Potential Uses of Artisanal Gold Mine Tailings, with an Emphasis on the Role of Centrifugal Separation Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sampling
2.2. Mineralogy and Analysis of Concentrate
2.3. Centrifugal Separation Technique
3. Results
3.1. Mineralogy of Raw Gold Ore and Resultant Artisanal Gold Mine Tailings
3.2. Mineralogy of Gold Ore and Resultant Artisanal Gold Mine Tailings Concentrate
4. Discussion
4.1. Characteristics of Artisanal Gold Mine Tailings and Potential Features as a New Source of Valued Gold
4.2. Importance of Centrifugal Separation in Artisanal Gold Mine Tailings Remining
4.3. Environmental and Management Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gold Statistics and Information|U.S. Geological Survey. Available online: https://www.usgs.gov/centers/national-minerals-information-center/gold-statistics-and-information (accessed on 30 March 2022).
- Africa and the Middle East|U.S. Geological Survey. Available online: https://www.usgs.gov/centers/national-minerals-information-center/africa-and-middle-east#rw (accessed on 15 June 2022).
- Lezhnev, S.; Swamy, M. Understanding Money Laundering Risks in the Conflict Gold Trade from East and Central Africal to Dubai and Onward. Sentry 2020, 1–22. Available online: https://cdn.thesentry.org/wp-content/uploads/2020/11/ConflictGoldAdvisory-TheSentry-Nov2020.pdf (accessed on 9 May 2022).
- WorldAtlas What Are the Major Natural Resources of Rwanda? Available online: https://www.worldatlas.com/articles/what-are-the-major-natural-resources-of-rwanda.html (accessed on 10 June 2022).
- Crawford, A.; Bliss, M. IGF Mining Policy Framework Assessment. Intergov. Forum Min. Min. Met. Sustain. Dev. 2017, 1–45. [Google Scholar]
- Baptiste, J.; Pauline, J.; Adetunji, A.R. Mineralogical and Physical Studies of Low-Grade Tantalum-Tin Ores from Selected Areas of Rwanda. Results Eng. 2021, 11, 100248. [Google Scholar] [CrossRef]
- Bansah, K.J.; Dumakor-Dupey, N.K.; Kansake, B.A.; Assan, E.; Bekui, P. Socioeconomic and Environmental Assessment of Informal Artisanal and Small-Scale Mining in Ghana. J. Clean. Prod. 2018, 202, 465–475. [Google Scholar] [CrossRef]
- Hilson, G.; Amankwah, R.; Ofori-Sarpong, G. Going for Gold: Transitional Livelihoods in Northern Ghana. J. Mod. Afr. Stud. 2013, 51, 109–137. [Google Scholar] [CrossRef] [Green Version]
- Dewaele, S.; Henjes-Kunst, F.; Melcher, F.; Sitnikova, M.; Burgess, R.; Gerdes, A.; Fernandez, M.A.; De Clercq, F.; Muchez, P.; Lehmann, B. Late Neoproterozoic Overprinting of the Cassiterite and Columbite-Tantalite Bearing Pegmatites of the Gatumba Area, Rwanda (Central Africa). J. Afr. Earth Sci. 2011, 61, 10–26. [Google Scholar] [CrossRef]
- Mining, S.G.; Municipality, A. Waste Management and the Elimination of Mercury in Tailings from Artisanal Waste Management and the Elimination of Mercury in Tailings from Artisanal and Small-Scale Gold Mining in the Andes Municipality of Antioquia, Colombia. Mine Water Environ. 2020, 40, 250–256. [Google Scholar] [CrossRef]
- Martinez, G.; Restrepo-baena, O.J.; Veiga, M.M. The Extractive Industries and Society The Myth of Gravity Concentration to Eliminate Mercury Use in Artisanal Gold Mining. Extr. Ind. Soc. 2021, 8, 477–485. [Google Scholar] [CrossRef]
- Yalcin, E.; Kelebek, S. Flotation Kinetics of a Pyritic Gold Ore. Int. J. Miner. Process. 2011, 98, 48–54. [Google Scholar] [CrossRef]
- Marsden, J.O.; House, C.I. The Chemistry of Gold Extraction. Ellis Horwood Maylands Ave. UK 2006, 651, 619. [Google Scholar]
- Hylander, L.D.; Plath, D.; Miranda, C.R.; Lücke, S.; Öhlander, J.; Rivera, A.T.F. Comparison of Different Gold Recovery Methods with Regard to Pollution Control and Efficiency. Clean-Soil Air Water 2007, 35, 52–61. [Google Scholar] [CrossRef]
- Coetzee, L.L.; Theron, S.J.; Martin, G.J.; van der Merwe, J.D.; Stanek, T.A. Modern Gold Deportments and Its Application to Industry. Miner. Eng. 2011, 24, 565–575. [Google Scholar] [CrossRef]
- Gökelma, M.; Birich, A.; Stopic, S.; Friedrich, B. A Review on Alternative Gold Recovery Re-Agents to Cyanide. J. Mater. Sci. Chem. Eng. 2016, 4, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Napier-Munn, T.; Wills, B.A. Wills’ Mineral Processing Technology; Elsevier Ltd: Oxford, UK, 2005; ISBN 9780750644501. [Google Scholar]
- Venter, D.; Chryssoulis, S.L.; Mulpeter, T. Using Mineralogy to Optimize Gold Recovery by Direct Cyanidation. JOM 2004, 56, 53–56. [Google Scholar] [CrossRef]
- Chryssoulis, S.L.; McMullen, J. Mineralogical Investigation of Gold Ores; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780444636584. [Google Scholar]
- Wang, X.; Qin, W.; Jiao, F.; Yang, C.; Cui, Y.; Li, W. Mineralogy and Pretreatment of a Refractory Gold. Minerals 2019, 9, 406. [Google Scholar] [CrossRef] [Green Version]
- Fullam, M.; Watson, B.; Laplante, A.; Gray, S. Advances in Gravity Gold Technology; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780444636584. [Google Scholar]
- Melcher, F.; Graupner, T.; Gäbler, H.E.; Sitnikova, M.; Henjes-Kunst, F.; Oberthür, T.; Gerdes, A.; Dewaele, S. Tantalum-(Niobium-Tin) Mineralisation in African Pegmatites and Rare Metal Granites: Constraints from Ta-Nb Oxide Mineralogy, Geochemistry and U-Pb Geochronology. Ore Geol. Rev. 2015, 64, 667–719. [Google Scholar] [CrossRef]
- Maponga, O.; Ngorima, C.F. Overcoming Environmental Problems in the Gold Panning Sector through Legislation and Education: The Zimbabwean Experience. J. Clean. Prod. 2003, 11, 147–157. [Google Scholar] [CrossRef]
- Jena, M.S.; Mohanty, J.K.; Sahu, P.; Venugopal, R.; Mandre, N.R. Characterization and Pre-Concentration of Low Grade PGE Ores of Boula Area, Odisha Using Gravity Concentration Methods. Trans. Indian Inst. Met. 2017, 70, 287–302. [Google Scholar] [CrossRef]
- Ernawati, R.; Idrus, A.; Petrus, H.T.B.M. Study of the Optimization of Gold Ore Concentration Using Gravity Separator (Shaking Table): Case Study for LS Epithermal Gold Deposit in Artisanal Small Scale Gold Mining (ASGM) Paningkaban, Banyumas, Central Java. IOP Conf. Ser. Earth Environ. Sci. 2018, 212, 012019. [Google Scholar] [CrossRef]
- Bouchard, J.; Desbiens, A.; Nunez, E. Column Flotation Simulation and Control: An Overview. Miner. Eng. 2009, 22, 519–529. [Google Scholar] [CrossRef]
- Nambaje, C.; Mweeneb, L.; Subramaniana, S.; Sajeev, K.; Santosh, M. Xanthan Gum Based Investigations into the Surface Chemistry of Cassiterite and Beneficiation of Cassiterite Tailings. Miner. Procesing Extr. Metall. Rev. 2020, 2, 150–164. [Google Scholar] [CrossRef]
- Abdel-Khalek, N.A.; El-Shatoury, E.H.; Abdel-Motelib, A.; Hassan, M.S.; Abdel-Khalek, M.A.; El-Sayed, S. Mineralogical Study and Enhanced Gravity Separation of Gold-Bearing Mineral, South Eastern Desert, Egypt. Physicochem. Probl. Miner. Process. 2020, 56, 839–848. [Google Scholar] [CrossRef]
- Bode, P.; McGrath, T.D.H.; Eksteen, J.J. Characterising the Effect of Different Modes of Particle Breakage on Coarse Gangue Rejection for an Orogenic Gold Ore. Miner. Process. Extr. Metall. Trans. Inst. Min. Metall. 2020, 129, 35–48. [Google Scholar] [CrossRef]
- Grayson, R. Fine Gold Recovery-Alternatives to Mercury and Cyanide. World Placer J. 2007, 7, 66–161. [Google Scholar]
- Veiga, M.M.; Gunson, A.J. Gravity Concentration in Artisanal Gold Mining. Minerals 2020, 10, 1026. [Google Scholar] [CrossRef]
- Balaram, V.; Vummiti, D.; Roy, P.; Taylor, C.; Kar, P.; Raju, A.K.; Abburi, K. Determination of Precious Metals in Rocks and Ores by Microwave Plasma-Atomic Emission Spectrometry for Geochemical Prospecting Studies. Curr. Sci. 2011, 104, 1207–1215. [Google Scholar]
- Habinshuti, J.B.; Munganyinka, J.P.; Adetunji, A.R.; Mishra, B.; Himanshu, T.; Mukiza, J.; Ofori-Sarpong, G.; Onwualu, A.P. Caustic Potash Assisted Roasting of the Nigerian Ferro-Columbite Concentrate and Guanidine Carbonate-Induced Precipitation: A Novel Technique for Extraction of Nb–Ta Mixed-Oxides. Results Eng. 2022, 14, 100415. [Google Scholar] [CrossRef]
- Government of Rwanda (NISR, RMB). Natural Capital Accounts for Mineral Resource Flows; Version 1.0; National Institute of Statistics of Rwanda: Kigali, Rwanda, 2019.
- Heizmann, J.; Liebetrau, M. Efficiency of Mineral Processing in Rwanda’ s Artisanal and Small-Scale Mining Sector: Quantitative comparison of Traditional Techniques and Basic Mechanized Procedures; Bundesanstalt für Geowissenschaften und Rohstoffe: Hannover, Germany, 2017; ISBN 9783943566864. [Google Scholar]
- Rintala, L.; Leikola, M.; Sauer, C.; Aromaa, J.; Roth-berghofer, T.; Forsén, O.; Lundström, M. Designing Gold Extraction Processes: Performance Study of a Case-Based Reasoning System. Miner. Eng. 2017, 109, 42–53. [Google Scholar] [CrossRef]
- Akinyemi, S.A.; Oliveira, M.L.S.; Nyakuma, B.B.; Dotto, G.L. Geochemical and Morphological Evaluations of Organic and Mineral Aerosols in Coal Mining Areas: A Case Study of Santa Catarina, Brazil. Sustainability 2022, 14, 3847. [Google Scholar] [CrossRef]
- Ogundare, O.D.; Adeoye, M.O.; Adetunji, A.R.; Adewoye, O.O. Beneficiation and Characterization of Gold from Itagunmodi Gold Ore by Cyanidation. J. Miner. Mater. Charact. Eng. 2014, 2, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Gül, A.; Kangal, O.; Sirkeci, A.A.; Önal, G. Beneficiation of the Gold Bearing Ore by Gravity and Flotation. Int. J. Miner. Metall. Mater. 2012, 19, 106–110. [Google Scholar] [CrossRef]
- Hinton, J.J.; Veiga, M.M.; Veiga, A.T.C. Clean Artisanal Gold Mining: A Utopian Approach? J. Clean. Prod. 2003, 11, 99–115. [Google Scholar] [CrossRef]
- Poloko, N. Physical Separation Methods, Part 1: A Review. In The IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volumn 641, p. 12023. [Google Scholar]
- Farrokhpay, S. Editorial for the Special Issue:“Physical Separation and Enrichment”. Minerals 2020, 10, 173. [Google Scholar] [CrossRef] [Green Version]
- Olyaei, Y.; Aghazadeh, S.; Gharabaghi, M.; Mamghaderi, H.; Mansouri, J. Gold, Mercury, and Silver Extraction by Chemical and Physical Separation Methods. Rare Met. Mater. Eng. 2016, 45, 2784–2789. [Google Scholar] [CrossRef] [Green Version]
- Silva, M. Placer Gold Recovery Methods; California Department of Conservation, Division of Mines and Geology: Sacramento, CA, USA, 1986. [Google Scholar]
- Zolnikov, T.R. Effects of the Government’s Ban in Ghana on Women in Artisanal and Small-Scale Gold Mining. Resour. Policy 2020, 65, 101561. [Google Scholar] [CrossRef]
- Eduful, M.; Alsharif, K.; Acheampong, M.; Nkhoma, P. Management of Catchment for the Protection of Source Water in the Densu River Basin, Ghana: Implications for Rural Communities. Int. J. River Basin Manag. 2020, 20, 167–183. [Google Scholar] [CrossRef]
- Mestanza-Ramón, C.; Cuenca-Cumbicus, J.; D’orio, G.; Flores-Toala, J.; Segovia-Cáceres, S.; Bonilla-Bonilla, A.; Straface, S. Gold Mining in the Amazon Region of Ecuador: History and a Review of Its Socio-Environmental Impacts. Land 2022, 11, 221. [Google Scholar] [CrossRef]
- Theunissen, K.; Hanon, M.; Fernandez, M. Carte Géologique Du Rwanda Au 1/250.000; Musée Royal de l’Afrique Centrale: Tervuren, Belgique, 1991. [Google Scholar]
- Fernandez-Alonso, M.; Cutten, H.; De Waele, B.; Tack, L.; Tahon, A.; Baudet, D.; Barritt, S.D. The Mesoproterozoic Karagwe-Ankole Belt (Formerly the NE Kibara Belt): The Result of Prolonged Extensional Intracratonic Basin Development Punctuated by Two Short-Lived Far-Field Compressional Events. Precambrian Res. 2012, 216–219, 63–86. [Google Scholar] [CrossRef]
- Baudet, D.; Hanon, M.; Lemonne, E.; Theunissen, K.; Buyagu, S.; Dehandschutter, J.; Ngizimana, W.; Nsengiyumva, P.; Rusanganwa, J.B.; Tahon, A. Lithostratigraphie Du Domaine Sédimentaire de La Chaine Kibarienne Au Rwanda. Ann. la Société géologique Belgique. 1989. Available online: https://popups.uliege.be/0037-9395/index.php?id=873 (accessed on 10 May 2022).
- Uwiduhaye, J. d’Amour; Ngaruye, J.C.; Saibi, H. Defining Potential Mineral Exploration Targets from the Interpretation of Aeromagnetic Data in Western Rwanda. Ore Geol. Rev. 2021, 128, 103927. [Google Scholar] [CrossRef]
- Cahen, L.; Snelling, N.J.; Delhal, J.; Vail, J.R.; Bonhomme, M.; Ledent, D. The Geochronology and Evolution of Africa; Oxford University Press: Oxford, UK, 1984. [Google Scholar]
- Baudin, B.; Zigirababili, J.; Ziserman, A.; Petricec, V. Carte Des Gîtes Minéraux Du Rwanda Ministère Des Ressources Naturelles (MIRENA); Ministere des Ressources Naturelles: Kigali, Rwanda, 1982. [Google Scholar]
- SRK Exploration Services. An Independent Technical Review of the Miyove Gold Project, Rwanda; SRK Exploration Services: Cardiff, UK, 2014. [Google Scholar]
- Wouters, S.; Hulsbosch, N.; Kaskes, P.; Claeys, P.; Dewaele, S.; Melcher, F.; Onuk, P.; Muchez, P. Late Orogenic Gold Mineralization in the Western Domain of the Karagwe-Ankole Belt (Central Africa): Auriferous Quartz Veins from the Byumba Deposit (Rwanda). Ore Geol. Rev. 2020, 125, 103666. [Google Scholar] [CrossRef]
Element | ICP-OES | XRF | ICP-MS | |||
---|---|---|---|---|---|---|
Gold Ore | Tailings | Gold Ore | Tailings | Gold Ore | Tailings | |
Trace element (%) | ||||||
Silicon | 17.81–20.09 | 32.42–33.81 | 41.06–42.71 | 38.41–39.19 | ||
Potassium | 2.38–4.43 | 1.63–1.83 | 0.87–1.42 | 1.05–1.49 | ||
Aluminium | 2.06–3.70 | 3.23–4.70 | 4.73–6.49 | 6.36–6.67 | ||
Iron | 1.11–1.49 | 1.74–2.39 | 1.18–1.92 | 2.22–2.46 | ||
Sodium | 0.36–0.57 | 0.44–0.46 | * | * | ||
Magnesium | 0.10–0.11 | 0.06–0.08 | * | * | ||
Titanium | 0.09–0.14 | 0.18–0.19 | 0.16–0.21 | 0.18–0.25 | ||
Copper | 0.04–1.92 | 0.03–0.04 | 0.00–0.00 | 0.00–0.01 | ||
Calcium | 0.02–0.10 | 0.02–0.03 | 0.02–0.14 | 0.00–0.02 | ||
Rare earth element (ppm) | ||||||
Lanthanum | 2.98–14.50 | 4.90–7.90 | ||||
Praseodymium | 0.60–3.00 | 1.00–1.70 | ||||
Yttrium | 1.00–3.30 | 0.90–1.20 | ||||
Europium | 0.14–0.44 | 0.19–0.40 | ||||
Terbium | 0.03–0.12 | 0.05–0.05 | ||||
Neodymium | 2.38–11.00 | 0.11–6.30 | ||||
Cerium | 6.08–29.00 | 9.90–15.90 |
Element (%) | ICP-OES | XRF | ||
---|---|---|---|---|
Gold Ore | Tailings | Gold Ore | Tailings | |
Silicon | 44.15–41.31 | 41.74–45.50 | 40.89–46.92 | 41.56–41.86 |
Iron | 4.90–5.61 | 1.76–3.93 | 2.25–4.86 | 1.57–3.97 |
Potassium | 0.46–1.13 | 0.67–1.36 | 0.06–0.61 | 0.35–0.77 |
Copper | 0.13–0.17 | 0.14–0.18 | 0.00–0.03 | 0.00–0.00 |
Aluminium | 0.05–0.07 | 0.21–0.28 | 2.72–2.72 | 1.82–3.19 |
Calcium | * | * | 0.01–0.03 | 0.02–0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munganyinka, J.P.; Habinshuti, J.B.; Ndayishimiye, J.C.; Mweene, L.; Ofori-Sarpong, G.; Mishra, B.; Adetunji, A.R.; Tanvar, H. Potential Uses of Artisanal Gold Mine Tailings, with an Emphasis on the Role of Centrifugal Separation Technique. Sustainability 2022, 14, 8130. https://doi.org/10.3390/su14138130
Munganyinka JP, Habinshuti JB, Ndayishimiye JC, Mweene L, Ofori-Sarpong G, Mishra B, Adetunji AR, Tanvar H. Potential Uses of Artisanal Gold Mine Tailings, with an Emphasis on the Role of Centrifugal Separation Technique. Sustainability. 2022; 14(13):8130. https://doi.org/10.3390/su14138130
Chicago/Turabian StyleMunganyinka, Jeanne Pauline, Jean Baptiste Habinshuti, Jean Claude Ndayishimiye, Levie Mweene, Grace Ofori-Sarpong, Brajendra Mishra, Adelana R. Adetunji, and Himanshu Tanvar. 2022. "Potential Uses of Artisanal Gold Mine Tailings, with an Emphasis on the Role of Centrifugal Separation Technique" Sustainability 14, no. 13: 8130. https://doi.org/10.3390/su14138130