Human Appropriation of Net Primary Production Related to Livestock Provisioning Ecosystem Services in Southern Patagonia
Abstract
:1. Introduction
2. Material and Methods
2.1. Characterization of the Study Area and Sheep Production
2.2. HANPP and the Relationship between Plant Biodiversity and Net Carbon Balance
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Description | Unit | Data Source |
---|---|---|
Stocking rate | ewes/ha/year | SIT Santa Cruz (1) |
Net primary production | g C/m2/year | MODIS (2) |
Lamb yield | gr lamb/m2/year | Peri et al. [24] |
Wool yield | gr greasy wool/m2/year | Peri et al. [24] |
Carbon footprint of lamb production | kg CO2-eq/kg lamb | Peri et al. [31] |
Carbon footprint of wool production | kg CO2-eq/kg wool | Peri et al. [31] |
Net carbon balance | kg C/ha/year | Peri et al. [31] |
Normalized difference vegetation index | dimensionless | MODIS (3) |
Elevation | m.a.s.l. | DEM (4) |
Nothofagus pumilio and mixed evergreen forests | occurrence | Forest map (1) |
Natural protected networking | occurrence | Fasioli and Díaz [38] |
Potential biodiversity of vascular plants | % | Rosas et al. [18] |
Species | Code | Family |
---|---|---|
Acaena magellanica | ACMA | Rosaceae |
Acaena poeppigiana | ACPO | Rosaceae |
Adesmia volckmannii | ADVO | Fabaceae |
Agrostis capillaris | AGCA | Poaceae |
Agrostis perennans | AGPE | Poaceae |
Anemone multifida | ANMU | Ranunculaceae |
Armeria maritima | ARMA | Plumbaginaceae |
Avenella flexuosa | AVFL | Poaceae |
Azorella prolifera | AZPR | Apiaceae |
Baccharis magellanica | BAMA | Asteraceae |
Berberis empetrifolia | BEEM | Berberidaceae |
Berberis microphylla | BEMI | Berberidaceae |
Blechnum penna-marina | BLPE | Blechnaceae |
Bromus setifolius | BRSE | Poaceae |
Calceolaria uniflora | CAUN | Calceolariaceae |
Carex andina | CAAN | Cyperaceae |
Carex argentina | CAAR | Cyperaceae |
Carex macloviana | CAMA | Cyperaceae |
Chiliotrichum diffusum | CHDI | Asteraceae |
Chuquiraga aurea | CHAU | Asteraceae |
Chuquiraga avellanedae | CHAV | Asteraceae |
Clinopodium darwinii | CLDA | Lamiaceae |
Colobanthus subulatus | COSU | Caryophyllaceae |
Empetrum rubrum | EMRU | Ericaceae |
Ephedra chilensis | EPCH | Ephedraceae |
Escallonia rubra | ESRU | Escalloniaceae |
Festuca argentina | FEAR | Poaceae |
Festuca gracillima | FEGR | Poaceae |
Festuca magellanica | FEMA | Poaceae |
Festuca pallescens | FEPA | Poaceae |
Galium aparine | GAAP | Rubiaceae |
Gaultheria mucronata | GAMU | Ericaceae |
Hordeum comosum | HOCO | Poaceae |
Hordeum pubiflorum | HOPU | Poaceae |
Juncus balticus | JUBA | Cyperaceae |
Lycium chilense | LYCH | Solanaceae |
Microsteris gracilis | MIGR | Polemoniaceae |
Mulguraea tridens | MUTR | Verbenaceae |
Nardophyllum bryoides | NABR | Asteraceae |
Nassauvia glomerulosa | NAGL | Asteraceae |
Nassauvia ulicina | NAUL | Asteraceae |
Osmorhiza chilensis | OSCH | Apiaceae |
Pappostipa chrysophylla | PACHR | Poaceae |
Pappostipa chubutensis | PACH | Poaceae |
Pappostipa ibarii | PAIB | Poaceae |
Pappostipa sorianoi | PASO | Poaceae |
Perezia recurvata | PERE | Asteraceae |
Poa lanuginosa | POLA | Poaceae |
Poa ligularis | POLI | Poaceae |
Poa spiciformis | POSP | Poaceae |
Rytidosperma virescens | RYVI | Poaceae |
Senecio filaginoides | SEFI | Asteraceae |
Viola magellanica | VIMA | Violaceae |
References
- Pimm, S.L.; Raven, P. Biodiversity: Extinction by numbers. Nature 2000, 403, 843–845. [Google Scholar] [CrossRef] [PubMed]
- DeFries, R.S.; Foley, J.A.; Asner, G.P. Land-use choices: Balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- de Groot, R.; Brander, L.; Van Der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Ser. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Watson, J.; Shanahan, D.F.; Di Marco, M.; Allan, J.; Laurance, W.F.; Sanderson, E.; Mackey, B.; Venter, O. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 2016, 26, 2929–2934. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Peri, P.L.; Nahuelhual, L.; Martínez Pastur, G. Ecosystem Services in Patagonia: A Multi-Criteria Approach for an Integrated Assessment. In Springer Nature: Natural and Social Sciences of Patagonia; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Peri, P.L.; Monelos, L.; Díaz, B.; Mattenet, F.; Huertas, L.; Bahamonde, H.; Rosas, Y.M.; Lencinas, M.V.; Cellini, J.M.; Martínez Pastur, G. Estado y Usos de Los Bosques Nativos de Lenga, Siempreverdes y Mixtos en Santa Cruz: Base Para Su Conservación y Manejo; INTA-Consejo Agrario Provincial (CAP): Río Gallegos, Argentina, 2019. [Google Scholar]
- Peri, P.L.; Ormaechea, S. Relevamiento de Los Bosques Nativos de Ñire (Nothofagus antarctica) en Santa Cruz: Base Para Su Conservación Y Manejo; INTA: Río Gallegos, Argentina, 2013. [Google Scholar]
- Peri, P.L.; Rosas, Y.M.; Ladd, B.; Toledo, S.; Lasagno, R.G.; Martínez Pastur, G. Modelling soil carbon content in South Patagonia and evaluating changes according to climate, vegetation, desertification and grazing. Sustainability 2018, 10, 438. [Google Scholar] [CrossRef] [Green Version]
- Peri, P.L.; Rosas, Y.M.; Ladd, B.; Toledo, S.; Lasagno, R.G.; Martínez Pastur, G. Modeling soil nitrogen content in South Patagonia across a climate gradient, vegetation type, and grazing. Sustainability 2019, 11, 2707. [Google Scholar] [CrossRef] [Green Version]
- Harrison, P.A.; Berry, P.M.; Simpson, G.; Haslett, J.R.; Blicharska, M.; Bucur, M.; Dunford, R.; Egoh, B.; Garcia-Llorente, M.; Geamana, N.; et al. Linkages between biodiversity attributes and ecosystem services: A systematic review. Ecosyst. Serv. 2014, 9, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Haberl, H.; Schulz, N.B.; Plutzar, C.; Erb, K.H.; Krausmann, F.; Loibl, W.; Moser, D.; Sauberer, N.; Weisz, H.; Zechmeister, H.G.; et al. Human appropriation of net primary production and species diversity in agricultural landscapes. Agric. Ecosyst. Environ. 2004, 102, 213–218. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, H.; Krausmann, F.; Gaube, V.; Bondeau, A.; Plutzar, C. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2007, 104, 12942–12947. [Google Scholar] [CrossRef] [Green Version]
- Haberl, H.; Erb, K.-H.; Krausmann, F. Human appropriation of net primary production: Patterns, trends, and planetary boundaries. Annu. Rev. Environ. Resour. 2014, 39, 363–391. [Google Scholar] [CrossRef]
- Haberl, H.; Steinberger, J.K.; Plutzar, C.; Erb, K.-H.; Gaube, V.; Gingrich, S.; Krausmann, F. Natural and socioeconomic determinants of the embodied human appropriation of net primary production and its relation to other resource use indicators. Ecol. Ind. 2012, 23, 222–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, E.M.; Pearsall, D.R.; Currie, W.S. Human appropriated net primary productivity as a metric for land use planning: A case study in the US Great Lakes region. Landsc. Ecol. 2020, 35, 1323–1339. [Google Scholar] [CrossRef]
- Jenkins, G.S.; Haberl, H.; Erb, K.; Nevai, A.L. Global human “predation” on plant growth and biomass. Glob. Ecol. Biogeogr. 2020, 29, 1052–1064. [Google Scholar] [CrossRef]
- Rosas, Y.M.; Peri, P.L.; Lencina, M.V.; Lasagno, R.; Martínez Pastur, G. Improving the knowledge of plant potential biodiversity-ecosystem services links using maps at the regional level in Southern Patagonia. Ecol. Processes 2021, 10, 53. [Google Scholar] [CrossRef]
- Conant, R.T.; Paustian, K. Potential soil carbon sequestration in overgrazed grassland ecosystems. Glob. Biogeochem. Cycles 2002, 16, 1143. [Google Scholar] [CrossRef] [Green Version]
- Peri, P.L. Carbon Storage in Cold Temperate Ecosystems in Southern Patagonia, Argentina. In Biomass and Remote Sensing of Biomass; Atazadeh, I., Ed.; InTech Publisher: Rijeka, Croacia, 2011; pp. 213–226. [Google Scholar]
- Cibils, A.; Borrelli, P. Grasslands of Patagonia. In Grasslands of the World: Plant Production and Protection; Suttie, J., Reynolds, S., Batello, C., Eds.; FAO: Rome, Italy, 2005. [Google Scholar]
- Ormaechea, S.; Peri, P.L.; Cipriotti, P.A.; Distel, R.A. El cuadro de pastoreo en los sistemas extensivos de Patagonia Sur: Percepción y manejo del pastoreo heterogéneo. Ecol. Austral 2019, 29, 166–176. [Google Scholar] [CrossRef]
- Trier Bjerring, A.; Peri, P.L.; Christiansen, R.; Vargas-Bello-Pérez, E.; Hansen, H.H. Rangeland grazing management in Argentine Patagonia. Int. J. Agric. Biol. 2020, 24, 1041–1052. [Google Scholar]
- Peri, P.L.; Rosas, Y.M.; Rivera, E.; Martínez Pastur, G. Lamb and wool provisioning ecosystem services in Southern Patagonia. Sustainability 2021, 13, 8544. [Google Scholar] [CrossRef]
- Del Valle, H.F.; Elissalde, N.O.; Gagliardini, D.A.; Milovich, J. Status of desertification in the Patagonian region: Assessment and mapping from satellite imagery. Arid Land Res. Manag. 1998, 12, 95–121. [Google Scholar] [CrossRef]
- Peri, P.L.; Lasagno, R.; Chartier, M.; Roig, F.; Rosas, Y.M.; Martínez Pastur, G. Soil erosion rates and nutrient loss in rangelands of Southern Patagonia. In The Encyclopedia of Conservation—Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–8. [Google Scholar]
- Peri, P.L.; Lencinas, M.V.; Martinez Pastur, G.; Wardell-Johnson, G.W.; Lasagno, R. Diversity patterns in the steppe of Argentinean Southern Patagonia: Environmental drivers and impact of grazing. In Steppe Ecosystems: Biological Diversity, Management and Restoration; Morales Prieto, M.B., Traba Díaz, J., Eds.; NOVA Science Publishers, Inc.: New York, NY, USA, 2013; pp. 73–95. [Google Scholar]
- Rosas, Y.M.; Peri, P.L.; Bahamonde, H.; Cellini, J.M.; Barrera, M.D.; Huertas Herrera, A.; Lencinas, M.V.; Martínez Pastur, G. Trade-offs between management and conservation for the provision of ecosystem services in the southern Patagonian forests. In Achieving Sustainable Management of Boreal and Temperate Forests; Stanturf, J., Ed.; Burleigh Dodds Series in Agricultural Science: Cambridge, UK, 2020; Chapter 6; 33p. [Google Scholar]
- Oñatibia, G.R. Grazing management and provision of ecosystem services in Patagonian arid rangelands. In Ecosystem Services in Patagonia: A Multi-Criteria Approach for an Integrated Assessment; Peri, P.L., Nahuelhual, L., Martínez Pastur, G., Eds.; Springer: Cham, Switzerland, 2021; pp. 47–74. [Google Scholar]
- Borrelli, P. Producción animal sobre pastizales naturales. In Ganadería Sustentable en la Patagonia Austral; Borrelli, P., Oliva, G., Eds.; Instituto Nacional de Tecnología Agropecuaria: Buenos Aires, Argentina, 2001; pp. 129–160. [Google Scholar]
- Peri, P.L.; Rosas, Y.M.; Ladd, B.; Díaz Delgado, R.; Martínez Pastur, G. Carbon footprint of lamb and wool production at farm gate and the regional scale in Southern Patagonia. Sustainability 2020, 12, e3077. [Google Scholar] [CrossRef] [Green Version]
- Peri, P.L.; Lencinas, M.V.; Bousson, J.; Lasagno, R.; Soler, R.; Bahamonde, H.; Martínez Pastur, G. Biodiversity and ecological long-term plots in Southern Patagonia to support sustainable land management: The case of PEBANPA network. J. Nat. Conserv. 2016, 34, 51–64. [Google Scholar] [CrossRef]
- Running, S.; Mu, Q.; Zhao, M. MOD17A3 MODIS/Terra Gross Primary Productivity Yearly L4 Global 1km SIN Grid; NASA LP DAAC: Greenbelt, MD, USA, 2015. [Google Scholar]
- Krausmann, F.; Erb, K.-H.; Gingrich, S.; Haberl, H.; Bondeau, A.; Gaube, V.; Lauk, C.; Plutzar, C.; Searchinger, T.D. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl. Acad. Sci. USA 2013, 110, 10324–10329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lillesand, T.M.; Kiefer, R.W. Remote Sensing and Image Interpretation, 4th ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- ORNL DAAC. MODIS Collection 5 Land Products Global Subsetting and Visualization Tool; ORNL DAAC: Oak Ridge, TN, USA, 2008. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Fasioli, E.; Díaz, B.G. Cartografía del sistema provincial de áreas protegidas de Santa Cruz (Patagonia Austral, Argentina). Párrafos Geográficos 2011, 10, 174–194. [Google Scholar]
- Demir, S. Comparison of Normality Tests in Terms of Sample Sizes under Different Skewness and Kurtosis Coefficients. Int. J. Assess. Tools Educ. 2022, 9, 397–409. [Google Scholar] [CrossRef]
- Peri, P.L.; Hansen, N.E.; Bahamonde, H.A.; Lencinas, M.V.; Von Müller, A.R.; Ormaechea, S.; Gargaglione, V.; Soler Esteban, R.; Tejera, L.; Lloyd, C.E.; et al. Silvopastoral systems under native forest in Patagonia, Argentina. In Silvopastoral Systems in Southern South America; Peri, P.L., Dube, F., Varella, A., Eds.; Series: Advances in Agroforestry; Springer: Cham, Switzerland, 2016; pp. 117–168. [Google Scholar]
- Lorel, C.; Plutzar, C.; Erb, K.-H.; Mouchet, M. Linking the human appropriation of net primary productivity-based indicators, input cost and high nature value to the dimensions of land-use intensity across French agricultural landscapes. Agric. Ecosyst. Environ. 2019, 283, 106565. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Golluscio, R.A.; Guerschman, J.P.; Cesa, A.; Jouve, V.V.; Garbulsky, M.F. Regional scale relationships between ecosystem structure and functioning. The case of the Patagonian steppes. Glob. Ecol. Biogeogr. 2004, 13, 385–395. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 2002, 66, 197–205. [Google Scholar] [CrossRef]
- Wright, D.H. Species-energy theory: An extension of species-area theory. Oikos 1983, 41, 496–506. [Google Scholar] [CrossRef] [Green Version]
- Cusens, J.; Wright, S.D.; McBride, P.D.; Gillman, L.N. What is the form of the productivity–animal-species-richness relationship? A critical review and metaanalysis. Ecology 2012, 93, 2241–2252. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Ehrlich, P.R.; Ehrlich, A.H.; Matson, P.A. Human appropriation of the products of photosynthesis. Bioscience 1986, 36, 363–373. [Google Scholar] [CrossRef]
- Caride, C.; Piñeiro, G.; Paruelo, J.M. How does agricultural management modify ecosystem services in the argentine Pampas? The effects on soil C dynamics. Agric. Ecosyst. Environ. 2012, 154, 23–33. [Google Scholar] [CrossRef]
- Baeza, S.; Paruelo, J.M. Spatial and temporal variation of human appropriation of net primary production in the Rio de la Plata grasslands. ISPRS J. Photogramm. Remote Sens. 2018, 145, 238–249. [Google Scholar] [CrossRef]
- Aguiar, M.R.; Sala, O.E. Interactions among grasses, shrubs, and herbivores in Patagonian grass-shrub steppes. Ecol. Austral 1998, 8, 201–210. [Google Scholar]
- Oñatibia, G.R.; Aguiar, M.R. Continuous moderate grazing management promotes biomass production in Patagonian arid rangelands. J. Arid Environ. 2016, 125, 73–79. [Google Scholar] [CrossRef]
- Martínez Pastur, G.; Peri, P.L.; Lencinas, M.V.; Garcia-Llorente, M.; Nartin-Lopez, B. Spatial patterns of cultural ecosystem services provision in Southern Patagonia. Landsc. Ecol. 2016, 31, 383–399. [Google Scholar] [CrossRef]
Ecological Area | Stocking Rate (ewes/ha/year) | Net Primary Production (g C/m2/year) | Lamb Yield (gr lamb/m2/year) | Wool Yield (gr Greasy wool/m2/year) | Net Carbon Balance (kg C/ha/year) | Potential Biodiversity of Plant Species (%) |
---|---|---|---|---|---|---|
Andean Region | 0.80 d (0.40–1.20) | 189.6 b (30.9–689.6) | 0.47 c (0.27–0.69) | 0.14 c (0.12–0.19) | 780.8 c (401.3–1073.1) | 45.73 a (34.3–76.1) |
Humid Magellanic Steppe | 0.63 cd (0.25–0.78) | 294.0 c (78.2–714.2) | 0.52 d (0.35–0.65) | 0.16 d (0.12–0.18) | 203.7 b (130.8–244.2) | 58.59 bc (48.1–68.7) |
Dry Magellanic Steppe | 0.44 bc (0.17–0.62) | 199.5 b (63.9–565.7) | 0.45 c (0.31–0.61) | 0.15 c (0.13–0.18) | 110.3 ab (18.8–228.1) | 68.83 c (58.2–75.3) |
Mata Negra Thicket | 0.29 ab (0.14–0.52) | 142.4 a (57.5–432.3) | 0.40 b (0.28–0.55) | 0.13 b (0.12–0.16) | 168.5 b (42.6–330.5) | 69.06 c (54.1–77.1) |
Central Plateau | 0.17 a (0.10–0.24) | 111.7 a (46.5–293.1) | 0.35 a (0.25- 0.49) | 0.13 a (0.10–0.15) | −7.11 a (−93.6–103.9) | 58.60 b (46.1–76.4) |
p-value | 47.13 (<0.001) | 34.29 (<0.0001) | 97.23 (<0.0001) | 90.45 (<0.0001) | 107.62 (<0.0001) | 21.39 (<0.0001) |
Ecological Areas | n | HANPP (%) |
---|---|---|
Andean Region | 17 | 8.73 bc |
Humid Magellanic Steppe | 4 | 3.93 a |
Dry Magellanic Steppe | 6 | 6.63 ab |
Mata Negra Thicket | 13 | 9.92 c |
Central Plateau | 77 | 12.33 d |
F (p-value) | 117 | 25.85 (<0.001) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peri, P.L.; Rosas, Y.M.; Pastur, G.M. Human Appropriation of Net Primary Production Related to Livestock Provisioning Ecosystem Services in Southern Patagonia. Sustainability 2022, 14, 7617. https://doi.org/10.3390/su14137617
Peri PL, Rosas YM, Pastur GM. Human Appropriation of Net Primary Production Related to Livestock Provisioning Ecosystem Services in Southern Patagonia. Sustainability. 2022; 14(13):7617. https://doi.org/10.3390/su14137617
Chicago/Turabian StylePeri, Pablo L., Yamina M. Rosas, and Guillermo Martínez Pastur. 2022. "Human Appropriation of Net Primary Production Related to Livestock Provisioning Ecosystem Services in Southern Patagonia" Sustainability 14, no. 13: 7617. https://doi.org/10.3390/su14137617
APA StylePeri, P. L., Rosas, Y. M., & Pastur, G. M. (2022). Human Appropriation of Net Primary Production Related to Livestock Provisioning Ecosystem Services in Southern Patagonia. Sustainability, 14(13), 7617. https://doi.org/10.3390/su14137617