Management of Smart and Sustainable Cities in the Post-COVID-19 Era: Lessons and Implications
Abstract
:1. Introduction
- Social, ecological, and any other self-organizing system, finding itself in an extreme situation, inevitably faces a deficit of managerial potential;
- When coping with the growing difficulties in an emergency, the system should make a qualitative leap in management and re-adjust or create in the shortest possible time qualitatively different structures and management mechanisms capable of adequately responding to a rapidly changing, often unfavorable environment. In extreme situations, vital resources become very limited and inaccessible for the majority of the population;
- A lack of competence in management structures due to the combination of both transboundary and inter-agency management issues.
2. Literature Review
3. Materials and Methods
3.1. Smart City Concept
3.2. Smart Cities in Russia
3.3. Service-Oriented Approaches in Smart Cities
4. Empirical Model: Acceptance of Smart Technologies in the Post-COVID Era
4.1. The Data
4.2. Model Specifications
4.3. Results of the Model Estimation
5. Discussion
6. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeganeh, H. Emerging social and business trends associated with the COVID-19 pandemic. Crit. Perspect. Int. Bus. 2021, 17, 188–209. [Google Scholar] [CrossRef]
- Weder, F.; Yarnold, J.; Mertl, S.; Hübner, R.; Elmenreich, W.; Sposato, R. Social Learning of Sustainability in a Pandemic—Changes to Sustainability Understandings, Attitudes, and Behaviors during the Global Pandemic in a Higher Education Setting. Sustainability 2022, 14, 3416. [Google Scholar] [CrossRef]
- Panneer, S.; Kantamaneni, K.; Palaniswamy, U.; Bhat, L.; Pushparaj, R.R.B.; Nayar, K.R.; Manuel, H.S.; Flower, F.; Rice, L. Health, Economic and Social Development Challenges of the COVID-19 Pandemic: Strategies for Multiple and Interconnected Issues. Healthcare 2022, 10, 770. [Google Scholar] [CrossRef] [PubMed]
- Alasmari, A.; Addawood, A.; Nouh, M.; Rayes, W.; Al-Wabil, A. A Retrospective Analysis of the COVID-19 Infodemic in Saudi Arabia. Future Internet 2021, 13, 254. [Google Scholar] [CrossRef]
- Casado-Aranda, L.-A.; Sánchez-Fernández, J.; Bastidas-Manzano, A.-B. Tourism research after the COVID-19 outbreak: Insights for more sustainable, local and smart cities. Sustain. Cities Soc. 2021, 73, 103126. [Google Scholar] [CrossRef]
- Benita, F. Human mobility behavior in COVID-19: A systematic literature review and bibliometric analysis. Sustain. Cities Soc. 2021, 70, 102916. [Google Scholar] [CrossRef]
- Čábelková, I.; Strielkowski, W.; Wende, F.; Krayneva, R. Factors influencing the threats for urban energy networks: The inhabitants’ point of view. Energies 2020, 13, 5659. [Google Scholar] [CrossRef]
- Polukhina, A.; Sheresheva, M.; Efremova, M.; Suranova, O.; Agalakova, O.; Antonov-Ovseenko, A. The concept of sustainable rural tourism development in the face of COVID-19 crisis: Evidence from Russia. J. Risk Financ. Manag. 2021, 14, 38. [Google Scholar] [CrossRef]
- Mark, R.; Anya, G. Ethics of Using Smart City AI and Big Data: The Case of Four Large European Cities. ORBIT J. 2019, 2, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Chubarova, T.; Maly, I.; Nemec, J. Public policy responses to the spread of COVID-19 as a potential factor determining health results: A comparative study of the Czech Republic, the Russian Federation, and the Slovak Republic. Cent. Eur. J. Public Policy 2020, 14, 60–67. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. The emerging data-driven Smart City and its innovative applied solutions for sustainability: The cases of London and Barcelona. Energy Inform. 2020, 3, 5. [Google Scholar] [CrossRef]
- Ivars-Baidal, J.A.; Vera-Rebollo, J.F.; Perles-Ribes, J.; Femenia-Serra, F.; Celdrán-Bernabeu, M.A. Sustainable tourism indicators: What’s new within the smart city/destination approach? J. Sustain. Tour. 2021, 1–24. [Google Scholar] [CrossRef]
- Bellini, E.; Bellini, P.; Cenni, D.; Nesi, P.; Pantaleo, G.; Paoli, I.; Paolucci, M. An IOE and big multimedia data approach for urban transport system resilience management in smart cities. Sensors 2021, 21, 435. [Google Scholar] [CrossRef] [PubMed]
- Zgórska, B.; Kamrowska-Załuska, D.; Lorens, P. Can the Pandemic Be a Catalyst of Spatial Changes Leading Towards the Smart City? Urban Plan. 2021, 6, 216–227. [Google Scholar] [CrossRef]
- Li, Z.; Kai, N. Minority Tourist Information Service and Sustainable Development of Tourism under the Background of Smart City. Mob. Inf. Syst. 2021, 2021, 6547186. [Google Scholar] [CrossRef]
- Korneeva, E.; Olinder, N.; Strielkowski, W. Consumer Attitudes to the Smart Home Technologies and the Internet of Things (IoT). Energies 2021, 14, 7913. [Google Scholar] [CrossRef]
- Guevara, L.; Cheein, F.A. The role of 5G technologies: Challenges in smart cities and intelligent transportation systems. Sustainability 2021, 12, 6469. [Google Scholar] [CrossRef]
- Ma, C. Smart city and cyber-security; technologies used, leading challenges and future recommendations. Energy Rep. 2021, 7, 7999–8012. [Google Scholar] [CrossRef]
- Lee, J.; Yoon, Y. Hierarchy table of indicators and measures for the current status assessment of urban roads in smart cities. Sustain. Cities Soc. 2022, 77, 103532. [Google Scholar] [CrossRef]
- Gupta, D.; Bhatt, S.; Gupta, M.; Tosun, A.S. Future smart connected communities to fight COVID-19 outbreak. Internet Things 2021, 13, 100342. [Google Scholar] [CrossRef]
- Kakderi, C.; Komninos, N.; Panori, A.; Oikonomaki, E. Next city: Learning from cities during COVID-19 to Tackle climate change. Sustainability 2021, 13, 3158. [Google Scholar] [CrossRef]
- Yoo, K.J.; Kwon, S.; Choi, Y.; Bishai, D.M. Systematic assessment of South Korea’s capabilities to control COVID-19. Health Policy 2021, 125, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Guazzini, A.; Fiorenza, M.; Panerai, G.; Duradoni, M. What Went Wrong? Predictors of Contact Tracing Adoption in Italy during COVID-19 Pandemic. Future Internet 2021, 13, 286. [Google Scholar] [CrossRef]
- Karim, S.A.; Chen, H.F. Deaths from COVID-19 in rural, micropolitan, and metropolitan areas: A county-level comparison. J. Rural. Health 2021, 37, 124–132. [Google Scholar] [CrossRef]
- Herrera, M.; Godoy-Faúndez, A. Exploring the roles of local mobility patterns, socioeconomic conditions, and lockdown policies in shaping the patterns of COVID-19 spread. Future Internet 2021, 13, 112. [Google Scholar] [CrossRef]
- Yang, L.; Iwami, M.; Chen, Y.; Wu, M.; Van Dam, K.H. Computational decision-support tools for urban design to improve resilience against COVID-19 and other infectious diseases: A systematic review. Prog. Plan. 2022, 100657, in press. [Google Scholar] [CrossRef]
- Majewska, A.; Denis, M.; Jarecka-Bidzińska, E.; Jaroszewicz, J.; Krupowicz, W. Pandemic resilient cities: Possibilities of repairing Polish towns and cities during COVID-19 pandemic. Land Use Policy 2022, 113, 105904. [Google Scholar] [CrossRef]
- AbouKorin, S.A.A.; Han, H.; Mahran, M.G.N. Role of urban planning characteristics in forming pandemic resilient cities-Case study of COVID-19 impacts on European cities within England, Germany and Italy. Cities 2021, 118, 103324. [Google Scholar] [CrossRef]
- Sharifi, A.; Khavarian-Garmsir, A.R.; Kummitha, R.K.R. Contributions of smart city solutions and technologies to resilience against the COVID-19 pandemic: A literature review. Sustainability 2021, 13, 8018. [Google Scholar] [CrossRef]
- Maestosi, P.C.; Andreucci, M.B.; Civiero, P. Sustainable urban areas for 2030 in a Post-COVID-19 scenario: Focus on innovative research and funding frameworks to boost transition towards 100 positive energy districts and 100 climate-neutral cities. Energies 2021, 14, 216. [Google Scholar] [CrossRef]
- BMJ. Artificial Intelligence and COVID-19. 2022. Available online: https://www.bmj.com/AIcovid19 (accessed on 3 May 2022).
- Kollu, P.K.; Kumar, K.; Kshirsagar, P.R.; Islam, S.; Naveed, Q.N.; Hussain, M.R.; Sundramurthy, V.P. Development of Advanced Artificial Intelligence and IoT Automation in the Crisis of COVID-19 Detection. J. Healthc. Eng. 2022, 2022, 1987917. [Google Scholar] [CrossRef] [PubMed]
- Alsunaidi, S.J.; Almuhaideb, A.M.; Ibrahim, N.M.; Shaikh, F.S.; Alqudaihi, K.S.; Alhaidari, F.A.; Alshahrani, M.S. Applications of big data analytics to control COVID-19 pandemic. Sensors 2021, 21, 2282. [Google Scholar] [CrossRef] [PubMed]
- Pham, Q.V.; Nguyen, D.C.; Huynh-The, T.; Hwang, W.J.; Pathirana, P.N. Artificial intelligence (AI) and big data for coronavirus (COVID-19) pandemic: A survey on the state-of-the-arts. IEEE Access 2020, 8, 130820. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, I.; Rodríguez, J.V.; Shirvanizadeh, N.; Ortiz, A.; Pardo-Quiles, D.J. Applications of artificial intelligence, machine learning, big data and the internet of things to the COVID-19 pandemic: A scientometric review using text mining. Int. J. Environ. Res. Public Health 2021, 18, 8578. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, X.; Porter, D.; Zhang, J.; Jiang, Y.; Olatosi, B.; Weissman, S. Monitoring the spatial spread of COVID-19 and effectiveness of control measures through human movement data: Proposal for a predictive model using big data analytics. JMIR Res. Protoc. 2020, 9, e24432. [Google Scholar] [CrossRef]
- Santus, E.; Marino, N.; Cirillo, D.; Chersoni, E.; Montagud, A.; Chadha, A.S.; Lindvall, C. Artificial intelligence-aided precision medicine for COVID-19: Strategic areas of research and development. J. Med. Internet Res. 2021, 23, e22453. [Google Scholar] [CrossRef]
- Lainjo, B. The Enigmatic COVID-19 Vulnerabilities and the Invaluable Artificial Intelligence (AI). J. Multidiscip. Healthc. 2021, 14, 2361. [Google Scholar] [CrossRef]
- Sharifi, A.; Ahmadi, M.; Ala, A. The impact of artificial intelligence and digital style on industry and energy post-COVID-19 pandemic. Environ. Sci. Pollut. Res. 2021, 28, 46964–46984. [Google Scholar] [CrossRef]
- Mhlanga, D. The Role of Artificial Intelligence and Machine Learning Amid the COVID-19 Pandemic: What Lessons Are We Learning on 4IR and the Sustainable Development Goals. Int. J. Environ. Res. Public Health 2022, 19, 1879. [Google Scholar] [CrossRef]
- Firouzi, F.; Farahani, B.; Daneshmand, M.; Grise, K.; Song, J.; Saracco, R.; Luo, A. Harnessing the power of smart and connected health to tackle COVID-19: Iot, ai, robotics, and blockchain for a better world. IEEE Internet Things J. 2021, 8, 12826–12846. [Google Scholar] [CrossRef]
- Belkacem, A.N.; Ouhbi, S.; Lakas, A.; Benkhelifa, E.; Chen, C. End-to-end AI-based point-of-care diagnosis system for classifying respiratory illnesses and early detection of COVID-19: A theoretical framework. Front. Med. 2021, 8, 372. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, H.K.; Agarwal, A.; Chamola, V.; Lakkaniga, N.R.; Hassija, V.; Guizani, M.; Sikdar, B. A review on the role of machine learning in enabling IoT based healthcare applications. IEEE Access 2021, 9, 38859–38890. [Google Scholar] [CrossRef]
- Lin, Z.; He, Z.; Xie, S.; Wang, X.; Tan, J.; Lu, J.; Tan, B. AANet: Adaptive Attention Network for COVID-19 Detection From Chest X-Ray Images. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4781–4792. [Google Scholar] [CrossRef] [PubMed]
- Yahya, B.M.; Yahya, F.S.; Thannoun, R.G. COVID-19 prediction analysis using artificial intelligence procedures and GIS spatial analyst: A case study for Iraq. Appl. Geomat. 2021, 13, 481–491. [Google Scholar] [CrossRef]
- Shorfuzzaman, M.; Hossain, M.S.; Alhamid, M.F. Towards the sustainable development of smart cities through mass video surveillance: A response to the COVID-19 pandemic. Sustain. Cities Soc. 2021, 64, 102582. [Google Scholar] [CrossRef]
- Umair, M.; Cheema, M.A.; Cheema, O.; Li, H.; Lu, H. Impact of COVID-19 on IoT adoption in healthcare, smart homes, smart buildings, smart cities, transportation and industrial IoT. Sensors 2021, 21, 3838. [Google Scholar] [CrossRef]
- Pee, L.G.; Pan, S.L. Climate-intelligent cities and resilient urbanisation: Challenges and opportunities for information research. Int. J. Inf. Manag. 2022, 63, 102446. [Google Scholar] [CrossRef]
- Jamshidi, M.B.; Roshani, S.; Daneshfar, F.; Lalbakhsh, A.; Roshani, S.; Parandin, F.; Malek, Z.; Talla, J.; Peroutka, Z.; Jamshidi, A.; et al. Hybrid Deep Learning Techniques for Predicting Complex Phenomena: A Review on COVID-19. AI 2022, 3, 416–433. [Google Scholar] [CrossRef]
- Shahid, O.; Nasajpour, M.; Pouriyeh, S.; Parizi, R.M.; Han, M.; Valero, M.; Li, F.; Aledhari, M.; Sheng, Q.Z. Machine learning research towards combating COVID-19: Virus detection, spread prevention, and medical assistance. J. Biomed. Inform. 2021, 117, 103751. [Google Scholar] [CrossRef]
- Di Franco, G.; Santurro, M. Machine learning, artificial neural networks and social research. Qual. Quant. 2021, 55, 1007–1025. [Google Scholar] [CrossRef]
- Sheng, J.; Amankwah-Amoah, J.; Khan, Z.; Wang, X. COVID-19 pandemic in the new era of big data analytics: Methodological innovations and future research directions. Br. J. Manag. 2021, 32, 1164–1183. [Google Scholar] [CrossRef]
- Ahmed, S.; Hossain, M.; Kaiser, M.S.; Noor, M.B.T.; Mahmud, M.; Chakraborty, C. Artificial Intelligence and Machine Learning for Ensuring Security in Smart Cities. In Data-Driven Mining, Learning and Analytics for Secured Smart Cities; Springer: Cham, Switzerland, 2021; pp. 23–47. [Google Scholar] [CrossRef]
- Ebadi, A.; Xi, P.; Tremblay, S.; Spencer, B.; Pall, R.; Wong, A. Understanding the temporal evolution of COVID-19 research through machine learning and natural language processing. Scientometrics 2021, 126, 725–739. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zuo, J.; Song, M.; Wei, Z.; Zhang, Y.; Xie, Y. Query and Clustering of Spatio-Temporal Trajectory Big Data Under the Background of COVID-19. In Proceedings of the 2021 International Conference on Control and Intelligent Robotics, Guangzhou, China, 18–20 June 2021; pp. 676–680. [Google Scholar] [CrossRef]
- Dantas, A.J.; Jesus, L.D.; Ramos, A.C.B.; Hokama, P.; Mora-Camino, F.; Katarya, R.; Verma, O.; Gupta, P.; Singh, G.; Ouahada, K. Using UAV, IoMT and AI for Monitoring and Supplying of COVID-19 Patients. In Proceedings of the ITNG 2021 18th International Conference on Information Technology-New Generations, Las Vegas, NV, USA, 11–14 April 2021; Springer: Cham, Switzerland, 2021; pp. 383–386. [Google Scholar] [CrossRef]
- Ismagilova, E.; Hughes, L.; Dwivedi, Y.K.; Raman, K.R. Smart cities: Advances in research—An information systems perspective. Int. J. Inf. Manag. 2019, 47, 88–100. [Google Scholar] [CrossRef]
- Baig, Z.A.; Szewczyk, P.; Valli, C.; Rabadia, P.; Hannay, P.; Chernyshev, M.; Johnstone, M.; Kerai, P.; Ibrahim, A.; Sansurooah, K.; et al. Future challenges for smart cities: Cyber-security and digital forensics. Digit. Investig. 2017, 22, 3–13. [Google Scholar] [CrossRef]
- Rathi, V.K.; Rajput, N.K.; Mishra, S.; Grover, B.A.; Tiwari, P.; Jaiswal, A.K.; Hossain, M.S. An edge AI-enabled IoT healthcare monitoring system for smart cities. Comput. Electr. Eng. 2021, 96, 107524. [Google Scholar] [CrossRef]
- Troisi, O.; Fenza, G.; Grimaldi, M.; Loia, F. COVID-19 sentiments in smart cities: The role of technology anxiety before and during the pandemic. Comput. Hum. Behav. 2022, 126, 10698. [Google Scholar] [CrossRef]
- Chiabai, A.; Platt, S.; Strielkowski, W. Eliciting users’ preferences for cultural heritage and tourism-related e-services: A tale of three European cities. Tour. Econ. 2014, 20, 263–277. [Google Scholar] [CrossRef]
- Sharifi, A.; Khavarian-Garmsir, A.R. The COVID-19 pandemic: Impacts on cities and major lessons for urban planning, design, and management. Sci. Total Environ. 2020, 749, 142391. [Google Scholar] [CrossRef]
- Mnif, E.; Mouakhar, K.; Jarboui, A. Blockchain technology awareness on social media: Insights from twitter analytics. J. High Technol. Manag. Res. 2021, 32, 100416. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Rizou, M.; Aldawoud, T.M.S.; Ucak, I.; Rowan, N.J. Innovations and technology disruptions in the food sector within the COVID-19 pandemic and post-lockdown era. Trends Food Sci. Technol. 2021, 110, 193–200. [Google Scholar] [CrossRef]
- Vlassis, A. Global online platforms, COVID-19, and culture: The global pandemic, an accelerator towards which direction? Media Cult. Soc. 2021, 43, 957–969. [Google Scholar] [CrossRef]
- Yuloskov, A.; Bahrami, M.R.; Mazzara, M.; Kotorov, I. Smart cities in Russia: Current situation and insights for future development. Future Internet 2021, 13, 252. [Google Scholar] [CrossRef]
- Shmelev, S.E.; Shmeleva, I.A. Global urban sustainability assessment: A multidimensional approach. Sustain. Dev. 2018, 26, 904–920. [Google Scholar] [CrossRef]
- Golubchikov, O.; Thornbush, M. Artificial intelligence and robotics in smart city strategies and planned smart development. Smart Cities 2020, 3, 1133–1144. [Google Scholar] [CrossRef]
- Mingaleva, Z.; Vukovic, N.; Volkova, I.; Salimova, T. Waste management in green and smart cities: A case study of Russia. Sustainability 2019, 12, 94. [Google Scholar] [CrossRef] [Green Version]
- Vidiasova, L.; Cronemberger, F. Discrepancies in perceptions of smart city initiatives in Saint Petersburg, Russia. Sustain. Cities Soc. 2020, 59, 102158. [Google Scholar] [CrossRef]
- Sokolov, A.; Veselitskaya, N.; Carabias, V.; Yildirim, O. Scenario-based identification of key factors for smart cities development policies. Technol. Forecast. Soc. Chang. 2019, 148, 119729. [Google Scholar] [CrossRef]
- Kolobova, S. Evaluation of economic efficiency of the state programme of renovation of residential buildings in Moscow. MATEC Web Conf. 2018, 193, 05023. [Google Scholar] [CrossRef]
- Kshetri, N.; Voas, J. Blockchain-enabled e-voting. IEEE Softw. 2018, 35, 95–99. [Google Scholar] [CrossRef] [Green Version]
- The Intelligent Community. The Intelligent Community Forum Names the Global Top7 Intelligent Communities of 2021. 2021. Available online: https://www.intelligentcommunity.org/the_intelligent_community_forum_names_the_global_top7_intelligent_communities_of_2021 (accessed on 6 May 2022).
- Kozlov, V. Moscow to Build on Its Smart City Credentials. 2017. Available online: https://www.computerweekly.com/news/450430676/Moscow-to-build-on-its-smart-city-credentials (accessed on 5 May 2022).
- Intechnology. Moscow: The Smart City That’s about to Get (a Lot) Smarter. 2022. Available online: https://www.intechnologysmartcities.com/blog/moscow-smart-city-to-get-much-smarter (accessed on 5 May 2022).
- SmartCitiesWorld. Moscow Releases Catalogue of Smart City Projects. 2021. Available online: https://www.smartcitiesworld.net/news/news/moscow-releases-catalogue-of-smart-city-projects-6344 (accessed on 4 May 2022).
- Ilina, I. Challenges of Building Smart Cities in Russia. 2016. Available online: https://iq.hse.ru/en/news/195419959.html (accessed on 5 May 2022).
- Krylovskiy, A.; Jahn, M.; Patti, E. Designing a smart city internet of things platform with microservice architecture. In Proceedings of the 3rd International Conference on Future Internet of Things and Cloud, Rome, Italy, 24–26 August 2015; pp. 25–30. [Google Scholar] [CrossRef]
- Krämer, M.; Frese, S.; Kuijper, A. Implementing secure applications in smart city clouds using microservices. Future Gener. Comput. Syst. 2019, 99, 308–320. [Google Scholar] [CrossRef]
- König, P.D. Citizen-centered data governance in the smart city: From ethics to accountability. Sustain. Cities Soc. 2021, 75, 103308. [Google Scholar] [CrossRef]
- Zekić-Sušac, M.; Mitrović, S.; Has, A. Machine learning based system for managing energy efficiency of public sector as an approach towards smart cities. Int. J. Inf. Manag. 2021, 58, 102074. [Google Scholar] [CrossRef]
- Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of Artificial Intelligence and Machine learning in smart cities. Comput. Commun. 2020, 154, 313–323. [Google Scholar] [CrossRef]
- Majumdar, S.; Subhani, M.M.; Roullier, B.; Anjum, A.; Zhu, R. Congestion prediction for smart sustainable cities using IoT and machine learning approaches. Sustain. Cities Soc. 2021, 64, 102500. [Google Scholar] [CrossRef]
- Strielkowski, W.; Veinbender, T.; Tvaronavičienė, M.; Lace, N. Economic efficiency and energy security of smart cities. Econ. Res. Ekon. Istraživanja 2020, 33, 788–803. [Google Scholar] [CrossRef]
- Alaoui, E.A.A.; Tekouabou, S.C.K. Intelligent management of bike sharing in smart cities using machine learning and Internet of Things. Sustain. Cities Soc. 2021, 67, 102702. [Google Scholar] [CrossRef]
- Sisinni, E.; Carvalho, D.; Ferrari, P. Emergency communication in IoT scenarios by means of a transparent LoRaWAN enhancement. IEEE Internet Things J. 2020, 7, 10684–10694. [Google Scholar] [CrossRef]
1-Disagree a | 2 a | 3 a | 4 a | 5-Agree a | Total | |
---|---|---|---|---|---|---|
Using novel technologies | 36% | 24% | 27% | 7% | 6% | 100% |
Working remotely in a home office | 22% | 20% | 21% | 19% | 18% | 100% |
Using e-government facilities | 25% | 16% | 20% | 24% | 15% | 100% |
Novel Technologies | Working Remotely in a Home Office | Using e-Government Facilities | ||||
---|---|---|---|---|---|---|
Estimate | Sig. | Estimate | Sig. | Estimate | Sig. | |
Threshold 1 | 2.174 | 0.346 | −0.374 | 0.911 | 2.721 | 0.074 |
Threshold 2 | 3.325 | 0.017 | 0.984 | 0.401 | 3.731 | 0.003 |
Threshold 3 | 4.787 | 0.000 | 2.882 | 0.038 | 4.485 | 0.000 |
Threshold 4 | 6.242 | 0.000 | 4.358 | 0.000 | 5.877 | 0.000 |
Age | −0.024 * | 0.101 | −0.027 ** | 0.046 | −0.021 | 0.218 |
Gender (men) | 0.221 | 0.731 | −0.412 | 0.475 | 0.562 ** | 0.078 |
Educ | 0.409 ** | 0.478 | 0.546 *** | 0.296 | 0.371 * | 0.536 |
ICT | 0.058 ** | 0.967 | 0.055 * | 0.949 | 0.262 * | 0.967 |
BusEcon | 0.381 | 0.682 | 0.351 | 0.746 | 0.093 | 0.850 |
Manager | 0.835 ** | 0.006 | 0.575 ** | 0.240 | 0.487 * | 0.251 |
Analyst | 0.721 ** | 0.075 | 0.009 * | 0.982 | 0.754 * | 0.077 |
Cox and Snell | 0.082 | 0.072 | 0.081 | |||
Nagelkerke | 0.098 | 0.063 | 0.081 | |||
McFadden | 0.045 | 0.041 | 0.038 | |||
Sig. | 0.000 | 0.001 | 0.002 | |||
N | 264 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strielkowski, W.; Zenchenko, S.; Tarasova, A.; Radyukova, Y. Management of Smart and Sustainable Cities in the Post-COVID-19 Era: Lessons and Implications. Sustainability 2022, 14, 7267. https://doi.org/10.3390/su14127267
Strielkowski W, Zenchenko S, Tarasova A, Radyukova Y. Management of Smart and Sustainable Cities in the Post-COVID-19 Era: Lessons and Implications. Sustainability. 2022; 14(12):7267. https://doi.org/10.3390/su14127267
Chicago/Turabian StyleStrielkowski, Wadim, Svetlana Zenchenko, Anna Tarasova, and Yana Radyukova. 2022. "Management of Smart and Sustainable Cities in the Post-COVID-19 Era: Lessons and Implications" Sustainability 14, no. 12: 7267. https://doi.org/10.3390/su14127267