Nutritional Demand and Consumption Pattern: A Case Study of Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Framework
2.2. Study Site
2.3. Empirical Estimate
2.4. Data
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Results of the Estimated Nutrients Engel Curve
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Nutrition status | |||
Underweight prevalence | 14.5% | ||
Overweight prevalence | 24.2% | ||
Obesity prevalence | 13.9% | ||
Micronutrient deficiencies | Non-pregnant | Pregnant | Overall |
Vitamin D deficiency | 79.6% | 81.2% | 79.7% |
Vitamin A deficiency | 30% | 27% | 27% |
Zinc deficiency | 21.1% | 37.5% | 22.1% |
Iron deficiency | 33.6% | 46.9% | 34.3% |
Anemia | 43% | 35.5% | 42.6% |
Calcium deficiency | 16.2% | 32.6% | 26.5% |
Folic Acid deficiency | 45.3% | 44.5% | 44.5% |
Vitamin B12 deficiency | 19.5% | 32.3% | 20.3% |
Nutrition status | Boys | Girls | Overall |
Underweight prevalence | 29.3% | 28.4% | 28.9% |
Stunting prevalence | 40.9% | 39.4% | 40.2% |
Wasting prevalence | 18.4% | 17% | 17.7% |
Overweight prevalence | 9.7% | 9.2% | 9.5% |
Micronutrient deficiencies | |||
Vitamin D deficiency | 62.3% | 63% | 62.7% |
Vitamin A deficiency | 51.6% | 51.3% | 51.5% |
Zinc deficiency | 18.8% | 18.4% | 18.6% |
Iron deficiency | 50% | 48.2% | 49.1% |
Anemia | 54.2% | 53.1% | 53.7% |
Calcium deficiency | 32% | 32.4% | 32.2% |
Folic Acid deficiency | 34.3% | 35.5% | 34.9% |
Vitamin B12 deficiency | 26% | 24.1% | 25.1% |
Nutrition status | Boys | Girls |
Underweight prevalence | 21.1% | 11.8% |
Short stature prevalence | 31.7% | 28.5% |
Overweight prevalence | 17.8% | 16.8% |
Obesity prevalence | 7.6% | 5.5% |
Micronutrient deficiencies | ||
Anemia | - | 54.7% |
Variables | Monthly Per Capita Consumption | Daily Per Capita Consumption |
---|---|---|
Nutrient () | Mean | Mean |
Energy (k.cal) | 56,721 | 1891 |
Protein (g) | 1034 | 34 |
Fat (g) | 1163 | 39 |
Carbohydrate (g) | 5013 | 167 |
Fiber (g) | 640 | 21 |
Ash (g) | 277 | 9 |
Calcium (mg) | 18,666 | 622 |
Phosphorus (mg) | 19,190 | 640 |
Iron (mg) | 113 | 3.8 |
Zinc (mg) | 286 | 9.5 |
Thiamine (mg) | 17 | 0.56 |
Riboflavin (mg) | 45 | 1.5 |
Niacin (mg NE) | 276 | 9.2 |
Vitamin C (mg) | 425 | 14 |
Vitamin B (mg) | 9 | 0.31 |
Vitamin A (mcg RAE) | 7130 | 238 |
Cholesterol (mg/dL) | 1877 | 63 |
Composition | Definition | Mean | Standard Deviation | Coefficient of Variation |
---|---|---|---|---|
Children (age ≤ 9) | Number of children in the household | 1.78 | 1.71 | 0.96 |
Adolescent (age 10–19) | Number of adolescents in the household | 1.65 | 1.60 | 0.97 |
Adult (age > 19) | Number of adults in the household | 3.23 | 1.71 | 0.53 |
Male | Number of male members in the household | 2.48 | 1.51 | 0.61 |
Female | Number of female members in the household | 2.39 | 1.40 | 0.58 |
Pakistan | Punjab | Sindh | Khyber Pakhtunkhwa | Baluchistan | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Nutrient | R-Squared | F-Statistics | R-Squared | F-Statistics | R-Squared | F-Statistics | R-Squared | F-Statistics | R-Squared | F-Statistics |
Energy | 0.60 | 12,283 *** | 0.61 | 5443 *** | 0.49 | 1993 *** | 0.68 | 3126 *** | 0.73 | 3194 *** |
Protein | 0.40 | 5510 *** | 0.39 | 2186 *** | 0.47 | 1830 *** | 0.45 | 1212 *** | 0.47 | 1015 *** |
Fat | 0.20 | 2049 *** | 0.20 | 869 *** | 0.21 | 538 *** | 0.22 | 421 *** | 0.19 | 279 *** |
Carbohydrate | 0.47 | 7290 *** | 0.45 | 2791 *** | 0.54 | 2399 *** | 0.52 | 1622 *** | 0.47 | 1016 *** |
Fiber | 0.34 | 4230 *** | 0.41 | 2369 *** | 0.47 | 1847 *** | 0.38 | 885 *** | 0.29 | 467 *** |
Ash | 0.43 | 6226 *** | 0.42 | 2523 *** | 0.52 | 2204 *** | 0.49 | 1425 *** | 0.45 | 947 *** |
Calcium | 0.35 | 4457 *** | 0.38 | 2098 *** | 0.44 | 1602 *** | 0.38 | 918 *** | 0.36 | 664 *** |
Phosphorus | 0.42 | 5843 *** | 0.39 | 2207 *** | 0.50 | 2019 *** | 0.43 | 1106 *** | 0.43 | 894 *** |
Iron | 0.42 | 5993 *** | 0.42 | 2466 *** | 0.49 | 1945 *** | 0.55 | 1786 *** | 0.46 | 976 *** |
Zinc | 0.50 | 8304 *** | 0.45 | 2877 *** | 0.54 | 2406 *** | 0.56 | 1875 *** | 0.59 | 1693 *** |
Thiamine | 0.13 | 1183 *** | 0.21 | 904 *** | 0.17 | 419 *** | 0.23 | 446 *** | 0.11 | 147 *** |
Riboflavin | 0.34 | 4121 *** | 0.33 | 1736 *** | 0.35 | 1090 *** | 0.40 | 987 *** | 0.42 | 856 *** |
Niacin | 0.35 | 4437 *** | 0.34 | 1808 *** | 0.40 | 1340 *** | 0.48 | 1333 *** | 0.45 | 967 *** |
Vitamin C | 0.09 | 834 *** | 0.34 | 1748 *** | 0.35 | 1114 *** | 0.22 | 416 *** | 0.12 | 164 *** |
Vitamin B | 0.26 | 2880 *** | 0.25 | 1167 *** | 0.28 | 790 *** | 0.33 | 733 *** | 0.30 | 488 *** |
Vitamin A | 0.08 | 745 *** | 0.09 | 328 *** | 0.09 | 198 *** | 0.13 | 224 *** | 0.11 | 144 *** |
Cholesterol | 0.08 | 693 *** | 0.08 | 299 *** | 0.11 | 239 *** | 0.10 | 160 *** | 0.09 | 117 *** |
References
- Strauss, J.; Thomas, D. Human resources: Empirical modeling of household and family decisions. Handb. Dev. Econ. 1995, 3, 1883–2023. [Google Scholar]
- French, S.A.; Tangney, C.C.; Crane, M.M.; Wang, Y.; Appelhans, B.M. Nutrition quality of food purchases varies by household income: The SHoPPER study. BMC Public Health 2019, 19, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colen, L.; Melo, P.C.; Abdul-Salam, Y.; Roberts, D.; Mary, S.; Paloma, S.G.Y. Income elasticities for food, calories and nutrients across Africa: A meta-analysis. Food Policy 2018, 77, 116–132. [Google Scholar] [CrossRef]
- Skoufias, E.; Di Maro, V.; González-Cossío, T.; Ramirez, S.R. Nutrient consumption and household income in rural Mexico. Agric. Econ. 2009, 40, 657–675. [Google Scholar] [CrossRef]
- Salois, M.; Tiffin, R.; Balcombe, K. Calorie and Nutrient Consumption as a Function of Income: A Cross-Country Analysis. 2010. Available online: https://mpra.ub.uni-muenchen.de/24726/ (accessed on 12 December 2021).
- Huang, K.S.; Lin, B.-H. Estimation of Food Demand and Nutrient Elasticities from Household Survey Data; US Department of Agriculture, Economic Research Service: Washington, DC, USA, 2000. [Google Scholar]
- Dhehibi, B.; Gil, J.M.; Angulo, A.M. Nutrient effects on consumer demand: A panel data approach. In Proceedings of the the International Conference of Agricultural Economists, Durban, South Africa, 16–22 August 2003. [Google Scholar]
- Bhattacharya, J.; Currie, J.; Haider, S. Poverty, food insecurity, and nutritional outcomes in children and adults. J. Health Econ. 2004, 23, 839–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nithya, D.; Raju, S.; Bhavani, R.; Panada, A.K.; Wagh, R.D.; Vishwanathan, B. Nutritional Intake of Rural Households that Participated in a Farming System for Nutration Study in India. Food Nutr. Sci. 2021, 12, 277–289. [Google Scholar]
- Uzma, A. The Determinants of Child Health and Nutritional Status in Punjab: An Economic Analysis; CREB Working Paper; Intersection Main Boulevard Phase VI, DHA and Burki Road Lahore 53200; Centre for Research in Economics and Business, Lahore School of Economics: Lahore, Pakistan, 2012. [Google Scholar]
- Salois, M.J.; Tiffin, R.; Balcombe, K.G. Impact of income on nutrient intakes: Implications for undernourishment and obesity. J. Dev. Stud. 2012, 48, 1716–1730. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Yu, X. The demand for nutrients in China. Front. Econ. China 2013, 8, 186–206. [Google Scholar]
- You, J.; Imai, K.S.; Gaiha, R. Decoding the Growth-Nutrition Nexus in China: Inequality, Uncertainty and Food Insecurity. Uncertainty and Food Insecurity (No, 207) BWPI Working Paper. 2014. Available online: http://hummedia.manchester.ac.uk/institutes/gdi/publications/workingpapers/bwpi/bwpi-wp-20714.pdf (accessed on 20 December 2021).
- Khan, A.; Shaheen, M.A.; Knight, F.; Baldi, G. Filling the nutrient gap in Pakistan: Insights to address malnutrition. Nutr. Exch. 2017, 8, 17. Available online: https://www.ennonline.net/nex/8/nutgappakistan (accessed on 4 April 2022).
- Asim, M.; Nawaz, Y. Child Malnutrition in Pakistan: Evidence from Literature. Children 2018, 5, 60. [Google Scholar] [CrossRef] [Green Version]
- Government of Pakistan. National Nutrition Survey 2018; Government of Pakistan: Islamabad, Pakistan, 2019.
- Malik, S.J.; Nazli, H.; Whitney, E. Food consumption patterns and implications for poverty reduction in Pakistan. Pak. Dev. Rev. 2015, 54, 651–669. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of Food and Agriculture 1996; FAO: Rome, Italy, 1996. [Google Scholar]
- Pieters, H.; Guariso, A.; Vandeplas, A. Conceptual Framework for the Analysis of the Determinants of Food and Nutrition Security. 2013. Available online: https://ageconsearch.umn.edu/record/285141/ (accessed on 7 April 2022).
- Burney, N.A.; Khan, A.H. Household consumption patterns in Pakistan: An urban-rural comparison using microdata. Pak. Dev. Rev. 1991, 30, 145–171. [Google Scholar] [CrossRef] [Green Version]
- Paris, S.J.; Houthakker, H.S. The Analysis of Family Budget; Cambridge University Press: Cambridge, UK, 1955. [Google Scholar]
- Houthakker, H.S. An international comparison of household expenditure patterns, commemorating the centenary of Engel’s law. Econometrica. J. Econom. Soc. 1957, 25, 532–551. [Google Scholar] [CrossRef]
- Hussain, T. Food Composition Table for Pakistan. 2001. Available online: https://www.jstor.org/stable/1905382 (accessed on 7 April 2022).
- Hussain, T.; Abbas, S.; Khan, M.A.; Scrimshaw, N.S. Lysine fortification of wheat flour improves selected indices of the nutritional status of predominantly cereal-eating families in Pakistan. Food Nutr. Bull. 2004, 25, 114–122. [Google Scholar] [CrossRef]
- Clements, K.W.; Vo, L. Global Consumption Pattern, Quality and Food Demand; The University of Western Australia & Quy Nhon University: Perth, Australia, 2021. [Google Scholar]
- Mudassar, K.; Aziz, B.; Anwar, A. Estimating consumer demand for major food items in Pakistan: A microdata analysis. Pak. J. Life Soc. Sci. 2012, 10, 53–58. [Google Scholar]
- Gao, Y.; Zheng, Z.; Henneberry, S.R. Is nutritional status associated with income growth? Evidence from Chinese adults. China Agric. Econ. Rev. 2020, 12, 507–525. [Google Scholar] [CrossRef]
- Siddiqui, M.; Hameed, R.; Nadeem, M.; Mohammad, T.; Simbak, N.; Latif, A.; Baig, A. Obesity in Pakistan; current and future perceptions. J. Curr. Trends. Biomed. Eng. Biosci. 2018, 17, 001–004. [Google Scholar]
- Huang, K.S.; Gale, F. Food demand in China: Income, quality, and nutrient effects. China Agric. Econ. Rev. 2009, 1, 395–409. [Google Scholar] [CrossRef]
- Novotny, I.P.; Tittonell, P.; Fuentes-Ponce, M.H.; López-Ridaura, S.; Rossing, W.A. The importance of the traditional milpa in food security and nutritional self-sufficiency in the highlands of Oaxaca, Mexico. PLoS ONE 2021, 16, e0246281. [Google Scholar] [CrossRef]
- Drewnowski, A. The Carbohydrate-Fat Problem: Can We Construct a Healthy Diet Based on Dietary Guidelines? Adv. Nutr. 2015, 6, 318S–325S. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Dharmasena, S.U.S. Consumer Demand for Plant-Based Milk Alternative Beverages: Hedonic Metric Augmented Barten’s Synthetic Model. Foods 2021, 10, 265. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, A.; Hussain, A.; Asif, M.; Jameel, A.; Sadiq, S.; Kanwel, S. Determinants of Gender Disparity in Nutritional Intake among Children in Pakistan: Evidence from PDHS. Children 2022, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.; Adil, S. Factors Influencing The Food Security And Nutrition Expenditures In Farm Households In Punjab, Pakistan. Eur. Sci. J. ESJ 2021, 17, 21–39. [Google Scholar] [CrossRef]
- Wu, B.; Shang, X.; Chen, Y. Household dairy demand by income groups in an urban Chinese province: A multistage budgeting approach. Agribusiness 2021, 37, 629–649. [Google Scholar] [CrossRef]
- Lei, L.I.; Zhai, S.X.; Bai, J.F. The dynamic impact of income and income distribution on food consumption among adults in rural China. J. Integr. Agric. 2021, 20, 330–342. [Google Scholar] [CrossRef]
- Chiaka, J.C.; Zhen, L.; Xiao, Y. Changing Food Consumption Patterns and Land Requirements for Food in the Six Geopolitical Zones in Nigeria. Foods 2022, 11, 150. [Google Scholar] [CrossRef]
- Fanzo, J.; Rudie, C.; Sigman, I.; Grinspoon, S.; Benton, T.G.; Brown, M.E.; Willett, W.C. Sustainable food systems and nutrition in the 21st century: A report from the 22nd annual Harvard Nutrition Obesity Symposium. Am. J. Clin. Nutr. 2022, 115, 18–33. [Google Scholar] [CrossRef]
Variables | Definition | Mean | Standard Deviation | Coefficient of Variation |
---|---|---|---|---|
Dependent | ||||
Nutrient () | Monthly nutrient consumption of the household | |||
Energy | Monthly energy consumption of the household (k.cal) | 362,068 | 187,691 | 0.52 |
Protein | Monthly Protein consumption of the household (g) | 6381 | 4991 | 0.78 |
Fat | Monthly Fat consumption of the household (g) | 7191 | 18,943 | 2.6 |
Carbohydrate | Monthly Carbohydrate consumption of the household (g) | 30,830 | 20,530 | 0.66 |
Fiber | Monthly Fiber consumption of the household (g) | 4032 | 3477 | 0.86 |
Ash | Monthly Ash consumption of the household (g) | 1709 | 1225 | 0.72 |
Calcium | Monthly Calcium consumption of the household (mg) | 115,560 | 126,901 | 1.1 |
Phosphorus | Monthly Phosphorus consumption of the household (mg) | 116,940 | 108,774 | 0.93 |
Iron | Monthly Iron consumption of the household (mg) | 701 | 422 | 0.60 |
Zinc | Monthly Zinc consumption of the household (mg) | 1727 | 1161 | 0.67 |
Thiamine | Monthly Thiamine consumption of the household (mg) | 95 | 112 | 1.2 |
Riboflavin | Monthly Riboflavin consumption of the household (mg) | 223 | 603 | 2.7 |
Niacin | Monthly Niacin consumption of the household (mg NE) | 1660 | 1292 | 0.78 |
Vitamin C | Monthly Vitamin-C consumption of the household (mg) | 2570 | 1838 | 0.72 |
Vitamin B | Monthly Vitamin-B consumption of the household (mg) | 51 | 74 | 1.5 |
Vitamin A | Monthly Vitamin-A consumption of the household (mcg RAE) | 44,497 | 178,021 | 4 |
Cholesterol | Monthly Cholesterol consumption of the household (mg/dL) | 11,691 | 47,002 | 4 |
Explanatory | ||||
Household income and size | ||||
Total expenditure/income () | Monthly expenditure/income of the household (PKR) | 186,145.2 | 136,777.3 | 0.7348 |
Household size () | Number of family members in the household | 6.7 | 3.1 | 0.4576 |
Nutrient (ln) | Intercept | Income (ln) | Household Size (ln) |
---|---|---|---|
Energy | 8.212 *** (0.059) | 0.272 *** (0.005) | 0.678 *** (0.006) |
Protein | 0.864 *** (0.094) | 0.586 *** (0.008) | 0.366 *** (0.010) |
Fat | −4.516 *** (0.213) | 0.977 *** (0.019) | 0.218 *** (0.023) |
Carbohydrate | 2.086 *** (0.083) | 0.623 *** (0.007) | 0.335 *** (0.009) |
Fiber | 0.521 *** (0.110) | 0.561 *** (0.010) | 0.437 *** (0.012) |
Ash | −0.383 *** (0.087) | 0.584 *** (0.008) | 0.356 *** (0.010) |
Calcium | 3.456 *** (0.107) | 0.603 *** (0.010) | 0.376 *** (0.012) |
Phosphorus | 3.661 *** (0.089) | 0.604 *** (0.008) | 0.307 *** (0.010) |
Iron | 0.244 ** (0.083) | 0.441 *** (0.008) | 0.480 *** (0.009) |
Zinc | 1.025 *** (0.071) | 0.455 *** (0.006) | 0.463 *** (0.008) |
Thiamine | −7.560 *** (0.245) | 0.948 *** (0.022) | −0.015 (0.027) |
Riboflavin | −1.678 *** (0.103) | 0.504 *** (0.009) | 0.418 *** (0.011) |
Niacin | 0.278 ** (0.100) | 0.514 *** (0.009) | 0.422 *** (0.011) |
Vitamin C | 2.843 *** (0.168) | 0.336 *** (0.015) | 0.357 *** (0.018) |
Vitamin B | −2.940 *** (0.120) | 0.443 *** (0.011) | 0.476 *** (0.013) |
Vitamin A | −3.204 *** (0.325) | 0.824 *** (0.029) | 0.344 *** (0.035) |
Cholesterol | −12.952 *** (0.479) | 1.423 *** (0.043) | −0.038 (0.052) |
Nutrient (ln) | Intercept | Income (ln) | Household Size (ln) |
---|---|---|---|
Energy | 8.710 *** (0.077) | 0.230 *** (0.007) | 0.679 *** (0.009) |
Protein | 0.648 *** (0.134) | 0.597 *** (0.012) | 0.274 *** (0.016) |
Fat | −4.185 *** (0.314) | 0.938 *** (0.028) | 0.287 *** (0.037) |
Carbohydrate | 2.327 *** (0.121) | 0.591 *** (0.011) | 0.307 *** (0.014) |
Fiber | 0.318 * (0.128) | 0.565 *** (0.012) | 0.326 *** (0.015) |
Ash | −0.439 *** (0.123) | 0.580 *** (0.011) | 0.282 *** (0.015) |
Calcium | −3.256 *** (0.139) | 0.606 *** (0.013) | 0.278 *** (0.017) |
Phosphorus | 3.810 *** (0.133) | 0.584 *** (0.012) | 0.296 *** (0.016) |
Iron | 0.189 * (0.114) | 0.431 *** (0.010) | 0.430 *** (0.014) |
Zinc | 1.515 *** (0.107) | 0.404 *** (0.010) | 0.478 *** (0.013) |
Thiamine | −5.356 *** (0.260) | 0.764 *** (0.023) | 0.298 *** (0.031) |
Riboflavin | −1.832 *** (0.139) | 0.501 *** (0.012) | 0.338 *** (0.017) |
Niacin | 0.067 (0.137) | 0.518 *** (0.012) | 0.316 *** (0.016) |
Vitamin C | 4.460 *** (0.120) | 0.195 *** (0.011) | 0.601 *** (0.014) |
Vitamin B | −3.010 *** (0.168) | 0.470 *** (0.015) | 0.380 *** (0.020) |
Vitamin A | −1.349 ** (0.458) | 0.641 *** (0.041) | 0.614 *** (0.055) |
Cholesterol | −10.394 *** (0.651) | 1.187 *** (0.059) | 0.247 ** (0.078) |
Nutrient (ln) | Intercept | Income (ln) | Household Size (ln) |
---|---|---|---|
Energy | 8.191 *** (0.142) | 0.265 *** (0.013) | 0.672 *** (0.014) |
Protein | 1.775 *** (0.143) | 0.528 *** (0.013) | 0.349 *** (0.015) |
Fat | −5.208 *** (0.423) | 1.041 *** (0.037) | 0.215 *** (0.043) |
Carbohydrate | 1.923 *** (0.141) | 0.643 *** (0.012) | 0.320 *** (0.014) |
Fiber | 0.775 *** (0.145) | 0.553 *** (0.012) | 0.329 *** (0.015) |
Ash | −0.125 (0.134) | 0.580 *** (0.012) | 0.300 *** (0.014) |
Calcium | 3.645 *** (0.159) | 0.613 *** (0.014) | 0.256 *** (0.016) |
Phosphorus | 3.823 *** (0.142) | 0.607 *** (0.013) | 0.269 *** (0.014) |
Iron | 0.960 *** (0.121) | 0.409 *** (0.011) | 0.372 *** (0.012) |
Zinc | 0.861 *** (0.120) | 0.483 *** (0.011) | 0.369 *** (0.012) |
Thiamine | −9.289 *** (0.480) | 1.078 *** (0.042) | 0.138 ** (0.049) |
Riboflavin | −0.922 *** (0.165) | 0.475 *** (0.015) | 0.305 *** (0.017) |
Niacin | 1.138 *** (0.153) | 0.476 *** (0.014) | 0.331 *** (0.016) |
Vitamin C | 5.455 *** (0.157) | 0.112 *** (0.014) | 0.630 *** (0.016) |
Vitamin B | −0.684 *** (0.177) | 0.330 *** (0.016) | 0.408 *** (0.018) |
Vitamin A | −5.665 *** (0.726) | 1.054 *** (0.064) | 0.288 *** (0.074) |
Cholesterol | −17.378 *** (1.008) | 1.831 *** (0.089) | −0.123 (0.102) |
Nutrient (ln) | Intercept | Income (ln) | Household Size (ln) |
---|---|---|---|
Energy | 7.986 *** (0.137) | 0.296 *** (0.019) | 0.688 *** (0.014) |
Protein | 2.222 *** (0.204) | 0.486 *** (0.019) | 0.417 *** (0.021) |
Fat | −3.128 *** (0.477) | 0.847 *** (0.043) | 0.336 *** (0.049) |
Carbohydrate | −0.297 *** (0.180) | 0.556 *** (0.016) | 0.347 *** (0.018) |
Fiber | 3.845 *** (0.210) | 0.326 *** (0.019) | 0.478 *** (0.022) |
Ash | 1.543 *** (0.177) | 0.437 *** (0.016) | 0.414 *** (0.018) |
Calcium | 6.582 *** (0.207) | 0.372 *** (0.019) | 0.434 *** (0.021) |
Phosphorus | 4.361 *** (0.217) | 0.549 *** (0.020) | 0.351 *** (0.022) |
Iron | 1.674 *** (0.155) | 0.343 *** (0.014) | 0.500 *** (0.016) |
Zinc | 1.523 *** (0.164) | 0.424 *** (0.015) | 0.487 *** (0.017) |
Thiamine | −13.609 *** (0.618) | 1.404 *** (0.056) | −0.026 (0.063) |
Riboflavin | 0.347 * (0.199) | 0.357 *** (0.018) | 0.448 *** (0.020) |
Niacin | 2.132 *** (0.182) | 0.377 *** (0.017) | 0.478 *** (0.019) |
Vitamin C | −5.153 *** (0.451) | 0.968 *** (0.041) | 0.025 (0.046) |
Vitamin B | −1.440 *** (0.250) | 0.368 *** (0.023) | 0.502 *** (0.026) |
Vitamin A | −3.111 *** (0.606) | 0.783 *** (0.055) | 0.312 *** (0.062) |
Cholesterol | −11.217 *** (0.928) | 1.224 *** (0.085) | 0.056 (0.095) |
Nutrient (ln) | Intercept | Income (ln) | Household Size (ln) |
---|---|---|---|
Energy | 5.563 *** (0.152) | 0.530 *** (0.014) | 0.476 *** (0.015) |
Protein | −2.215 *** (0.289) | 0.897 *** (0.027) | 0.066 * (0.029) |
Fat | −9.274 *** (0.750) | 1.453 *** (0.069) | −0.367 *** (0.075) |
Carbohydrate | −1.286 *** (0.269) | 0.960 *** (0.027) | −0.003 (0.030) |
Fiber | −3.105 *** (0.443) | 0.951 *** (0.041) | 0.037 (0.045) |
Ash | −3.568 *** (0.303) | 0.904 *** (0.028) | 0.073 * (0.030) |
Calcium | 0.206 (0.373) | 0.946 *** (0.034) | 0.035 (0.038) |
Phosphorus | 0.638 * (0.307) | 0.890 *** (0.028) | 0.070 * (0.031) |
Iron | −2.839 *** (0.277) | 0.759 *** (0.025) | 0.195 *** (0.028) |
Zinc | −2.359 *** (0.219) | 0.779 *** (0.020) | 0.214 *** (0.022) |
Thiamine | −13.143 *** (0.981) | 1.374 *** (0.090) | −0.334 ** (0.099) |
Riboflavin | −5.073 *** (0.314) | 0.848 *** (0.029) | 0.142 *** (0.032) |
Niacin | −2.769 *** (0.290) | 0.826 *** (0.027) | 0.147 *** (0.029) |
Vitamin C | −5.050 *** (0.842) | 0.972 *** (0.077) | 0.199 * (0.085) |
Vitamin B | −4.946 *** (0.373) | 0.700 *** (0.034) | 0.213 *** (0.037) |
Vitamin A | −12.207 *** (1.230) | 1.660 *** (0.113) | −0.310 * (0.124) |
Cholesterol | −26.680 *** (2.103) | 2.593 *** (0.193) | −0.567 ** (0.212) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayat, N.; Mustafa, G.; Alotaibi, B.A.; Traore, A. Nutritional Demand and Consumption Pattern: A Case Study of Pakistan. Sustainability 2022, 14, 7068. https://doi.org/10.3390/su14127068
Hayat N, Mustafa G, Alotaibi BA, Traore A. Nutritional Demand and Consumption Pattern: A Case Study of Pakistan. Sustainability. 2022; 14(12):7068. https://doi.org/10.3390/su14127068
Chicago/Turabian StyleHayat, Naveed, Ghulam Mustafa, Bader Alhafi Alotaibi, and Abou Traore. 2022. "Nutritional Demand and Consumption Pattern: A Case Study of Pakistan" Sustainability 14, no. 12: 7068. https://doi.org/10.3390/su14127068