The Water Storage Function of Litters and Soil in Five Typical Plantations in the Northern and Southern Mountains of Lanzhou, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Experimental Design
2.3. Determination of the Water Holding Capacity of Litter
2.4. Determination of Soil Physical Properties
2.5. Using the Gray Correlation Method to Evaluate the Water and Soil Conservation Capacity
2.6. Statistical Analysis
3. Results
3.1. Water Holding Characteristics of Litter Layer under Different Stand Types
3.1.1. Thickness and Accumulation of Litter
3.1.2. Maximum Water Holding Capacity and Maximum Water Holding Rate of Litter
3.1.3. Water Holding Capacity and Water Absorption Rate of Litter
3.2. Soil Physical Properties under Different Stand Types
3.2.1. Soil Infiltration Rates
3.2.2. Soil Water Content
3.2.3. Soil Bulk Density
3.2.4. Soil Porosity
3.2.5. Soil Water Storage
3.3. Soil and Water Conservation Function under Different Stand Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.M.; Yu, X.X.; Wu, S.H.; Wei, T.X.; Zhang, X.P. Effects of forest vegetation on runoff and sediment production on sloping lands of Loess area. Chin. J. Appl. Ecol. 2005, 26, 1613–1617. [Google Scholar] [CrossRef]
- Ilek, A.; Kucza, J.; Szostek, M. The effect of stand species composition on water storage capacity of the organic layers of forest soils. Eur. J. Forest Res. 2015, 134, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.Q.; Yan, D.H.; Wang, D.Y.; Liu, S.S.; Dong, G.Q. Experimental analysis of the effect of forest litter cover on surface soil water dynamics under continuous rainless condition in North China. Kuwait J. Sci. 2018, 45, 75–83. [Google Scholar]
- Zhang, L.; Li, X.; van Doorn, N.S.; Luo, Z.T.; Zhu, Z.J. Effects of rainfall intensity and slope on interception and precipitation partitioning by forest litter layer. Catena 2019, 172, 711–718. [Google Scholar]
- Walsh, R.P.D.; Voigt, P.J. Vegetation litter: An underestimated variable in hydrology and geomorphology. J. Biogeogr. 1977, 4, 253–274. [Google Scholar] [CrossRef]
- Gerrits, A.M.J. The Role of Interception in the Hydrological Cycle. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2010. [Google Scholar]
- Ilek, A.; Nowak, M.; Błonska, E. Seasonal changes in water absorbability of some litterfall components in Scots pine stands differing in age. Ann. For. Res. 2021, 64, 149–164. [Google Scholar] [CrossRef]
- Wen, G.Y.; Liu, S.R. Quantitative analysis of the characteristics of rainfall interception of main forest ecosystems in China. Sci. Silvae Sin. 1995, 31, 289–298. [Google Scholar]
- Dunkerley, D. Systematic variation of soil infiltration rates within and between the components of the vegetation mosaic in an Australian desert landscape. Hydrol. Process. 2002, 16, 119–131. [Google Scholar] [CrossRef]
- Appels, W.M.; Coles, A.E.; McDonnell, J.J. Infiltration into frozen soil: From core-scale dynamics to hillslope-scale connectivity. Hydrol. Process. 2018, 32, 66–79. [Google Scholar] [CrossRef]
- Kucza, J. Laboratory research of water retention by organic and mineral layers of forest soils from chosen spruce stands in BeskidSlaski range. Part II. Relationship between water retention ability and density of soil sample. Acta Agr. Silv. Ser. Silv. 2003, 41, 59–74. [Google Scholar]
- Gerrits, A.M.J.; Pfister, L.; Savenije, H.H.G. Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol. Process. 2010, 24, 3011–3025. [Google Scholar] [CrossRef]
- Zhou, Q.; Keith, D.M.; Zhou, X.; Cai, M.; Cui, X.; Wei, X.; Luo, Y. Comparing the water-holding characteristics of broadleaved, coniferous, and mixed forest litter layers in a Karst region. Mountain Res. Dev. 2018, 38, 220–229. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, G.Z.; Ling, L.; Chai, C.S. Water conservation function of litter and soil layer under main forest types in Xinglong Mountain of Gansu. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2013, 37, 78–84. [Google Scholar]
- Cao, R.; Jia, X.; Huang, L.; Zhu, Y.J.; Wu, L.H.; Shao, M.A. Deep soil water storage varies with vegetation type and rainfall amount in the Loess Plateau of China. Sci. Rep. 2018, 8, 12346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.L.; Chen, L.H.; Gong, W.Y.; Yang, X.; Kang, Y.L. Evaluation of the water conservation function of different forest types in Northeastern China. Sustainability 2019, 11, 4075. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, Z.L.; Shi, T.Y.; Xiang, Y.H. The weekend effect of climate in Lanzhou city in the recent 50 years. J. Lanzhou Univ. Nat. Sci. 2016, 52, 460–465. [Google Scholar]
- Wu, Q.L. The applicability analysis of massive artificial forestation in Lanzhou south-north hills. Res. Soil Water Conserv. 2003, 10, 134–136. [Google Scholar]
- Li, L.J.; Jiang, Z.R.; Li, Z.P.; Shao, L.L. Comprehensive evaluation on drought-resistance of three tree species and the choice of drought resistance indexes. Res. Soil Water Conserv. 2006, 13, 253–259. [Google Scholar]
- Jiang, Z.R.; Liang, X.T.; Zhu, G.; Song, Y.P.; Cong, R.L.; Wang, S.X.; Yang, Q.Q. Responses of main physiological indexes of four tree species to simulating water stress. J. Desert Res. 2009, 29, 485–492. [Google Scholar]
- Zhou, Z.H.; Li, Y.; Jiao, J. Quantity dynamics of Reaumuria soongorica populations from different habitats in the south-north hills in Lanzhou. J. Nat. Resour. 2011, 26, 1726–1737. [Google Scholar]
- Chen, X.H.; Duan, Z.H.; Song, Y.X.; Xiao, H.L. Soil water dynamic in planted shrubs in southern and northern mountains of Lanzhou city. J. Desert Res. 2006, 26, 532–535. [Google Scholar]
- Zhong, F.; Zhao, J.; Sun, R.G.; Li, Z.P.; Wang, W.P. Spatial distribution of soil nutrients and soil microbes in five arbore-bushe-grass lands at the south-north hills in Lanzhou, China. Acta Prataculturae Sin. 2010, 19, 94–101. [Google Scholar]
- Takeda, H.; He, C.C.; Sawata, S.; Hoshizaki, K.; Zhang, J.J. Growth of Platycladus orientalis plantation at the north and south mountainside afforestation in Lanzhou. Arid Zone Res. 2017, 34, 832–836. [Google Scholar]
- Wu, L.Y.; Su, S.P.; Wang, H. Preliminary investigation into plant and vegetation types in afforestation region in southern and northern mountains of Lanzhou city. J. Desert Res. 2006, 26, 564–568. [Google Scholar]
- Zhang, W.R.; Xu, B.T. Study Method of Forest Soil; China Forestry Publishing House: Beijing, China, 1986; pp. 1–45. [Google Scholar]
- Lu, R.K. Analysis Methods of Soil Agricultural Chemistry; China Agricultural Science and Technology Press: Beijing, China, 1999; pp. 474–490. [Google Scholar]
- Wohlfahrt, G.; Gu, L. The many meanings of gross photosynthesis and their implication for photosynthesis research from leaf to globe. Plant. Cell Environ. 2015, 38, 2500–2507. [Google Scholar] [CrossRef] [Green Version]
- Coyne, R.; Corsi, A.; Owen, B.J. Cross-correlation method for intermediate-duration gravitational wave searches associated with gamma-ray bursts. Phys. Rev. D 2016, 93, 104059. [Google Scholar] [CrossRef] [Green Version]
- Feller, U. Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts. J. Plant. Physiol. 2016, 203, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; He, N.; Hale, L.; Niu, S.L.; Liu, Y.; Blagodatskaya, E.; Kuzyakov, Y.; Gao, Q.; Zhou, J.Z. Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests. Funct. Ecol. 2017, 32, 61–70. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, Y.C. Application of Markov chain approach for multi-attributes dynamic software reliability assessment under both AHP and gray correlation methods. Int. J. Mod. Phys. C 2018, 29, 1840008. [Google Scholar] [CrossRef]
- Kaspari, M.; Yanoviak, S.P. Biogeography of litter depth in tropical forests: Evaluating the phosphorus growth rate hypothesis. Funct. Ecol. 2008, 22, 919–923. [Google Scholar] [CrossRef]
- He, Q.F.; Zhen, W.; Peng, Y.H.; Hou, Y.R.; He, F. Water-holding characteristics of litter under main forest types in the Middle Reaches of Pearl River Basin. Res. Soil Water Conserv. 2017, 24, 128–134. [Google Scholar]
- Chen, H.Y.H.; Brant, A.N.; Seedre, M.; Brassard, B.W.; Taylor, A.R. The contribution of litterfall to net primary production during secondary succession in the boreal forest. Ecosystems 2016, 20, 830–844. [Google Scholar] [CrossRef]
- Luo, X.P. Water holding characteristics of litters from five types of public welfare forest in Lushui county. J. Southwest For. Univ. 2012, 32, 51–55. [Google Scholar]
- Park, A.; Friesen, P.; Serrud, A.A.S. Comparative water fluxes through leaf litter of tropical plantation trees and the invasive grass Saccharum spontaneum in the Republic of Panama. J. Hydrol. 2010, 383, 167–178. [Google Scholar] [CrossRef]
- Simmons, I.G. The Ecology of Natural Resources; Edward Arnold: London, UK, 1974. [Google Scholar]
- Guevara-Escobar, A.; Gonzalez-Sosa, E.; Ramos-Salinas, M.; Hernandez-Delgado, G.D. Experimental analysis of drainage and water storage of litter layers. Hydrol. Earth Syst. Sci. 2007, 11, 1703–1716. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Ling, L.; Chai, C.S.; Zhang, G.Z.; Yan, P.B.; Tao, J.X.; Xue, R. Soil physical and chemical properties in forest succession process in Xinglong Mountain of Gansu. Acta Ecol. Sin. 2012, 32, 4700–4713. [Google Scholar]
- Xue, W.P.; Zhao, Z.; Li, P.; Cao, Y. Researches on root distribution characteris tics of Robinia pseudoacacia stand in Wang dong gou on different site conditions. J. North West Sci-Tech Univ. Agric. For. (Nat. Sci. Ed.) 2003, 31, 227–232. [Google Scholar]
- Verma, K.S.; Kohli, S.; Kaushal, R.; Chaturvedi, O.P. Root structure, distribution and biomass in five multipurpose tree species of Western Himalayas. J. Mt. Sci. 2014, 11, 519–525. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Hu, S.S.; Li, J.M.; Wang, W.D. Characteristic of root biomass of three main forest types in Xinjiang. Arid Land Geogr. 2013, 36, 77–84. [Google Scholar]
- Zhong, F.; Wang, H.C.; Li, J.N.; Duan, Z.H. Influence of water-heat condition on distribution of Platycladus orientalis (L) Franco roots in Southern and Northern Mountains of Lanzhou city. J. Desert Res. 2006, 26, 559–563. [Google Scholar]
- Liu, X.E.; Su, S.P. Hydrological functions of litters under five typical plantations in southern and northern mountains of Lanzhou City, Northwest China. Chin. J. Appl. Ecol. 2020, 31, 2574–2582. [Google Scholar]
- Tang, G.Y.; Li, K.; Zhang, C.H.; Gao, C.J.; Li, B. Accelerated nutrient cycling via leaf litter, and not root interaction, increases growth of Eucalyptus in mixed-species plantations with Leucaena. For. Ecol. Manag. 2013, 310, 45–53. [Google Scholar] [CrossRef]
Stand Type | Canopy Density | Altitude (m) | Stand Age (Year) | Average Tree Height (m) | Forest Density (Tree·hm−2) |
---|---|---|---|---|---|
P. orientalis | 0.85 | 1813 | 30 | 6.02 | 2977 |
R. pseudoacacia | 0.70 | 1782 | 35 | 9.39 | 2700 |
P. alba var. pyramidalis | 0.60 | 1772 | 35 | 11.06 | 2500 |
P. orientalis + R. pseudoacacia | 0.70 | 1761 | 30 | 6.13 | 2740 |
P. alba var. pyramidalis + R. pseudoacacia | 0.65 | 1804 | 30 | 10.92 | 2801 |
Stand Types | Litter Thickness (mm) | Litter Accumulation (t·hm−2) | Maximum Water Holding Capacity (t·hm−2) | Maximum Water Holding Rate (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Undecomposed Layer | Semi-Decomposed Layer | Total | Undecomposed Layer | Semi-Decomposed Layer | Total | Undecomposed Layer | Semi-Decomposed Layer | Average | ||
P. orientalis | 2.08 ± 0.37 c | 15.70 ± 1.70 a | 13.08 ± 0.96 d | 28.78 ± 2.58 c | 25.35 ± 3.77 c | 29.62 ± 2.46 c | 54.98 ± 6.03 c | 161.1 ± 7.0 d | 226.4 ± 3.5 a | 190.8 ± 4.6 b |
R. pseudoacacia | 3.81 ± 0.37 b | 9.12 ± 1.25 b | 17.22 ± 1.86 c | 26.34 ± 3.03 c | 24.74 ± 0.75 c | 38.19 ± 4.25 bc | 62.93 ± 4.86 c | 273.7 ± 27.4 b | 222.8 ± 25.7 a | 240.0 ± 19.6 a |
P. alba var. pyramidalis | 4.43 ± 0.12 b | 5.41 ± 0.37 c | 8.09 ± 0.93 e | 13.50 ± 0.95 d | 16.59 ± 1.25 d | 18.71 ± 2.62 d | 35.29 ± 3.43 d | 308.4 ± 42.9 ab | 231.5 ± 19.9 a | 262.1 ± 28.5 a |
P. orientalis + R. pseudoacacia | 4.07 ± 0.49 b | 15.37 ± 0.55 a | 19.78 ± 0.32 b | 35.15 ± 0.23 b | 33.82 ± 2.77 b | 46.31 ± 6.24 b | 80.13 ± 8.66 b | 220.7 ± 25.3 c | 233.9 ± 27.8 a | 228.1 ± 26.1 ab |
P. alba var. pyramidalis + R. pseudoacacia | 5.52 ± 0.90 a | 15.75 ± 0.35 a | 31.26 ± 1.03 a | 47.01 ± 1.16 a | 54.95 ± 2.09 a | 68.64 ± 9.88 a | 123.59 ± 11.73 a | 349.0 ± 18.4 a | 219.1 ± 24.9 a | 262.7 ± 20.0 a |
Stand Types | Soil Layer (cm) | Soil Bulk Density (g·cm−3) | Soil Water Content (%) | Capillary Porosity (%) | Non-Capillary Porosity (%) | Total Porosity (%) | Maximum Water Storage (t·hm−2) | Non-Capillary Water Storage (t·hm−2) | Capillary Water Storage (t·hm−2) |
---|---|---|---|---|---|---|---|---|---|
P. orientalis | 0–20 | 1.24 ± 0.03 c | 7.38 ± 0.41 a | 46.67 ± 0.90 a | 6.49 ± 0.24 a | 53.16 ± 1.07 a | 1063.22 ± 21.4 a | 129.82 ± 4.8 a | 933.40 ± 18 a |
20–40 | 1.30 ± 0.06 bc | 6.27 ± 0.56 a | 45.92 ± 1.18ab | 5.29 ± 0.68 a | 51.21 ± 1.86 ab | 1024.22 ± 37.2 ab | 105.84 ± 13.6 a | 918.38 ± 23.6 ab | |
40–60 | 1.42 ± 0.05 ab | 6.17 ± 0.54 a | 41.79 ± 2.09 bc | 5.17 ± 0.68 a | 46.97 ± 1.67 bc | 939.28 ± 33.4 bc | 103.43 ± 13.6 a | 835.85 ± 41.8 bc | |
60–80 | 1.48 ± 0.04 a | 4.01 ± 0.97 b | 40.34 ± 0.90 c | 4.87 ± 0.62 a | 45.21 ± 1.37 c | 904.14 ± 27.4 c | 97.34 ± 12.4 a | 806.80 ± 18 c | |
Mean/sum | 1.36 ± 0.03 | 5.96 ± 0.08 | 43.68 ± 1.03 | 5.46 ± 0.35 | 49.14 ± 1.11 | 3930.87 | 436.44 | 3494.43 | |
P. alba var. pyramidalis | 0–20 | 1.21 ± 0.07 b | 5.23 ± 0.50 a | 48.02 ± 2.87 a | 6.07 ± 0.79 a | 54.09 ± 2.42 a | 1081.77 ± 48.4 a | 121.40 ± 15.8 a | 960.37 ± 57.4 a |
20–40 | 1.36 ± 0.05 ab | 4.74 ± 0.18 ab | 43.61 ± 1.09 ab | 5.52 ± 1.16 a | 49.14 ± 1.66 ab | 982.75 ± 33.2 ab | 110.44 ± 23.2 a | 872.31 ± 21.8 ab | |
40–60 | 1.41 ± 0.01 a | 3.87 ± 0.48 ab | 42.30 ± 0.78 ab | 4.98 ± 0.24 a | 47.29 ± 0.54 b | 945.81 ± 10.8 b | 99.71 ± 4.8 a | 846.10 ± 15.6 ab | |
60–80 | 1.44 ± 0.03 a | 3.59 ± 0.39 b | 41.91 ± 1.44 b | 4.73 ± 0.51 a | 46.63 ± 0.98 b | 986.20 ± 19.6 b | 135.18 ± 10.2 a | 851.02 ± 28.8 b | |
Mean/sum | 1.33 ± 0.05 | 4.36 ± 0.11 | 44.12 ± 0.74 | 5.33 ± 0.38 | 49.96 ± 0.98 | 3996.54 | 466.74 | 3529.80 | |
R. pseudoacacia | 0–20 | 1.25 ± 0.05 a | 11.92 ± 0.58 a | 44.95 ± 1.07 a | 7.83 ± 0.56 a | 52.78 ± 1.62 a | 1055.58 ± 32.4 a | 156.54 ± 11.2 a | 899.04 ± 21.4 a |
20–40 | 1.28 ± 0.06 a | 7.23 ± 1.26 b | 44.25 ± 1.49 a | 7.53 ± 0.73 a | 51.78 ± 1.89 a | 1035.54 ± 37.8 a | 150.59 ± 14.6 a | 884.95 ± 29.8 a | |
40–60 | 1.30 ± 0.09 a | 5.59 ± 0.81 b | 44.26 ± 1.41 a | 6.72 ± 1.98 a | 50.99 ± 2.88 a | 1019.79 ± 57.6 a | 134.54 ± 39.6 a | 885.25 ± 28.2 a | |
60–80 | 1.35 ± 0.04 a | 7.09 ± 1.38 b | 42.55 ± 0.38 a | 6.76 ± 1.62 a | 49.31 ± 1.24 a | 986.20 ± 24.8 a | 135.18 ± 32.4 a | 851.02 ± 7.6 a | |
Mean/sum | 1.30 ± 0.03 | 7.96 ± 0.50 | 44.00 ± 0.78 | 7.21 ± 1.19 | 51.21 ± 1.80 | 4097.11 | 576.85 | 3520.26 | |
P. orientalis + R. pseudoacacia | 0–20 | 1.11 ± 0.04 b | 15.20 ± 0.71 a | 49.08 ± 0.80 a | 8.22 ± 0.38 a | 57.29 ± 1.17 a | 1145.80 ± 23.4 a | 164.30 ± 34 a | 981.49 ± 22 a |
20–40 | 1.25 ± 0.02 a | 13.66 ± 0.07 ab | 45.33 ± 0.91 ab | 7.28 ± 1.49 a | 52.61 ± 0.59 b | 1052.21 ± 11.8 b | 145.55 ± 11.2 a | 906.67 ± 3.2 ab | |
40–60 | 1.31 ± 0.04 a | 12.36 ± 0.56 b | 44.70 ± 1.44 b | 6.23 ± 0.95 a | 50.93 ± 1.32 b | 1018.64 ± 26.4 b | 124.65 ± 16.2 a | 893.99 ± 15.6 b | |
60–80 | 1.34 ± 0.03 a | 9.69 ± 0.32 c | 43.69 ± 1.48 b | 5.99 ± 0.48 a | 49.68 ± 1.04 b | 993.52 ± 20.8 b | 119.75 ± 16.4 a | 873.77 ± 13.4 b | |
Mean/sum | 1.25 ± 0.01 | 12.73 ± 0.18 | 45.70 ± 0.85 | 6.93 ± 0.70 | 52.63 ± 0.14 | 4210.18 | 554.26 | 3655.92 | |
P. alba var. pyramidalis + R. pseudoacacia | 0–20 | 1.05 ± 0.02 d | 17.00 ± 0.28 a | 49.63 ± 1.10 a | 9.60 ± 1.70 a | 59.23 ± 0.69 a | 1184.51 ± 13.8 a | 191.94 ± 7.6 a | 992.57 ± 16 a |
20–40 | 1.16 ± 0.02 c | 15.13 ± 0.58 b | 47.92 ± 0.16 ab | 7.70 ± 0.56 ab | 55.62 ± 0.64 b | 1112.34 ± 12.8 b | 153.96 ± 29.8 ab | 958.39 ± 18.2 ab | |
40–60 | 1.26 ± 0.02 b | 13.62 ± 0.15 c | 45.48 ± 0.78 b | 6.80 ± 0.81 ab | 52.28 ± 0.52 c | 1045.60 ± 10.4 c | 135.96 ± 19.0 ab | 909.65 ± 28.8 b | |
60–80 | 1.39 ± 0.02 a | 9.52 ± 0.62 d | 42.44 ± 0.67 c | 5.81 ± 0.82 b | 48.25 ± 0.64 d | 964.99 ± 12.8 d | 116.20 ± 9.6 b | 848.79 ± 29.6 c | |
Mean/sum | 1.22 ± 0.01 | 13.82 ± 0.26 | 46.37 ± 0.05 | 7.48 ± 0.51 | 53.84 ± 0.49 | 4307.45 | 598.06 | 3709.39 |
Stand Types | Litter Water Holding Capacity | Litter Water Holding Rate | Soil Infiltration Rate | Soil Water Content | Capillary Water Storage | Non-Capillary Water Storage | Soil Bulk Density | Litter Accumulation | Gk |
---|---|---|---|---|---|---|---|---|---|
P. orientalis | 0.3796 | 0.5166 | 0.3545 | 0.3915 | 0.8332 | 0.5887 | 0.9353 | 0.4780 | 0.6072 |
R. pseudoacacia | 0.4005 | 0.6621 | 0.4395 | 0.4527 | 0.8456 | 0.9160 | 0.8433 | 0.4507 | 0.6760 |
P. alba var. pyramidalis | 0.3362 | 0.7580 | 0.3454 | 0.3532 | 0.8503 | 0.6379 | 0.9279 | 0.3466 | 0.6250 |
P. orientalis + R. pseudoacacia | 0.4546 | 0.6199 | 0.4319 | 0.7225 | 0.9175 | 0.8408 | 0.7904 | 0.5676 | 0.7076 |
P. alba var. pyramidalis Bunge + R. pseudoacacia | 0.6905 | 0.7610 | 0.6168 | 0.8364 | 0.9493 | 1.0000 | 0.7499 | 0.8721 | 0.8293 |
ri | 0.4523 | 0.6635 | 0.4376 | 0.5513 | 0.8792 | 0.7967 | 0.8493 | 0.5430 | |
Wi | 0.0874 | 0.1283 | 0.0846 | 0.1066 | 0.1700 | 0.1540 | 0.1642 | 0.1050 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, S.; Liu, X. The Water Storage Function of Litters and Soil in Five Typical Plantations in the Northern and Southern Mountains of Lanzhou, Northwest China. Sustainability 2022, 14, 8231. https://doi.org/10.3390/su14148231
Su S, Liu X. The Water Storage Function of Litters and Soil in Five Typical Plantations in the Northern and Southern Mountains of Lanzhou, Northwest China. Sustainability. 2022; 14(14):8231. https://doi.org/10.3390/su14148231
Chicago/Turabian StyleSu, Shiping, and Xiaoe Liu. 2022. "The Water Storage Function of Litters and Soil in Five Typical Plantations in the Northern and Southern Mountains of Lanzhou, Northwest China" Sustainability 14, no. 14: 8231. https://doi.org/10.3390/su14148231