Thermal Properties of Novel Phase-Change Materials Based on Tamanu and Coconut Oil Encapsulated in Electrospun Fiber Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermophysical Studies
2.2. PCM Emulsions and Mixtures
2.3. PCM Electrospun Fiber Matrix
3. Results and Discussion
3.1. Thermophysical Characterization of Pure PCMs
3.2. Thermophysical Characterization of PCM Emulsions
3.3. Thermophysical Characterization of PCM Electrospun Fiber Matrix
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Parameter | Description | Unit |
PCM | Phase change material | - |
TES | Thermal energy storage | - |
PCL | Polycaprolactone | - |
SDS | Sodium dodecyl sulfate | - |
DSC | Differential scanning calorimetry | - |
(L)m,encap.PCM | Latent heat of melting for encapsulated PCM | (J/g) |
(L)s,encap.PCM | Latent heat of solidification for encapsulated PCM | (J/g) |
(L)m,PCM | Latent heat of melting for PCM | (J/g) |
(L)s,PCM | Latent heat of solidification for PCM | (J/g) |
Tm | Melting temperature | (°C) |
Ts | Solidification temperature | (°C) |
n | Encapsulation ratio | (%) |
ε | Encapsulation efficiency | (%) |
w/v | Weight/volume | (% g/mL) |
v/v | Volume/volume | (% mL/mL) |
References
- IEA. 2019 Global Status Report for Buildings and Construction; International Energy Agency: Paris, France, 2019; Volume 224, ISBN 9789280737684. [Google Scholar]
- Cabeza, L.F.; Martorell, I.; Miró, L.; Fernández, A.I.; Barreneche, C. Introduction to thermal energy storage (TES) systems. In Advances in Thermal Energy Storage Systems: Methods and Applications; Woodhead Publishing: Sawston, UK, 2015; ISBN 9781782420965. [Google Scholar]
- Kośny, J. PCM-Enhanced Building Components; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-14285-2. [Google Scholar]
- Paroutoglou, E.; Afshari, A.; Bergsøe, N.C.; Fojan, P.; Hultmark, G. A PCM based cooling system for office buildings: A state of the art review. E3S Web Conf. 2019, 111, 01026. [Google Scholar] [CrossRef] [Green Version]
- Sarbu, I.; Sebarchievici, C. A comprehensive review of thermal energy storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Bruno, F.; Belusko, M.; Liu, M.; Tay, N.H.S. Using solid-liquid phase change materials (PCMs) in thermal energy storage systems. In Advances in Thermal Energy Storage Systems; Woodhead Publishing: Sawston, UK, 2015; pp. 201–246. [Google Scholar] [CrossRef]
- Casini, M.; Temperature, M.; Heat, L.; Phase, I.; Material, C.; Hydrate, S.; Thermal, L.; Storage, T.E.; Material, P.C.; Conductivity, T. Phase-Change Materials Organic Phase Change Material. Available online: https://www.sciencedirect.com/science/article/pii/B9780081006351000058 (accessed on 8 May 2022).
- Png, Z.M.; Soo, X.Y.D.; Chua, M.H.; Ong, P.J.; Suwardi, A.; Tan, C.K.I.; Xu, J.; Zhu, Q. Strategies to reduce the flammability of organic phase change Materials: A review. Sol. Energy 2022, 231, 115–128. [Google Scholar] [CrossRef]
- Arsana, M.E.; Temaja, I.W.; Widiantara, I.B.G.; Sukadana, I.B.P. Corn oil phase change material (PCM) in frozen food cooling machine to improve energy efficiency. J. Phys. Conf. Ser. 2020, 1450, 012107. [Google Scholar] [CrossRef]
- Rasta, I.M.; Wardana, I.N.G.; Hamidi, N.; Sasongko, M.N. The Role of Soya Oil Ester in Water-Based PCM for Low Temperature Cool Energy Storage. J. Thermodyn. 2016, 2016, 5384640. [Google Scholar] [CrossRef] [Green Version]
- Irfan, A.M. Thermophysical Characteristics of VCO-Soybean Oil Mixture as Phase Change Material (PCM) using T-History Method. J. Phys. Conf. Ser. 2019, 1244, 012033. [Google Scholar] [CrossRef] [Green Version]
- Rasta, I.M.; Suamir, I.N. The role of vegetable oil in water based phase change materials for medium temperature refrigeration. J. Energy Storage 2018, 15, 368–378. [Google Scholar] [CrossRef]
- Kahwaji, S.; White, M.A. Edible oils as practical phase change materials for thermal energy storage. Appl. Sci. 2019, 9, 1627. [Google Scholar] [CrossRef] [Green Version]
- Faraj, K.; Faraj, J.; Hachem, F.; Bazzi, H.; Khaled, M.; Castelain, C. Analysis of underfloor electrical heating system integrated with coconut oil-PCM plates. Appl. Therm. Eng. 2019, 158, 113778. [Google Scholar] [CrossRef]
- Saleel, C.A.; Mujeebu, M.A.; Algarni, S. Coconut oil as phase change material to maintain thermal comfort in passenger vehicles: An experimental analysis. J. Therm. Anal. Calorim. 2019, 136, 629–636. [Google Scholar] [CrossRef]
- Irsyad, M.; Harmen. Heat transfer characteristics of coconut oil as phase change material to room cooling application. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Tangerang, Indonesia, 3–5 October 2016. [Google Scholar]
- Silalahi, A.O.; Sukmawati, N.; Sutjahja, I.M.; Kurnia, D.; Wonorahardjo, S. Thermophysical Parameters of Organic PCM Coconut Oil from T-History Method and Its Potential as Thermal Energy Storage in Indonesia. IOP Conf. Ser. Mater. Sci. Eng. 2017, 214, 12034. [Google Scholar] [CrossRef] [Green Version]
- Silalahi, A.O.; Sutjahja, I.M.; Kurnia, D.; Wonorahardjo, S. Thermophysical parameters of organic PCM coconut oil from the T-history method and its variation with the chemical dopant. J. Phys. Conf. Ser. 2019, 1204, 012055. [Google Scholar] [CrossRef]
- Putri, W.A.; Fahmi, Z.; Sutjahja, I.M.; Kurnia, D.; Wonorahardjo, S. Thermophysical parameters of coconut oil and its potential application as the thermal energy storage system in Indonesia. J. Phys. Conf. Ser. 2016, 739, 12065. [Google Scholar] [CrossRef] [Green Version]
- Sri Rahayu, A.U.; Putri, W.A.; Sutjahja, I.M.; Kurnia, D.; Wonorahardjo, S. The effectiveness of organic PCM based on lauric acid from coconut oil and inorganic PCM based on salt hydrate CaCl2·6H2O as latent heat energy storage system in Indonesia. J. Phys. Conf. Ser. 2016, 739, 012119. [Google Scholar] [CrossRef]
- Sutjahja, I.M.; Silalahi, A.O.; Kurnia, D.; Wonorahardjo, S. The role of particle dopant to the thermal conductivities of PCM coconut oil by means of the T-history method. J. Phys. Conf. Ser. 2019, 1204, 012156. [Google Scholar] [CrossRef]
- Wonorahardjo, S.; Sutjahja, I.M.; Kurnia, D. Potential of Coconut Oil for Temperature Regulation in Tropical Houses. J. Eng. Phys. Thermophys. 2019, 92, 80–88. [Google Scholar] [CrossRef]
- Wonorahardjo, S.; Sutjahja, I.M.; Kurnia, D.; Fahmi, Z.; Putri, W.A. Potential of thermal energy storage using coconut oil for air temperature control. Buildings 2018, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Alqahtani, T.; Mellouli, S.; Bamasag, A.; Askri, F.; Phelan, P.E. Experimental and numerical assessment of using coconut oil as a phase-change material for unconditioned buildings. Int. J. Energy Res. 2020, 44, 5177–5196. [Google Scholar] [CrossRef]
- Jeon, J.; Park, J.H.; Wi, S.; Yang, S.; Ok, Y.S.; Kim, S. Characterization of biocomposite using coconut oil impregnated biochar as latent heat storage insulation. Chemosphere 2019, 236, 124269. [Google Scholar] [CrossRef]
- Udangawa, W.M.R.N.; Willard, C.F.; Mancinelli, C.; Chapman, C.; Linhardt, R.J.; Simmons, T.J. Coconut oil-cellulose beaded microfibers by coaxial electrospinning: An eco-model system to study thermoregulation of confined phase change materials. Cellulose 2019, 26, 1855–1868. [Google Scholar] [CrossRef]
- Oktay, B.; Baştürk, E.; Kahraman, M.V.; Apohan, N.K. Designing Coconut Oil Encapsulated Poly(stearyl methacrylate-co-hydroxylethyl metacrylate) Based Microcapsule for Phase Change Materials. ChemistrySelect 2019, 4, 5110–5115. [Google Scholar] [CrossRef]
- Németh, B.; Németh, Á.S.; Ujhidy, A.; Tóth, J.; Trif, L.; Gyenis, J.; Feczkó, T. Fully bio-originated latent heat storing calcium alginate microcapsules with high coconut oil loading. Sol. Energy 2018, 170, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Saraç, E.G.; Öner, E.; Kahraman, M.V. Microencapsulated organic coconut oil as a natural phase change material for thermo-regulating cellulosic fabrics. Cellulose 2019, 26, 8939–8950. [Google Scholar] [CrossRef]
- Uysal, D.; Dilara, Ç.; Eva, B.; Ángeles, B.M.; Jaime, G.; Pablo, D. Annals of the University of Oradea Fascicle of Textiles; Leatherwork Microencapsulation of Bio-Degradable pcm Using Coconut Oil and Ethyl Celulose. pp. 29–32. Available online: http://textile.webhost.uoradea.ro/Annals/Vol%20XX%20nr.%202-2019/Textile/Art.%20no.%20373%20pag.%2029-32.pdf (accessed on 8 May 2022).
- Irsyad, M.; Indartono, Y.S.; Suwono, A.; Pasek, A.D. Thermal characteristics of non-edible oils as phase change materials candidate to application of air conditioning chilled water system. IOP Conf. Ser. Mater. Sci. Eng. 2015, 88, 012051. [Google Scholar] [CrossRef]
- Dinesh, K.; Tamilvanan, A.; Vaishnavi, S.; Gopinath, M.; Mohan, K.S.R. Biodiesel production using Calophyllum inophyllum (Tamanu) seed oil and its compatibility test in a CI engine. Biofuels 2019, 10, 347–353. [Google Scholar] [CrossRef]
- Raj, M.T.; Kandasamy, M.K.K. Tamanu oil-an alternative fuel for variable compression ratio engine. Int. J. Energy Environ. Eng. 2012, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Yarrapragada, K.S.S.R.; Krishna, B.B. Impact of tamanu oil-diesel blend on combustion, performance and emissions of diesel engine and its prediction methodology. J. Brazil. Soc. Mech. Sci. Eng. 2017, 39, 1797–1811. [Google Scholar] [CrossRef]
- Rao, Y.K.; Krishna, B.B. Modeling diesel engine fueled with tamanu oil-Diesel blend by hybridizing neural network with firefly algorithm. Renew. Energy 2019, 134, 1200–1212. [Google Scholar] [CrossRef]
- Mohanraj, T.; Mohan Kumar, K.M. Operating characteristics of a variable compression ratio engine using esterified tamanu oil. Int. J. Green Energy 2013, 10, 285–301. [Google Scholar] [CrossRef]
- Ginigini, J.; Lecellier, G.J.; Nicolas, M.; Nour, M.; Hnawia, E.; Lebouvier, N.; Herbette, G.; Lockhart, P.; Raharivelomanana, P. Chemodiversity of Calophyllum inophyllum L. oil bioactive components related to their specific geographical distribution in the South Pacific region. PeerJ 2019, 2019, e6896. [Google Scholar] [CrossRef] [Green Version]
- Paroutoglou, E.; Afshari, A.; Fojan, P.; Hultmark, G. Investigation of Thermal Behavior of Paraffins, Fatty Acids, Salt Hydrates and Renewable Based Oils as PCM. Available online: https://www.atlantis-press.com/proceedings/ires-20/125952227 (accessed on 8 May 2022).
- Rasband, W.S. ImageJ. Available online: http://imagej.nih.gov/ij/ (accessed on 10 February 2021).
- Paroutoglou, E.; Fojan, P.; Gurevich, L.; Hultmark, G.; Afshari, A. Thermal Analysis of Organic and Nanoencapsulated Electrospun Phase Change Materials. Energies 2021, 14, 995. [Google Scholar] [CrossRef]
- Tipvarakarnkoon, T.; Blochwitz, R.; Senge, B. Rheological Properties and Phase Change Behaviors of Coconut fats and Oils. 2008. Available online: https://nordicrheologysociety.org/Content/Transactions/2008/Posters/Tipvarakarnkoon%20et%20al.pdf (accessed on 8 May 2022).
- Maruyama, J.M.; Soares, F.A.S.D.M.; D’Agostinho, N.R.; Gonçalves, M.I.A.; Gioielli, L.A.; Da Silva, R.C. Effects of emulsifier addition on the crystallization and melting behavior of palm olein and coconut oil. J. Agric. Food Chem. 2014, 62, 2253–2263. [Google Scholar] [CrossRef] [PubMed]
- Wiyani, L.; Aladin, A.; Yani, S. Rahmawati Stability of virgin coconut oil emulsion with mixed emulsifiers Tween 80 and Span 80. ARPN J. Eng. Appl. Sci. 2016, 11, 5198–5202. [Google Scholar]
- da Silva Gulão, E.; de Souza, C.J.F.; da Costa, A.R.; da Rocha-Leão, M.H.M.; Garcia-Rojas, E.E. Stability and rheological behavior of coconut oil-in-water emulsions formed by biopolymers. Polimeros 2018, 28, 413–421. [Google Scholar] [CrossRef]
- Urbánková, L.; Kašpárková, V.; Egner, P.; Rudolf, O.; Korábková, E. Caseinate-stabilized emulsions of black cumin and tamanu oils: Preparation, characterization and antibacterial activity. Polymers 2019, 11, 1951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamadi, P.S.; Hivechi, A.; Bahrami, H.; Hemmatinegad, N.; Milan, P.B. Antibacterial and biological properties of coconut oil loaded poly(ε-caprolactone)/gelatin electrospun membranes. J. Ind. Text. 2021, 1528083721991595. [Google Scholar] [CrossRef]
- Jaganathan, S.K.; Mohan Prasath, M.; Fauzi Ismail, A.; Manikandan, A.; Gomathi, N. Production and hemocompatibility assessment of novel electrospun polyurethane nanofibers loaded with dietary virgin coconut oil for vascular graft applications. J. Bioact. Compat. Polym. 2018, 33, 210–223. [Google Scholar] [CrossRef]
PCM | Mixing Ratio Water:(Oil:Emulsifier) | Emulsifier |
---|---|---|
Coconut oil | 1:(1:1)2 | 5% v/v Tween 20 |
1:(1:1)5 | ||
1:(2:1)3 | ||
1:(4:1)3 | 5% v/v Tween 80 | |
1:(2:1)4 | ||
1:(3:1)4 | ||
1:(5:1)4 | ||
1:(1:1)5 | ||
1:(2:1)5 | ||
Tamanu oil | 1:(5:1)3 | 5% v/v Tween 20 |
1:(5:1)4 | ||
1:(5:1)5 | ||
1:(1:1)3 | 5% v/v Tween 80 | |
1:(2:1)3 | ||
1:(3:1)3 | ||
1:(5:1)3 | ||
1:(3:1)4 | ||
1:(4:1)4 | ||
1:(2:1)5 | ||
1:(1:1)2 | ||
PCM | Mixing Ratio (PCM:PCM) | Emulsifier |
Coconut oil–tamanu oil | 90% c.o.−10% t.o. | - |
70% c.o.−30% t.o. | ||
50% c.o.−50% t.o. | ||
30% c.o.−70% t.o. | ||
10% c.o.−90% t.o. |
Case | Sheath Solution Concentration (%w/v) | Flow Rate (mL/h) Core Solution | Flow Rate (mL/h) Sheath Solution |
---|---|---|---|
1st | 9% | 0.3 | 0.6 |
2nd | 9% | 0.5 | 0.5 |
3rd | 12% | 0.5 | 0.5 |
PCM | Tamanu Oil (t.o.) | Coconut Oil (c.o.) | Tamanu Oil (t.o.) and Coconut Oil (c.o.) | Tamanu Oil (t.o.) and Coconut Oil (c.o.) and Commercial PCM | |||
---|---|---|---|---|---|---|---|
% | 100% (t.o.) | 100% (c.o.) | 30% (t.o.) | 70% (c.o.) | 15% (t.o.) | 35% (c.o.) | 50% RT15 |
15% (t.o.) | 35% (c.o.) | 50% RT18 | |||||
15% (t.o.) | 35% (c.o.) | 50% PT15 | |||||
15% (t.o.) | 35% (c.o.) | 50% PT18 |
Materials | Mixing Ratio Water:(Oil: Emulsifier) | Melting Temperature (°C) | Melting Enthalpy (kJ/kg) | Solidification Temperature (°C) | Solidification Enthalpy (kJ/kg) | Average Emulsion Size (um) |
---|---|---|---|---|---|---|
Coconut oil Tween 20 | 1:(1:1)2 | 23.08 | 19.69 | 3.30 | 22.28 | 10.5 ± 0.9 |
1:(1:1)5 | 23.19 | 24.52 | 4.56 | 31.04 | 10.1 ± 0.8 | |
1:(2:1)3 | 23.16 | 24.32 | 4.63 | 27.74 | 10 ± 0.9 | |
Coconut oil Tween 80 | 1:(4:1)3 | 23.08 | 31.92 | 4.58 | 37.91 | 17.4 ± 2.8 |
1:(2:1)4 | 23.31 | 27.11 | 4.54 | 31.54 | 7.6 ± 0.3 | |
1:(3:1)4 | 23.26 | 33.29 | 4.43 | 37.27 | 12 ± 0.9 | |
1:(5:1)4 | 23.04 | 29.49 | 4.30 | 32.65 | 8.8 ± 0.5 | |
1:(1:1)5 | 23.26 | 22.13 | 6.16 | 26.15 | 4.1 ± 0.1 | |
1:(2:1)5 | 23.22 | 24.95 | 6.24 | 31.31 | 4.8 ± 1.2 | |
Tamanu oil Tween 20 | 1:(5:1)3 | 1.31 | 2.34 | 1.15 | 2.46 | 16.2 ± 0.7 |
1:(5:1)4 | 1.63 | 2.64 | 1.69 | 2.58 | 5.6 ± 0.2 | |
1:(5:1)5 | 1.73 | 2.64 | 1.61 | 2.78 | 16.2 ± 0.2 | |
Tamanu oil Tween 80 | 1:(1:1)3 | 1.95 | 1.82 | 0.13 | 2.14 | 13.3 ± 0.4 |
1:(2:1)3 | 1.85 | 1.82 | −0.26 | 1.97 | 8.4 ± 0.7 | |
1:(3:1)3 | 1.76 | 2.13 | 0.39 | 2.02 | 12.1 ± 0.3 | |
1:(5:1)3 | 1.97 | 2.39 | −0.10 | 2.59 | 16.6 ± 0.7 | |
1:(3:1)4 | 2.20 | 2.28 | 0.25 | 2.35 | 15.2 ± 0.8 | |
1:(4:1)4 | 1.72 | 2.16 | −0.53 | 2.60 | 11.5 ± 0.4 | |
1:(2:1)5 | 1.69 | 2.45 | 1.10 | 1.94 | 12.1 ± 0.3 | |
1:(1:1)2 | 1.81 | 2.73 | 2.06 | 2.66 | 9.1 ± 0.3 |
Materials | Mixing Ratio | Melting Temperature (°C) | Melting Enthalpy (kJ/kg) | Freezing Temperature (°C) | Solidification Enthalpy (kJ/kg) | ||
---|---|---|---|---|---|---|---|
Max | Min | Max | Min | ||||
Coconut oil–tamanu oil mixture | 90% c.o.−10% t.o. | 20.28 | 9.80 | 45.34 | 0.23 | 5.25 | 44.89 |
70% c.o.−30% t.o. | 19.87 | 9.22 | 43.60 | 1.26 | 4.75 | 47.86 | |
50% c.o.−50% t.o. | 16.60 | 5.27 | 38.81 | −6.66 | 2.45 | 38.39 | |
30% c.o.−70% t.o. | 13.43 | 3.82 | 28.90 | −7.68 | 0.71 | 28.91 | |
10% c.o.−90% t.o. | 0.75 | 12.06 | 24.03 | −10.24 | −1.33 | 5.85 |
Fibers | PCL | Flow Rate | Melting Temperature (°C) | Enthalpy (J/g) | Freezing Temperature (°C) | Enthalpy (J/g) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PCM | PCL | PCM | PCL | PCM | PCL | PCM | PCL | ||||
Coconut oil | 9% | 0.3–0.6 mL/h | 56.55 | - | 34.42 | - | 34.47 | - | 39.08 | - | |
0.5–0.5 mL/h | 22.94 | 54.71 | 46.91 | 7.36 | 8.03 | 36.49 | 40.16 | 8.59 | |||
12% | 0.5–0.5 mL/h | 22.99 | 54.80 | 49.20 | 6.87 | 7.41 | 36.48 | 46.50 | 8.10 | ||
Tamanu oil | 9% | 0.3–0.6 mL/h | −0.16 | 53.60 | 2.59 | 14.39 | 0.11 | 33.76 | 3.41 | 14.62 | |
0.5–0.5 mL/h | −0.12 | 50.96 | 2.35 | 5.98 | −0.05 | 30.21 | 3.01 | 6.64 | |||
12% | 0.5–0.5 mL/h | 0.26 | 50.51 | 2.83 | 11.03 | 0.12 | 31.26 | 3.32 | 10.74 | ||
Coconut oil 70%–tamanu oil 30% | 9% | 0.3–0.6 mL/h | 20.73 | 55.43 | 20.03 | 19.34 | 7.75 | - | 36.52 | 7.97 | 22.30 |
0.5–0.5 mL/h | 20.13 | 54.26 | 43.93 | 5.74 | 3.01 | −1.26 | 34.34 | 35.32 | 7.07 | ||
12% | 0.5–0.5 mL/h | 20.32 | 53.27 | 31.83 | 8.94 | 4.43 | - | 33.33 | 27.04 | 10.19 | |
Coconut oil 35%–tamanu oil 15%–RT18 50% | 9% | 0.3–0.6 mL/h | 13.65 | 53.75 | 56.69 | 5.90 | 8.98 | 4.48 | 34.91 | 37.00 | 6.86 |
0.5–0.5 mL/h | 13.65 | 53.78 | 63.80 | 7.44 | 9.02 | 4.55, 1.48 | 34.85 | 57.58 | 8.07 | ||
12% | 0.5–0.5 mL/h | 13.61 | 54.20 | 54.78 | 8.75 | 1.68 | 4.60, 9.27 | 35.10 | 46.11 | 10.22 | |
Coconut oil 35%–tamanu oil 15%–RT15 50% | 9% | 0.3–0.6 mL/h | 12.96 | 54.12 | 50.79 | 9.81 | 9.12 | 1.67, 13.15 | 35.03 | 30.99 | 11.46 |
0.5–0.5 mL/h | 12.99 | 53.75 | 53.01 | 7.11 | 9.46 | 1.63, 12.84 | 34.92 | 31.89 | 7.61 | ||
12% | 0.5–0.5 mL/h | 13.48 | 53.78 | 48.55 | 9.75 | 12.74 | 1.52 | 34.92 | 31.85 | 10.27 | |
Coconut oil 35%–tamanu oil 15%–PT18 50% | 9% | 0.3–0.6 mL/h | 6.26 | 50.55 | 22.45 | 7.41 | −6.37 | 33.04 | 30.51 | 8.66 | |
0.5–0.5 mL/h | 5.89 | 50.71 | 23.65 | 7.75 | −6.44 | 33.71 | 33.44 | 8.42 | |||
12% | 0.5–0.5 mL/h | 5.83 | 2.69 | 17.60 | 8.65 | −6.70 | 33.59 | 28.59 | 9.52 | ||
Coconut oil 35%–tamanu oil 15%–PT 15 50% | 9% | 0.3–0.6 mL/h | 8.71 | 53.99 | 30.03 | 5.58 | −0.83 | 35.55 | 46.81 | 6.99 | |
0.5–0.5 mL/h | 9.06 | 54.05 | 33.80 | 4.89 | −0.81 | 34.70 | 44.64 | 5.97 | |||
12% | 0.5–0.5 mL/h | 10.71 | 55.59 | 43 | 10.43 | 3.05 | 0.16 | 35.96 | 57.96 | 13.46 |
PCM Core Material | PCL | Flow Rate (mL/h) | Encapsulation Ratio n (%) | Encapsulation Efficiency ε (%) | Histogram Mean Diameter (um) |
---|---|---|---|---|---|
Coconut oil | 9% | 0.3–0.6 | 68.5 | 68.7 | 0.3 ± 0.001 |
0.5–0.5 | 93.4 | 81.4 | 5.6 ± 0.05 | ||
12% | 0.5–0.5 | 98 | 89.5 | 0.9 ± 0.002 | |
Tamanu oil | 9% | 0.3–0.6 | 72.8 | 73.2 | 1.3 ± 0.06 |
0.5–0.5 | 66.1 | 65.4 | 0.8 ± 0.004 | ||
12% | 0.5–0.5 | 79.6 | 75.1 | 2.7 ± 0.02 | |
Coconut oil 70%–tamanu oil 30% | 9% | 0.3–0.6 | 45.9 | 30.6 | 0.4 ± 0.002 |
0.5–0.5 | 100 | 86.6 | 12.8 ± 0.09 | ||
12% | 0.5–0.5 | 73 | 64.4 | 0.2 ± 0.0004 | |
Coconut oil 35%–tamanu oil 15%–PT15 50% | 9% | 0.3–0.6 | 39.3 | 51.2 | 4.4 ± 0.03 |
0.5–0.5 | 44.2 | 52.2 | 2 ± 0.008 | ||
12% | 0.5–0.5 | 56.3 | 67.2 | 1.5 ± 0.01 | |
Coconut oil 35%–tamanu oil 15%–PT18 50% | 9% | 0.3–0.6 | 28.1 | 34.4 | 0.5 ± 0.001 |
0.5–0.5 | 29.6 | 37.1 | 0.5 ± 0.001 | ||
12% | 0.5–0.5 | 22 | 30 | 0.1 ± 0.0004 | |
Coconut oil 35%–tamanu oil 15%–RT15 50% | 9% | 0.3–0.6 | 100 | 96 | 6.5 ± 0.06 |
0.5–0.5 | 100 | 99.6 | 0.8 ± 0.005 | ||
12% | 0.5–0.5 | 100 | 94.3 | 7.5 ± 0.04 | |
Coconut oil 35%–tamanu oil 15%–RT18 50% | 9% | 0.3–0.6 | 100 | 91.9 | 6.9 ± 0.03 |
0.5–0.5 | 100 | 100 | 6.6 ± 0.02 | ||
12% | 0.5–0.5 | 100 | 99 | 4.7 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paroutoglou, E.; Fojan, P.; Gurevich, L.; Afshari, A. Thermal Properties of Novel Phase-Change Materials Based on Tamanu and Coconut Oil Encapsulated in Electrospun Fiber Matrices. Sustainability 2022, 14, 7432. https://doi.org/10.3390/su14127432
Paroutoglou E, Fojan P, Gurevich L, Afshari A. Thermal Properties of Novel Phase-Change Materials Based on Tamanu and Coconut Oil Encapsulated in Electrospun Fiber Matrices. Sustainability. 2022; 14(12):7432. https://doi.org/10.3390/su14127432
Chicago/Turabian StyleParoutoglou, Evdoxia, Peter Fojan, Leonid Gurevich, and Alireza Afshari. 2022. "Thermal Properties of Novel Phase-Change Materials Based on Tamanu and Coconut Oil Encapsulated in Electrospun Fiber Matrices" Sustainability 14, no. 12: 7432. https://doi.org/10.3390/su14127432