Shore Power Deployment Problem—A Case Study of a Chinese Container Shipping Network
Abstract
:1. Introduction
2. Mathematical Model
Problem Description
- Sets and indices
- the set of ports, indexed by i, ;
- the set of routes, indexed by j, ;
- the set of phases, indexed by n, ;
- the set of ports, visited by route j, ;
- the set of routes, which visit port i, ;
- Parameters
- binary parameter, equals 1 when port i is already equipped with SP facilities at the beginning of phase 0, 0 otherwise
- binary parameter, equals 1 when shipping route j is already equipped with SP facilities at the beginning of phase 0, 0 otherwise ;
- the annual fuel cost (USD) of route j for berthing at port i without using SP, ;
- the annual electricity cost (USD) of route j for berthing at port i using SP, ;
- the annual profit (USD) of port i selling SP to ships deployed on route j, ;
- the equivalent annual cost (USD/year) of onshore SP facilities at port i, ;
- the equivalent annual cost (USD/year) of onboard SP facilities for route j, ;
- Variables
- binary variable, equal to 1 if port i receives government subsidy, 0 otherwise, ;
- binary variable, equal to 1 if route j receives government subsidy, 0 otherwise, ;
- the set of ports that decide to construct onshore SP facilities at or before phase n, ;
- the set of routes that decide to retrofit the ships deployed and construct onboard SP facilities at or before phase n, ;
- binary variable, equal to 1 if port i will benefit from constructing onshore SP facilities, 0 otherwise, given a set of routes with onboard facilities, which is denoted by ,
- binary variable, equal to 1 if route i will benefit from constructing onboard SP facilities, 0 otherwise, given a set of ports with onboard facilities, which is denoted by ,
3. Solution Method
- Set
- the set of all ports and shipping routes considered, ;
- Parameters
- binary variable, equal to 1 if port i receives government subsidy, 0 otherwise, ;
- binary variable, equal to 1 if route j receives government subsidy, 0 otherwise, ;
- the set of ports that decide to construct onshore SP facilities at or before phase n, ;
- the set of routes that decide to retrofit the ships deployed and construct onboard SP facilities at or before phase n, .
4. Numerical Experiment
4.1. Parameter Settings
4.2. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UNCTAD | United Nations Conference on Trade and Development |
IMO | International Maritime Organization |
GHG | greenhouse gas |
SP | shore power |
carbon dioxide | |
sulfur dioxide | |
nitrogen oxides | |
fine particulate matter |
Appendix A. Ports and Routes Considered in This Case Study
Appendix A.1. Ports Considered in This Case Study
No. | Port Name | Shore Power | No. | Port Name | Shore Power |
---|---|---|---|---|---|
1 | Anqing | N | 46 | Xiamen | Y |
2 | Changshu | N | 47 | Shantou | Y |
3 | Changzhou | N | 48 | Shanghai | Y |
4 | Dachanwan | N | 49 | Shekou | N |
5 | Dalian | Y | 50 | Shenzhen | Y |
6 | Dandong | N | 51 | Shunde | N |
7 | Deqing | N | 52 | Suqian | N |
8 | Dongguan | N | 53 | Taishan | N |
9 | Foshan | Y | 54 | Taizhong | Y |
10 | Fuzhou | Y | 55 | Taicang | N |
11 | Gaolan | N | 56 | Taizhou | N |
12 | Gaoming | N | 57 | Tangshan | Y |
13 | Gaoxiong | Y | 58 | Tianjin | Y |
14 | Guangxi | Y | 59 | Tongling | N |
15 | Haian | N | 60 | Waigaoqiao | N |
16 | Haikou | N | 61 | Wuchongkou | N |
17 | Humen | Y | 62 | Wuhu | Y |
18 | Huadong | N | 63 | Wuzhou | Y |
19 | Huanghua | N | 64 | Wuhan | Y |
20 | Huangpu | N | 65 | Xianggang | N |
21 | Huangshi | Y | 66 | Xinhui | N |
22 | Huizhou | Y | 67 | Xuzhou | N |
23 | Jilong | Y | 68 | Yantai | Y |
24 | Jiangmen | Y | 69 | Yantian | N |
25 | Jiangyin | N | 70 | Yangzhou | Y |
26 | Jinzhou | Y | 71 | Yangjiang | N |
27 | Jingzhou | N | 72 | Yangshan | N |
28 | Jiujiang | Y | 73 | Yichang | N |
29 | Lianyungang | Y | 74 | Yixing | N |
30 | Longtan | N | 75 | Yingkou | Y |
31 | Luzhou | N | 76 | Yueyang | N |
32 | Nanjing | Y | 77 | Yunfu | N |
33 | Nansha | N | 78 | Zhapu | N |
34 | Nantong | Y | 79 | Zhanjiang | N |
35 | Ningbo | Y | 80 | Zhangjiagang | N |
36 | Panjin | N | 81 | Zhaoqing | Y |
37 | Qiba | N | 82 | Zhenjiang | Y |
38 | Qinzhou | N | 83 | Zhongshan | Y |
39 | Qinhuangdao | N | 84 | Zhongqing | Y |
40 | Qingdao | Y | 85 | Zhuhai | Y |
41 | Qingyuan | N | |||
42 | Quanzhou | N | |||
43 | Rizhao | Y | |||
44 | Sanbu | N | |||
45 | Sanshui | N |
Appendix A.2. Routes Considered in This Case Study
No. | Route Type | Ports of Call | No. | Route Type | Ports of Call |
---|---|---|---|---|---|
1 | T1 | 75 - 33 | 46 | T2 | 25 - 80 - 55 - 72 |
2 | T1 | 75 - 57 - 58 - 4 | 47 | T2 | 55 - 72 |
3 | T1 | 58 - 33 | 48 | T2 | 74 - 55 - 48 |
4 | T1 | 40 - 43 - 29 - 50 - 11 | 49 | T2 | 67 - 52 - 55 |
5 | T1 | 39 - 68 - 33 | 50 | T2 | 15 - 55 |
6 | T1 | 5 - 26 - 46 - 33 | 51 | T3 | 48 - 23 - 54 - 13 |
7 | T1 | 19 - 33 | 52 | T3 | 48 - 13 - 54 - 23 |
8 | T1 | 75 - 58 - 79 - 38 | 53 | T3 | 5 - 58 - 40 - 29 - 54 - 35 |
9 | T1 | 26 - 57 - 43 - 38 | 54 | T4 | 33 - 11 - 51 |
10 | T1 | 68 - 40 - 46 | 55 | T4 | 33 - 11 - 45 |
11 | T1 | 75 - 58 - 42 - 46 | 56 | T4 | 33 - 11 - 12 |
12 | T1 | 75 - 58 - 46 - 47 | 57 | T4 | 33 - 11 - 9 |
13 | T1 | 42 - 46 - 16 | 58 | T4 | 33 - 4 - 20 |
14 | T1 | 75 - 68 - 48 | 59 | T4 | 33 - 4 - 18 |
15 | T1 | 26 - 48 | 60 | T4 | 33 - 17 |
16 | T1 | 6 - 48 | 61 | T4 | 33 - 11 - 66 |
17 | T1 | 48 - 78 - 61 | 62 | T4 | 33 - 11 - 53 - 44 |
18 | T1 | 55 - 50 - 17 - 11 | 63 | T4 | 33 - 11 - 63 |
19 | T1 | 48 - 42 - 46 | 64 | T4 | 33 - 11 - 14 |
20 | T1 | 5 - 75 - 36 - 34 | 65 | T4 | 33 - 11 - 81 |
21 | T1 | 58 - 34 | 66 | T4 | 33 - 11 - 77 - 7 |
22 | T1 | 40 - 29 - 48 | 67 | T4 | 33 - 4 - 8 |
23 | T2 | 31 - 64 | 68 | T4 | 33 - 4 - 22 |
24 | T2 | 84 - 64 - 1 | 69 | T4 | 33 - 11 - 83 |
25 | T2 | 84 - 1 - 55 - 48 | 70 | T4 | 33 - 85 |
26 | T2 | 84 - 64 | 71 | T4 | 33 - 4 - 41 |
27 | T2 | 73 - 27 - 76 | 72 | T4 | 33 - 11 - 71 |
28 | T2 | 73 - 27 - 64 | 73 | T4 | 20 - 65 - 20 |
29 | T2 | 76 - 48 | 74 | T4 | 65 - 18 |
30 | T2 | 64 - 21 - 28 - 55 - 48 | 75 | T4 | 65 - 17 |
31 | T2 | 1 - 60 | 76 | T4 | 33 - 65 |
32 | T2 | 1 - 59 - 55 - 48 | 77 | T4 | 51 - 9 - 12 - 33 |
33 | T2 | 1 - 48 | 78 | T4 | 20 - 33 |
34 | T2 | 62 - 32 - 48 | 79 | T4 | 24 - 33 |
35 | T2 | 32 - 48 | 80 | T4 | 49 - 65 |
36 | T2 | 37 - 30 - 55 - 48 | 81 | T4 | 51 - 49 |
37 | T2 | 70 - 82 - 56 - 55 - 48 | 82 | T4 | 9 - 12 - 49 |
38 | T2 | 3 - 25 - 55 - 48 | 83 | T4 | 51 - 65 |
39 | T2 | 80 - 34 - 48 | 84 | T4 | 69 - 65 |
40 | T2 | 80 - 34 - 55 - 48 | 85 | T4 | 79 - 65 |
41 | T2 | 2 - 55 - 48 | 86 | T4 | 16 - 65 |
42 | T2 | 55 - 48 | 87 | T4 | 38 - 65 |
43 | T2 | 64 - 72 | 88 | T4 | 47 - 65 |
44 | T2 | 21 - 28 - 62 - 72 | 89 | T4 | 10 - 65 |
45 | T2 | 32 - 70 - 72 | 90 | T4 | 46 - 65 |
91 | T4 | 65 - 42 |
References
- Ngyuen, T.T.; Tran, D.T.M.; Duc, T.T.H.D.; Li, M.; Thai, V.V. Managing disruptions in the maritime industry—A systematic literature review. Marit. Bus. Rev. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- UNCTAD. Review of Maritime Transport 2021. 2021. Available online: https://unctad.org/system/files/official-document/rmt2021_en_0.pdf (accessed on 28 March 2022).
- Yi, W.; Phipps, R.; Wang, H. Sustainable Ship Loading Planning for Prefabricated Products in the Construction Industry. Sustainability 2020, 12, 8905. [Google Scholar] [CrossRef]
- Faber, J.; Hanayama, S.; Zhang, S.; Pereda, P.; Comer, B.; Hauerhof, E.; Smith, T.; Zhang, Y.; Kosaka, H.; Adachi, M.; et al. Reduction of GHG Emissions from Ships: Fourth IMO GHG Study 2020–Final Report; International Maritime Organization: London, UK, 2020. [Google Scholar]
- Teye, C.; Bell, M.G.; Bliemer, M.C. Locating urban and regional container terminals in a competitive environment: An entropy maximising approach. Transp. Res. Part B 2018, 117, 971–985. [Google Scholar] [CrossRef]
- Toscano, D.; Murena, F. Atmospheric ship emissions in ports: A review. Correlation with data of ship traffic. Atmos. Environ. X 2019, 4, 100050. [Google Scholar] [CrossRef]
- Merk, O. Shipping Emissions in Ports. 2014. Available online: https://www.itf-oecd.org/sites/default/files/docs/dp201420.pdf (accessed on 16 February 2020).
- Tseng, P.H.; Ng, M.W. Assessment of port environmental protection in Taiwan. Marit. Bus. Rev. 2021, 6, 188–203. [Google Scholar] [CrossRef]
- Yan, R.; Wang, S.; Zhen, L.; Laporte, G. Emerging approaches applied to maritime transport research: Past and future. Commun. Transp. Res. 2021, 1, 100011. [Google Scholar] [CrossRef]
- New South Wales Environment Protection Authority of Australia. Transport and Environment Comments to New South Wales Environment Protection Authority of Australia Consultation Regarding Stricter Sulphur Fuel Requirement for Cruise Ships in Sydney Harbor; European Federation for Transport and Environment: Brussels, Belgium, 2015. [Google Scholar]
- Daniel, H.; Trovao, J.P.F.; Williams, D. Shore power as a first step toward shipping decarbonization and related policy impact on a dry bulk cargo carrier. eTransportation 2022, 11, 100150. [Google Scholar] [CrossRef]
- Wong, C.P. Impact of the COVID-19 pandemic on the well-being of the stranded seafarers. Marit. Bus. Rev. 2021; ahead-of-print. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, L.; Vata, O.; Rajagopal, S. Restructuring seafarers’ welfare under the Maritime Labour Convention: An empirical case study of Greece. Marit. Bus. Rev. 2020, 5, 373–389. [Google Scholar] [CrossRef]
- The Government of Canada. The Shore Power Technology for Ports Program (SPTP) Has Funded the Following Projects, by Province; 2017. Available online: https://tc.canada.ca/en/programs/sptp-projects (accessed on 23 July 2021).
- Ministry of Transport of the People’s Republic of China. Guidelines for the Application of Incentive Funds for 2016–2018 Shore Power Projects for Berthing Ships; Ministry of Transport of the People’s Republic of China: Beijing, China, 2017.
- Shenzhen Transportation Commission. Interim Measures of Shenzhen Municipality on the Administration of Subsidies for Port, Ship Shore Power Facilities and Ship Low Sulfur Oil; Shenzhen Transportation Commission: Shenzhen, China, 2014.
- European Executive Agency for Competitiveness and Innovation. Lightening the Load—Marco Polo Leads the Way, Office for Official Publications of the European Communities. Available online: https://ec.europa.eu/inea/sites/default/files/download/MoS/mp_projectbrochure_en_web_final.pdf (accessed on 15 August 2021).
- Zhen, L.; Wang, W.; Lin, S. Analytical comparison on two incentive policies for shore power equipped ships in berthing activities. Transp. Res. Part E 2022, 161, 102686. [Google Scholar] [CrossRef]
- Ye, G.; Zhou, Y.; Yin, W.; Feng, X. Are shore power and emission control area policies always effective together for pollutant emission reduction?—An analysis of their joint impacts at the post-pandemic era. Ocean. Coast. Manag. 2022, 224, 106182. [Google Scholar] [CrossRef]
- Osses, J.R.P.; Palma, V.M.; Reusser, C.A. Emissions assessment of a tanker in a chilean port using bi-directional cold ironing integrated to LNG. Sustain. Energy Technol. Assess. 2022, 52, 102135. [Google Scholar]
- Yu, J.; Vob, S.; Song, X. Multi-objective optimization of daily use of shore side electricity integrated with quayside operation. J. Clean. Prod. 2022, 351, 131406. [Google Scholar] [CrossRef]
- Zhen, L.; Sun, Q.; Zhang, W.; Wang, K.; Yi, W. Column generation for low carbon berth allocation under uncertainty. J. Oper. Res. Soc. 2021, 72, 2225–2240. [Google Scholar] [CrossRef]
- Wang, S.; Qi, J.; Laporte, G. Optimal subsidy design for shore power usage in ship berthing operations. Nav. Res. Logist. 2021, 52, 102135. [Google Scholar] [CrossRef]
- Wu, L.; Wang, S. The shore power deployment problem for maritime transportation. Transp. Res. Part E 2020, 135, 1–12. [Google Scholar] [CrossRef]
- Wang, S.; Psaraftis, H.N.; Qi, J. Paradox of international maritime organization’s carbon intensity indicator. Commun. Transp. Res. 2021, 1, 100005. [Google Scholar] [CrossRef]
- QI, J.; Wang, S.; Psaraftis, H. Bi-level optimization model applications in managing air emissions from ships: A review. Commun. Transp. Res. 2021, 1, 100020. [Google Scholar] [CrossRef]
- Conejo, A.J.; Hall, N.G.; Long, D.Z.; Zhang, R. Robust Capacity Planning for Project Management. INFORMS J. Comput. 2021, 33, 1533–1550. [Google Scholar] [CrossRef]
- Zhang, J.; Long, D.Z.; Wang, R.; Xie, C. Impact of Penalty Cost on Customers’ Booking Decisions. Prod. Oper. Manag. 2021, 33, 1603–1614. [Google Scholar] [CrossRef]
- Hall, N.G.; Long, D.Z.; Qi, J.; Sim, M. Managing Underperformance Risk in Project Portfolio Selection. Oper. Res. 2015, 63, 660–675. [Google Scholar] [CrossRef] [Green Version]
- Yi, W.; Wang, W.; Hu, Y.; Li, M.; Zhen, L. Collaborative stowage planning problem for a liner ship. Int. J. Shipp. Transp. Logist. 2019, 11, 176–195. [Google Scholar] [CrossRef]
- Yang, X.; Ma, C.; Zhu, C.; Qi, B.; Pan, F.; Zhu, C. Design of hazardous materials transportation safety management system under the vehicle-infrastructure connected environment. J. Intell. Connect. Veh. 2019, 2, 14–24. [Google Scholar] [CrossRef]
- He, J.; Yan, N.; Zhang, J.; Yu, Y.; Wang, T. Battery electric buses charging schedule optimization considering time-of-use electricity price. J. Intell. Connect. Veh. 2019, 5, 138–145. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Zhang, Z.; Huang, Z. Active lane management for intelligent connected vehicles in weaving areas of urban expressway. J. Intell. Connect. Veh. 2021, 4, 52–67. [Google Scholar] [CrossRef]
- China COSCO Shipping Corporation Limited. COSCO. 2022. Available online: http://www.coscoshipping.com/ (accessed on 15 March 2022).
- Shanghai PANASIA Shipping Company. PANASIA. 2022. Available online: https://www.panasiashipping.com/product/ (accessed on 15 March 2022).
- Li, H. Benefit Analysis of Using Shore Power and Low Sulfur Oil When Ships Approach Port; China Waterborne Transport Research Institute: Beijing, China, 2019; Available online: https://www.wti.ac.cn/zjgd/4288.jhtml (accessed on 16 February 2021).
- Li, B. The Internal Preliminary Review Meeting of the Implementation Plan of Wenzhou Port Power Construction; Wenzhou Traffic and Transport Bureau: Zhejiang, China, 2018. Available online: http://wzjt.wenzhou.gov.cn/art/2018/11/8/art_1243902_23653996.html (accessed on 16 February 2021).
- World Ship Network. Price Mechanism May Reverse the Embarrassing Situation of Ship Shore Power Application. 2018. Available online: http://www.eworldship.com/html/2018/ship_inside_and_outside_0821/142269.html (accessed on 16 February 2021).
- The Public Resources Trading Platform of Hainan Province. Bidding Document for Wenchang Port Shore Power Transformation Project. 2021. Available online: http://www.ggzy.gov.cn/information/html/a/460000/0105/202109/22/0046b5e5a9626b834d5bb9f4320a0d1ea37f.shtml (accessed on 6 May 2022).
- Ministry of Transport of the People’s Republic of China. Further Promote the Work of Using Shore Power for Ship Berthing. 2019. Available online: https://www.mot.gov.cn/zhengcejiedu/gttjcbkgsyad/xiangguanzhengce/201902/t20190225_3168699.html (accessed on 6 May 2022).
- Nunes, R.; Alvim-Ferraz, M.; Martins, F.; Sousa, S. Environmental and social valuation of shipping emissions on four ports of Portugal. J. Environ. Manag. 2019, 235, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Song, S. Ship emissions inventory, social cost and eco-efficiency in Shanghai Yangshan port. Atmos. Environ. 2014, 82, 288–297. [Google Scholar] [CrossRef]
- Ministry of Transport of the People’s Republic of China. Port Shore Power Layout Scheme. 2017. Available online: https://xxgk.mot.gov.cn/2020/jigou/syj/202006/t20200623_3313916.html (accessed on 6 May 2022).
- Tencent. Construction and Use of Port Shore Power in China. 2020. Available online: https://new.qq.com/rain/a/20200426A0KKW100 (accessed on 6 May 2022).
Content | Value |
---|---|
Original bunker (ton/year) | |
Final bunker (ton/year) | |
Environmental benefits (USD/year) | |
Subsidized ports | 67,69,77 |
Subsidized routes | 1,13,17,23,24.26,29,72,80 |
Ports that finally adopt SP | 1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,34,35, 36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66, 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91 |
Routes that finally adopt SP | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35, 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,62,63,64,65,66,67, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85 |
Case | Budget Proportion | Final Bunker (ton/year) | Environmental Benefits (USD/year) | Subsidized Ports | Subsidized Routes |
---|---|---|---|---|---|
L-1 | 2.5% | 69,77 | 7,13,27 | ||
L-2 | 5% | 69,77 | 1,13,27,72,80 | ||
L-3 | 7.5% | 67,69,77 | 1,7,13,17,24,27,72,80 | ||
L-4 | 10% | 67,69,77 | 1,7,13,17,24,26,27,72,80 | ||
L-5 | 12.5% | 67,69,77 | 1,7,13,17,23,24,26,29,72,80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, J.; Wang, H.; Zheng, J. Shore Power Deployment Problem—A Case Study of a Chinese Container Shipping Network. Sustainability 2022, 14, 6928. https://doi.org/10.3390/su14116928
Qi J, Wang H, Zheng J. Shore Power Deployment Problem—A Case Study of a Chinese Container Shipping Network. Sustainability. 2022; 14(11):6928. https://doi.org/10.3390/su14116928
Chicago/Turabian StyleQi, Jingwen, Hans Wang, and Jianfeng Zheng. 2022. "Shore Power Deployment Problem—A Case Study of a Chinese Container Shipping Network" Sustainability 14, no. 11: 6928. https://doi.org/10.3390/su14116928