Adsorption of Methylene Blue on Azo Dye Wastewater by Molybdenum Disulfide Nanomaterials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Preparation of Adsorbent
2.3. Batch Adsorption Experiments
3. Results
3.1. Sample Characterization
3.2. Adsorptive Property
3.3. Adsorption Isotherm Models
3.4. Kinetic Study
3.5. Effect of pH on MB Adsorption
3.6. Effect of Recycling of MoS2-1 on Adsorption
3.7. Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajoriya, S.; Bargole, S.; George, S. Treatment of textile dyeing industry effluent using hydrodynamic cavitation in combination with advanced oxidation reagents. J. Hazard. Mater. 2018, 344, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.M.; Shao, G.Y.; Zhang, W.J.; Chen, J.J.; Qu, Y.X.; Zhang, F.; Tian, S.; Zhou, Z.; Ren, Z. The degradation of printing and dyeing wastewater by manganese-based catalysts. Sci. Total Environ. 2022, 828, 15439. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Wang, Y.; Zan, F.; Khanal, S.K.; Hao, T. Biogenic sulfide for azo dye decolorization from textile dyeing wastewater. Chemosphere 2021, 283, 131–158. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.Q.; Liu, S.H.; Pei, Y.; Luo, X.G. Growing Pd NPs on cellulose microspheres via in-situ reduction for catalytic decolorization of methylene blue. Int. J. Biol. Macromol. 2021, 166, 1419–1428. [Google Scholar] [CrossRef]
- Alvarenga, G.; Lima, J.P.; Goszczynski, A.; Rosa, C.H. Methylene blue adsorption by timbaúva (Enterolobium contortisiliquum)-erived materials. Environ. Sci. Pollut. Res. 2020, 27, 27893–27903. [Google Scholar] [CrossRef]
- Obiora-Okafo, I.A.; Onukwuli, O.D. Characterization and optimization of spectrophotometric colour removal from dye containing wastewater by Coagulation-Flocculation. Pol. J. Chem. Technol. 2018, 4, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Dai, Y.; Han, X.Y. Decolorization of azo dye C.I. Reactive Black 5 by ozonation in aqueous solution: Influencing factors, degradation products, reaction pathway and toxicity assessment. Water Sci. Technol. 2016, 73, 1500–1510. [Google Scholar] [CrossRef]
- Chen, P.; Liang, Y.M.; Xu, Y.F.; Zhao, Y.L.; Song, S.X. Synchronous photosensitized degradation of methyl orange and methylene blue in water by visible-light irradiation. J. Mol. Liq. 2021, 334, 116159. [Google Scholar] [CrossRef]
- Ertugay, N.; Acar, F.N. Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arabian J. Chem. 2017, 10, 1158–1163. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.Q.; Xiao, X.; Ye, Z.W.; Guan, Z.J.; Sun, S.Y.; Ren, J.; Yan, P.F. Research on magnetic separation for complex nickel deep removal and magnetic seed recycling. Environ. Sci. Pollut. Res. 2017, 24, 9294–9304. [Google Scholar] [CrossRef] [Green Version]
- Dhananasekaran, S.; Palanivel, R.; Pappu, S. Adsorption of Methylene Blue, Bromophenol Blue, and Coomassie Brilliant Blue by α-chitin nanoparticles. J. Adv. Res. 2016, 7, 113–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucia, D.D.R.A.; Carissimi, E.; Dotto, G.L.; Sander, H.; Feris, L.A. Biosorption of rhodamine B dye from dyeing stones effluents using the green microalgae Chlorella pyrenoidosa. J. Clean. Prod. 2018, 198, 1302–1310. [Google Scholar]
- Kheddo, A.; Rhyman, L.; Elzagheid, M.I. Adsorption of synthetic dyed wastewater using activated carbon from rice husk. SN Appl. Sci. 2020, 2, 2170. [Google Scholar] [CrossRef]
- Ayati, A.; Shahrak, M.N.; Tanhaei, B.; Sillanpaa, M. Emerging adsorptive removal of azo dye by metal-organic frameworks. Chemosphere 2016, 160, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Khan, T.A.; Islam, A.; Tabrez, U. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon. Bioresour. Technol. 2022, 354, 127168. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, Z.M.; Qamar, D.; Faisal, N.; Naveed, Z.M.; Munawar, I.; Faizan, N.M. Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. J. Mater. Res. Technol. 2019, 8, 713–725. [Google Scholar]
- Liu, F.; Chung, S.; Oh, G.; Seo, T.S. Three-Dimensional Graphene Oxide Nanostructure for Fast and Efficient Water-Soluble Dye Removal. ACS Appl. Mater. Interfaces 2012, 4, 922–927. [Google Scholar] [CrossRef]
- Gupta, A.; Cobas, H.V.; Gupta, N.K. Sono-adsorption of organic dyes onto CoFe2O4/Graphene oxide nanocomposite. Surf. Interfaces 2020, 20, 100563. [Google Scholar] [CrossRef]
- Shu, Y.J.; Zhang, W.B.; Cai, H.H.; Yang, Y.; Yu, X.; Gao, Q. Expanding the interlayers of molybdenum disulfide toward the highly sensitive sensing of hydrogen peroxide. Nanoscale 2019, 11, 6644–6653. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, J.; Ding, C.F.; Xu, C.F.; Cheng, Y.M.; Tang, Z.; Pan, F.K.; Liu, J.Y.; Zhu, S.G. Synthesis and characterization of Fe-Al-Ni ternary composite metal oxides as highly efficient adsorbent for fluoride removal from water. Desalination Water Treat. 2021, 229, 243–251. [Google Scholar] [CrossRef]
- Yuan, W.; Kuang, J.; Yu, M.; Huang, Z.; Zhu, L. Facile preparation of mos2@kaolin composite by one-step hydrothermal method for efficient removal of pb(ii). J. Hazard. Mater. 2020, 405, 124261. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.F.; Fan, X.R.; Qiang, W.; Yue, S. An adsorption isotherm model for adsorption performance of silver-loaded activated carbon. Therm. Sci. 2017, 21, 1645–1649. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghouti, M.A.; Ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zheng, L.; Liu, H. A novel carbon aerogel prepared for adsorption of copper(II) ion in water. J. Porous Mater 2017, 24, 1575–1580. [Google Scholar] [CrossRef]
- Yu, W.B.; Xu, H.F.; Roden, E.E.; Wan, Q. Efficient adsorption of iodide from water by chrysotile bundles with wedge-shaped nanopores. Appl. Clay Sci. 2019, 183, 105331. [Google Scholar] [CrossRef]
- Dong, W.; Liang, K.; Qin, Y.; Ma, H.; Zhao, X.; Zhang, L.; Zhu, S.; Yu, Y.; Bian, D.; Yang, J. Hydrothermal Conversion of Red Mud into Magnetic Adsorbent for Effective Adsorption of Zn(II) in Water. Appl. Sci. 2019, 9, 1519. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.F.; Zhu, T.Y.; Liu, X.; Zhang, W.Q. Simultaneous oxidation and adsorption of As(III) from water by cerium modified chitosan ultrafine nanobiosorbent. J. Hazard. Mater. 2016, 308, 1–10. [Google Scholar] [CrossRef]
- Su, M.H.; Li, H.; Liu, Z.Q.; Peng, H.R.; Huang, S.; Zhou, Y.; Liao, C.Z.; Song, G.; Chen, D.Y. Highly-efficient and easy separation of γ-Fe2O3 selectively adsorbs U(VI) in waters. Environ. Res. 2022, 210, 112917. [Google Scholar] [CrossRef]
- Hossini, H.; Soltani, R.D.C.; Safari, M.; Maleki, A.; Rezaee, R.; Ghanbari, R. The application of a natural chitosan/bone char composite in adsorbing textile dyes from water. Chem. Eng. Commun. 2017, 204, 1082–1093. [Google Scholar] [CrossRef]
- Nnaji, C.C.; Agim, A.E.; Mama, C.N.; Emenike, P.C.; Ogarekpe, N.M. Equilibrium and thermodynamic investigation of biosorption of nickel from water by activated carbon made from palm kernelchaff. Sci. Rep. 2021, 11, 7808. [Google Scholar] [CrossRef]
- Jian, N.G.; Dai, Y.Y.; Wang, Y.L.; Qi, F.F.; Li, S.J.; Wu, Y.J. Preparation of polydopamine nanofibers mat as a recyclable and efficient adsorbent for simultaneous adsorption of multiple tetracyclines in water. J. Clean. Prod. 2021, 320, 128875. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, J.; Liu, W.; Li, Z.Y.; He, K. Efficient removal of dyes from dyeing wastewater by powder activated charcoal/titanate nanotube nanocomposites: Adsorption and photoregeneration. Environ. Sci. Pollut. Res. 2019, 26, 10263–10273. [Google Scholar] [CrossRef] [PubMed]
- Song, F.M.; Ge, H.G.; Shi, J.; Liu, Z.F.; Li, C.; Tang, B. RETRACTED ARTICLE: Adsorption kinetics and thermodynamics of Ni (II) by Pisha sandstone. J. Nanoparticle Res. 2020, 22, 179. [Google Scholar] [CrossRef]
- Sun, B.; Cheng, Y.M.; Xu, F.W.; Liu, F.; Zhang, J.; Tang, Z.; Wang, Y.; Liu, J.Y.; Zhu, S.G.; Cai, X.L. Study on the adsorption performance of Ni-Mo-S nanomaterials for Congo Red in azo wastewater. Desalination Water Treat. 2021, 234, 267–276. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Q.M.; Jia, F.F.; Song, S.X. Adsorption of heavy metals on molybdenum disulfide in water: A critical review. J. Mol. Liq. 2019, 292, 111390. [Google Scholar] [CrossRef]
- Han, S.C.; Liu, K.R.; Hu, L.F.; Teng, F.; Yu, P.P.; Zhu, Y.F. Superior Adsorption and Regenerable Dye Adsorbent Based on Flower-Like Molybdenum Disulfide Nanostructure. Sci. Rep. 2017, 7, 43599. [Google Scholar] [CrossRef]
- Lin, S.N.; Zhang, T.; Fu, D.X.; Zhou, X.Y. Utilization of magnesium resources in salt lake brine and catalytic degradation of dye wastewater by doping cobalt and nickel. Sep. Purif. Technol. 2021, 270, 118808. [Google Scholar] [CrossRef]
- Ma, W.; Row, K.H. Solid-Phase Extraction of Catechins from Green Tea with Deep Eutectic Solvent Immobilized Magnetic Molybdenum Disulfide Molecularly Imprinted Polymer. Molecules 2020, 25, 280. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, R.H.; Huo, Y.Z.; Ai, Y.J.; Gu, P.C.; Wang, X.X.; Li, Q.; Yu, S.J.; Chen, Y.T.; Yu, Z.M.; et al. Efficient elimination of Cr(VI) from aqueous solutions using sodium dodecyl sulfate intercalated molybdenum disulfide. Ecotoxicol. Environ. Saf. 2019, 175, 251–262. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.X.; Zhao, G.X.; Song, G.; Chen, D.Y.; Chen, H.X.; Xie, J.; Hayat, T.; Alsaedi, A.; Wang, X.K. Polyvinylpyrrolidone and polyacrylamide intercalated molybdenum disulfide as adsorbents for enhanced removal of chromium(VI) from aqueous solutions. Chem. Eng. J. 2018, 334, 569–578. [Google Scholar] [CrossRef]
- Shahzad, A.; Jang, J.; Lim, S.R.; Lee, D.S. Unique selectivity and rapid uptake of molybdenum-disulfide-functionalized mxene nanocomposite for mercury adsorption. Environ. Res. 2020, 182, 109005. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Tong, S.; Ge, M.; Zuo, J.; Cao, C.; Song, W. One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal. J. Mater. Chem. A 2013, 1, 959–965. [Google Scholar] [CrossRef]
- Massey, A.T.; Gusain, R.; Kumari, S.; Khatri, O.P. Hierarchical microspheres of MoS2 Nanosheets: Efficient and Regenerative Adsorbent for Removal of Water-Soluble Dyes. Ind. Eng. Chem. Res. 2016, 55, 7124–7131. [Google Scholar] [CrossRef]
- Tong, S.; Deng, H.; Wang, L.; Huang, T.; Liu, S.; Wang, J. Multi-functional nanohybrid of ultrathin molybdenum disulfide nanosheets decorated with cerium oxide nanoparticles for preferential uptake of lead (II) ions. Chem. Eng. J. 2018, 335, 22–31. [Google Scholar] [CrossRef]
Elements | Weight% | Atomic% |
---|---|---|
O | 0.33 | 18.63 |
S | 1.89 | 53.29 |
Mo | 2.97 | 28.08 |
Total | 100 |
IsothermModel | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Parameters | (L/mg) | (mg/g) | n | |||
1.25 | 200 | 0.994 | 7.299 | 1.55 | 0.746 |
Adsorbents | qmax (mg/g) | Reference |
---|---|---|
Carbon aerogel | 55.25 | [24] |
Chrysotile bundles with wedge-shaped nanopores | 179.24 | [25] |
Hydrothermal conversion of red mud into magnetic adsorbent | 89.6 | [26] |
Cerium modified chitosan ultrafine nanobiosorbent | 57.5 | [27] |
γ-Fe2O3 | 87.35 | [28] |
Natural chitosan/bone char composite | 21.18 | [29] |
Activated carbon made from palm kernel chaff | 120.6 | [30] |
Polydopamine nanofibers mat | 161.3 | [31] |
Powder activated charcoal/titanate nanotube nanocomposites | 173.3 | [32] |
MoS2-1 | 200 | Present work |
Kinetics Model Pseudo First-Order | Pseudo Second-Order | ||||
---|---|---|---|---|---|
k1/min−1 0.126 | qe/mg·g−1 25.084 | R2 0.974 | k2/g·(mg·min)−1 0.011 | qe/mg·g−1 47.619 | R2 0.995 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, P.; Xu, F.; Sun, B.; Hong, G.; Bao, L. Adsorption of Methylene Blue on Azo Dye Wastewater by Molybdenum Disulfide Nanomaterials. Sustainability 2022, 14, 7585. https://doi.org/10.3390/su14137585
Wang X, Zhang P, Xu F, Sun B, Hong G, Bao L. Adsorption of Methylene Blue on Azo Dye Wastewater by Molybdenum Disulfide Nanomaterials. Sustainability. 2022; 14(13):7585. https://doi.org/10.3390/su14137585
Chicago/Turabian StyleWang, Xiangxiang, Pengyu Zhang, Fangwen Xu, Bai Sun, Guiyun Hong, and Lining Bao. 2022. "Adsorption of Methylene Blue on Azo Dye Wastewater by Molybdenum Disulfide Nanomaterials" Sustainability 14, no. 13: 7585. https://doi.org/10.3390/su14137585