 11, 1–16. [Google Scholar]
- Liu, Y.Q.; Quan, Q.; Zhu, J.; Wang, F. Green technology innovation, industrial agglomeration and ecological efficiency: A case study of urban agglomerations on Yangtze River Economic Belt. Resour. Environ. Yangtze Basin 2018, 27, 2395–2406. [Google Scholar]
- Shin, J.; Kim, C.; Yang, H. Does Reduction of Material and Energy Consumption Affect to Innovation Efficiency? The Case of Manufacturing Industry in South Korea. Energies 2019, 12, 1178. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.H.; Deng, Q. Impact of Technology Transfer on Green Innovation Efficiency in High-tech Manufacturing Industry. Sci. Technol. Prog. Countermeas. 2021, 38, 46–52. [Google Scholar]
- Wang, H.; Yang, T. Research on Green Technology Innovation Efficiency and Its Influencing Factors of Biomass Power Generation Enterprises: Test Based on Bootstrap-DEA Method. Sci. Technol. Manag. Res. 2021, 41, 191–198. [Google Scholar]
- Vlontzos, G.; Pardalos, P. Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks. Renew. Sustain. Energy Rev. 2017, 76, 155–162. [Google Scholar] [CrossRef]
- Amirteimoori, A.; Emrouznejad, A.; Khoshandam, L. Classifying flexible measures in data envelopment analysis: A slack-based measure. Measurement 2013, 46, 4100–4107. [Google Scholar] [CrossRef]
- Asmild, M.; Paradi, J.C.; Aggarwall, V.; Schaffnit, C. Combining DEA Window Analysis with the Malmquist Index Approach in a Study of the Canadian Banking Industry. J. Prod. Anal. 2004, 21, 67–89. [Google Scholar] [CrossRef]
- Gu, H.; Yue, J. The Relationship between Bank Efficiency and Stock Returns: Evidence from Chinese Listed Banks’. World J. Soc. Sci. 2011, 1, 95–106. [Google Scholar]
- Lin, S.; Sun, J.; Wang, S. Dynamic evaluation of the technological innovation efficiency of China’s industrial enterprises. Sci. Public Policy 2018, 46, 232–243. [Google Scholar] [CrossRef]
- Czyżewski, B.; Polcyn, J.; Brelik, A. Political orientations, economic policies, and environmental quality: Multi-valued treatment effects analysis with spatial spillovers in country districts of Poland. Environ. Sci. Policy 2021, 128, 1–13. [Google Scholar] [CrossRef]
- Kuzmenko, O.; Vasylieva, T.; Vojtovič, S.; Chygryn, O.; Snieška, V. Why do regions differ in vulnerability to COVID-19? Spatial nonlinear modeling of social and economic patterns. Econ. Sociol. 2020, 13, 318–340. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Liu, H. Research on Innovation Performance and Its Affecting Factors of Industrial Enterprises in China—Empirical Analysis Based on the DEA-Tobit Two-step Method. J. Shanxi Univ. Financ. Econ. 2010, 32, 68–74. [Google Scholar]
- Tobin, J. Estimation of relationships for limited dependent variables. Econom. J. Econom. Soc. 1958, 26, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Broekel, T.; Rogge, N.; Brenner, T. The innovation efficiency of German regions—A shared-input DEA approach. Rev. Reg. Res. 2017, 38, 77–109. [Google Scholar] [CrossRef] [Green Version]
- Bound, J.; Cummins, C.; Griliches, Z.; Hall, B.H.; Jaffe, A.B. Who does R&D and who patents? (No. w0908). In R&D, Patents, and Productivity; University of Chicago Press: Chicago, IL, USA, 1982; pp. 21–54. [Google Scholar]
- Yang, S.h.; Wu, T.; Li, Z. Study on Spatio-Temporal Differentiation and Influencing Factors of Green Innovation Efficiency in Yangtze River Economic Belt. Macroecon. Res. 2018, 2006, 107–117. [Google Scholar]
- Li, X.; Li, N.; Bai, J.H.; Xie, Z.Q. Study on the R&D innovation efficiency of High-tech industry in China. China Soft Sci. 2011, 2, 52–61. [Google Scholar]
- Tkachenko, V.; Kwilinski, A.; Korystin, O.; Svyrydiuk, N.; Tkachenko, I. Assessment of information technologies influence on financial security of economy. J. Secur. Sustain. Issues 2019, 8, 375–385. [Google Scholar] [CrossRef]
- Tiutiunyk, I.V.; Zolkover, A.O.; Lyeonov, S.V.; Ryabushka, L.B. The impact of economic shadowing on social development: Challenges for macroeconomic stability. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2022, 1, 183–191. [Google Scholar] [CrossRef]
- Kostiukevych, R.; Mishchuk, H.; Zhidebekkyzy, A.; Nakonieczny, J.; Akimov, O. The impact of European integration processes on the investment potential and institutional maturity of rural communities. Econ. Sociol. 2020, 13, 46–63. [Google Scholar] [CrossRef]
- Kendiukhov, I.; Tvaronavičienė, M. Managing innovations in sustainable economic growth. Mark. Manag. Innov. 2017, 3, 33–42. [Google Scholar] [CrossRef]
- Kharazishvili, Y.; Kwilinski, A.; Sukhodolia, O.; Dzwigol, H.; Bobro, D.; Kotowicz, J. The Systemic Approach for Estimating and Strategizing Energy Security: The Case of Ukraine. Energies 2021, 14, 2126. [Google Scholar] [CrossRef]
- Kharazishvili, Y.; Kwilinski, A.; Grishnova, O.; Dzwigol, H. Social Safety of Society for Developing Countries to Meet Sustainable Development Standards: Indicators, Level, Strategic Benchmarks (with Calculations Based on the Case Study of Ukraine). Sustainability 2020, 12, 8953. [Google Scholar] [CrossRef]
- Dalevska, N.; Khobta, V.; Kwilinski, A.; Kravchenko, S. A model for estimating social and economic indicators of sustainable development. Entrep. Sustain. Issues 2019, 6, 1839–1860. [Google Scholar] [CrossRef]
- Banytė, J.; Šalčiuvienė, L.; Dovalienė, A.; Piligrimienė, Ž.; Sroka, W. Sustainable Consumption Behavior at Home and in the Workplace: Avenues for Innovative Solutions. Sustainability 2020, 12, 6564. [Google Scholar] [CrossRef]
- Chygryn, O.; Krasniak, V. Theoretical and applied aspects of the development of environmental investment in Ukraine. Mark. Manag. Innov. 2015, 3, 226–234. [Google Scholar]
- Hashimoto, A.; Haneda, S. Measuring the change in R&D efficiency of the Japanese pharmaceutical industry. Res. Policy 2008, 37, 1829–1836. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.-K.; Li, G.-P.; Xi, Q.-M. Knowledge Structure, City Heterogeneity and Innovation Growth. Econ. Manag. 2021, 5, 60–74. [Google Scholar]
- Diaz-Balteiro, L.; Herruzo, A.C.; Martinez-Nuñez, M.; Gonzalez-Pachon, J. An analysis of productive efficiency and innovation activity using DEA: An application to Spain’s wood-based industry. For. Policy Econ. 2006, 8, 762–773. [Google Scholar] [CrossRef] [Green Version]
- Jianzhong, X.; Yanan, Z. Research on the Efficiency of Regional Low Carbon Innovation Network Based on J-SBM Three-stage DEA Model. Manag. Rev. 2021, 33, 97. [Google Scholar]
- Zhao, W.; Yang, H. Efficiency Evaluation of Western Regional Innovation Network Based on DEA. Sci. Res. Manag. 2016, 37, 393–400. [Google Scholar]
- Dai, X. The Puzzle of R&D Boom and Productivity Slowdown in China: The Role of Resource Misallocation. World Econ. 2021, 44, 86–109. [Google Scholar]
Variable | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
Score | 0.860 | 0.067 | 0.683 | 1.010 |
PGDP | 47,617.14 | 23,146.84 | 18,951.46 | 132,494.2 |
Rely | 0.266 | 0.273 | 0.014 | 1.269 |
Compet | 8.825 | 1.195 | 5.820 | 10.794 |
Tech | 0.074 | 0.044 | 0.013 | 0.250 |
Internet | 0.505 | 0.124 | 0.248 | 0.780 |
Fund | 0.240 | 0.135 | 0.070 | 0.572 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Whole Country | Eastern Region | Central Region | Western Region | |
PGDP | −0.005 (−0.30) | −0.017 (−1.02) | −0.022 (−0.72) | −0.024 (−0.96) |
Rely | 0.073 *** (2.76) | −0.006 (−0.26) | 0.139 (0.88) | 0.334 ** (2.40) |
Compet | 0.012 * (1.94) | −0.007 (−1.15) | 0.030 * (1.65) | 0.013 (1.06) |
Tech | 0.291 * (1.87) | 0.459 *** (3.31) | 0.497 (1.10) | −0.076 (−0.19) |
Internet | 0.048 (1.02) | 0.130 *** (2.96) | 0.018 (0.17) | −0.237 ** (−2.19) |
Fund | 0.192 *** (4.68) | 0.034 (0.72) | 0.279 *** (3.81) | 0.248 *** (3.44) |
constant | 0.685 *** (3.62) | 1.028 *** (5.07) | 0.682 ** (2.01) | 0.927 *** (3.46) |
N | 270 | 99 | 72 | 99 |
Wald chi2 | 119.010 | 56.770 | 77.250 | 56.240 |
Prob>chi2 | 0.000 | 0.000 | 0.000 | 0.000 |
Log likelihood | 566.859 | 267.667 | 175.162 | 183.690 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Chen, Y.; Guan, H.; Lyulyov, O.; Pimonenko, T. Technological Innovation Efficiency in China: Dynamic Evaluation and Driving Factors. Sustainability 2022, 14, 8321. https://doi.org/10.3390/su14148321
Wang Q, Chen Y, Guan H, Lyulyov O, Pimonenko T. Technological Innovation Efficiency in China: Dynamic Evaluation and Driving Factors. Sustainability. 2022; 14(14):8321. https://doi.org/10.3390/su14148321
Chicago/Turabian StyleWang, Qian, Yang Chen, Heshan Guan, Oleksii Lyulyov, and Tetyana Pimonenko. 2022. "Technological Innovation Efficiency in China: Dynamic Evaluation and Driving Factors" Sustainability 14, no. 14: 8321. https://doi.org/10.3390/su14148321
APA StyleWang, Q., Chen, Y., Guan, H., Lyulyov, O., & Pimonenko, T. (2022). Technological Innovation Efficiency in China: Dynamic Evaluation and Driving Factors. Sustainability, 14(14), 8321. https://doi.org/10.3390/su14148321