Study on Strength and Swell Behavioral Change and Properties of the Clay–Fiber Mixtures
Abstract
:1. Introduction
2. Materials
2.1. Polypropylene Fiber
2.2. Soil
3. Laboratory Investigations
3.1. Sample Preparation
3.2. Shear Strength Tests
3.3. Unconfined Compressive Strength Tests (UCS)
3.4. Swelling Tests
4. Results and Discussion
4.1. Effects of Fiber Content on the Shear Strength
4.2. Effects of Fiber Content on Unconfined Compressive Strength and Elasticity Modulus
4.3. Effects of Fiber Content on Swell Stress and Swell Potential
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dasog, G.S.; Mermut, A.R. Expansive Soils and Clays. In Encyclopedia of Natural Hazards; Bobrowsky, P.T., Ed.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Nelson, J.D.; Miller, D.J. Expansive Soils: Problems and Practice in Foundation and Pavement Engineering; John Wiley & Sons Inc.: New York, NY, USA, 1992. [Google Scholar]
- Vessely, M.J.; Wu, J.T.H. Feasibility of geosynthetic inclusion for reducing swelling of expansive soils. Trans. Res. Rec. J. Trans. Res. Board 2002, 1787, 42–52. [Google Scholar] [CrossRef]
- Sridharan, A.; Gurtug, Y. Swelling behaviour of compacted fine-grained soils. Eng. Geol. 2004, 72, 9–18. [Google Scholar] [CrossRef]
- Akbulut, S.; Arasan, S.; Kalkan, E. Modification of clayey soils using scrap tire rubber and synthetic fibers. Appl. Clay Sci. 2007, 38, 23–32. [Google Scholar] [CrossRef]
- AlZubaidi, R.M.; AlRawi, K.H.; AlFalahi, A.J. Using cement dust to reduce swelling of expansive soil. Geomech. Eng. 2013, 5, 565–574. [Google Scholar] [CrossRef]
- Al-Mahbashi, A.M.; Elkady, T.Y.; Alrefeai, T.O. Soil water characteristic curve and improvement in lime treated expansive soil. Geomech. Eng. 2015, 8, 687–696. [Google Scholar] [CrossRef]
- Al-Bared, M.A.M.; Harahap, I.S.H.; Marto, A.; Abad, S.V.; Mustaffa, Z.; Al, M.O.A. Mechanical behaviour of waste powdered tiles and Portland cement treated soft clay. Geomech. Eng. 2019, 19, 37–47. [Google Scholar] [CrossRef]
- Panchal, J.P.; McNamara, A.M.; Stallebrass, S.E. Physical modelling of lime stabilisation in soft soils around deep excavations. J. Deep. Found. Inst. (DFI) 2018, 11, 137–147. [Google Scholar] [CrossRef]
- Rios, S.; Cristelo, N.; Viana da Fonseca, A.; Ferreira, C. Structural performance of alkali-activated soil ash versus soil cement. J. Mater. Civ. Eng. 2015, 28, 04015125. [Google Scholar] [CrossRef] [Green Version]
- Rios, S.; Cristelo, N.; Viana, A.; Ferreira, C. Stiffness behavior of soil stabilized with alkali-activated fly ash from small to large strains. Int. J. Geomech. 2016, 17, 04016087. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, H.; Provis, J.L. Quantitative study of the reactivity of fly ash in geopolymerization by ftir. J. Sustain. Cem. Mater. 2012, 1, 154–166. [Google Scholar] [CrossRef] [Green Version]
- Kua, T.A.; Arulrajah, A.; Mohammadinia, A.; Horpibulsuk, S.; Mirzababaei, M. Stiffness and deformation properties of spent coffee grounds based geopolymers. J. Constr. Build. Mater. 2017, 138, 79–87. [Google Scholar] [CrossRef]
- Hoy, M.; Rachan, R.; Horpibulsuk, S.; Arulrajah, A.; Mirzababaei, M. Effect of wetting–drying cycles on compressive strength and microstructure of recycled asphalt pavement—Fly ash geopolymer. Constr. Build. Mater. 2017, 144, 624–634. [Google Scholar] [CrossRef]
- Kumar, A.; Walia, B.S.; Bajaj, A. Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil. J. Mater. Civ. Eng. 2007, 19, 242–248. [Google Scholar] [CrossRef]
- Sivakumar Babu, G.L.; Vasudevan, A.K. Strength and stiffness response of coir fiber-reinforced tropical soil. J. Mater. Civ. Eng. 2008, 20, 571–577. [Google Scholar] [CrossRef]
- Viswanadham, B.V.S.; Phanikumar, B.R.; Mukherjee, R.V. Swelling behaviour of a geofiber-reinforced expansive soil. Geotext. Geomembr. 2009, 27, 73–76. [Google Scholar] [CrossRef]
- Tang, C.; Wang, D.; Cui, Y.; Shi, B.; Li, J. Tensile strength of fiber-reinforced soil. J. Mater. Civ. Eng. 2016, 28, 04016031. [Google Scholar] [CrossRef]
- Yilmaz, Y. Compaction and strength characteristics of fly ash and fiber amended clayey soil. Eng. Geol. 2015, 188, 168–177. [Google Scholar] [CrossRef]
- Cai, Y.; Shi, B.; Ng, C.W.W.; Tang, C. Effect of polypropylene fiber and lime admixture on engineering properties of clayey soil. Eng. Geol. 2006, 87, 230–240. [Google Scholar] [CrossRef]
- Deng, Y.F.; Wu, Z.L.; Liu, S.Y.; Yue, X.B.; Zhu, L.L.; Chen, J.H.; Guan, Y.F. Influence of geopolymer on strength of cement-stabilized soils and its mechanism. Yantu Gongcheng Xuebao/Chinese J. Geotech. Eng. 2016, 38, 446–453. [Google Scholar] [CrossRef]
- Khan, I.; Umar, R. Environmental risk assessment of coal fly ash on soil and groundwater quality. Groundw. Sustain. Dev. 2018, 8, 346–357. [Google Scholar] [CrossRef]
- Brown, R.; Shukla, A.; Natarajan, K.R. Fiber Reinforcement of Concrete Structures; University of Rhode Island Trans Center: Kingston, RI, USA, 2002. [Google Scholar]
- Ramasamy, S.; Arumairaj, P.D. The effect of polypropylene fiber on index properties and compaction characteristics of clay soil. Turkish J. Eng. Sci. Technol. 2013, 2, 35–38. [Google Scholar]
- Hejazi, S.M.; Sheikhzadeh, M.; Abtahi, S.M.; Zadhoush, A. A simple review of soil reinforcement by using natural and synthetic fibers. Constr. Build. Mater. 2012, 30, 100–116. [Google Scholar] [CrossRef]
- ASTM D698; Standard Test Methods for Laboratory Compaction Characteristics of Soil. ASTM International: West Conshohocken, PA, USA, 2012. [CrossRef]
- ASTM D3080-04; Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM International: West Conshohocken, PA, USA, 2004. [CrossRef]
- ASTM D2166/D2166M-16; Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International: West Conshohocken, PA, USA, 2016. [CrossRef]
- ASTM D4546-21; Standard Test Methods for One-Dimensional Swell or Collapse of Soils. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- Mirzababaei, M.; Arulrajah, A.; Haque, A.; Nimbalkar, S.; Mohajerani, A. Effect of fiber reinforcement on shear strength and void ratio of soft clay. Geosynth. Int. 2018, 25, 471–480. [Google Scholar] [CrossRef]
- Mali, S.; Singh, B. Strength behaviour of cohesive soils reinforced with fibers. Int. J. Civ. Eng. Res. 2014, 5, 353–360. [Google Scholar]
- Maheshwari, K.; Solanki, C.H.; Desai, A.K. Effect of polyester fibers on strength properties of clayey soil of high plasticity. Int. J. Sci. Eng. Res. 2013, 4, 486–490. [Google Scholar]
- Anagnostopoulos, C.A.; Dimitrios, T.; Berketis, K. Evaluation of the shear strength behaviour of polypropylene and carbon fiber reinforced cohesive soils. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 4327–4342. [Google Scholar] [CrossRef]
- Yang, B.-H.; Weng, X.-Z.; Liu, J.-Z.; Kou, Y.-N.; Jiang, L.; Li, H.-L.; Yan, X.-C. Strength characteristics of modified polypropylene fiber and cement-reinforced loess. J. Cent. South Univ. 2017, 24, 560–568. [Google Scholar] [CrossRef]
- Sharma, T.; Kaushik, R. Effect of Polypropylene Fiber on Properties of Bagasse Ash-Cement Stabilized Clay Soil. Int. J. Emerg. Technol. 2019, 10, 255–266. [Google Scholar]
- Senol, A.; Ikizler, S.B.; Etminan, E.; Demir, G. Improvement of Low Plasticity Clayey Soils Using Polypropylene Fibers. In Proceedings of the Geo-Hubei International Conference on Sustainable Civil Infrastructure, Yichang, China, 20–22 July 2014. [Google Scholar] [CrossRef]
- Sabat, A.K. Effect of polypropylene fiber on engineering properties of rice husk ash—Lime stabilized expansive soil. Electron. J. Geotech. Eng. 2012, 17, 651–660. [Google Scholar]
Behavior Parameters | Values |
---|---|
Fiber type | Single fiber |
Unit weight | 0.91 g/cm3 |
Average diameter | 0.034 mm |
Average length | 12 mm |
Breaking tensile strength | 350 MPa |
Modulus of elasticity | 3500 MPa |
Fusion point | 165 °C |
Burning point | 590 °C |
Acid and alkali resistance | Very good |
Dispersibility | Excellent |
Soil Properties | Values |
---|---|
Specific gravity | 2.7 |
Liquid limit | 57% |
Plastic limit | 22.67% |
Plasticity index | 34.33% |
Unified Soil Classification System (USCS) | CH |
Optimum moisture content | 22.5% |
Maximum dry density | 1.57 g/cm3 |
Sand (4.75–0.075 mm) | 24% |
Silt (0.075–0.002 mm) | 39% |
Clay < 2 µm | 35% |
Shrinkage limit | 12% |
Fiber Content PP (%) | Dry Weight of Soil (g) | PP Weight (g) | Water Weight (g) | No. of Samples | Total Dry Soil Weight (g) | Total Water Weight (g) | Total PP Weight (g) | Total Wet Weight of the Soil (g) |
---|---|---|---|---|---|---|---|---|
0% | 125.6 | 0 | 28.26 | 6 | 753.6 | 169.56 | 0 | 923.16 |
0.5% | 125.6 | 0.63 | 28.26 | 6 | 753.6 | 169.56 | 3.77 | 926.93 |
1% | 125.6 | 1.26 | 28.26 | 6 | 753.6 | 169.56 | 7.54 | 930.67 |
1.5% | 125.6 | 1.89 | 28.26 | 6 | 753.6 | 169.56 | 11.30 | 934.47 |
Fiber Content (%) | Cohesion (C, kPa) | Friction Angle (Degree, ∅) |
---|---|---|
0% | 31.86 | 17.58 |
0.5% | 49.68 | 30.40 |
1% | 67.26 | 33.52 |
1.5% | 113.62 | 28.54 |
Fiber Content (%) | Unconfined Compressive Strength, (kPa) | Elasticity Modulus E, (kPa) |
---|---|---|
0% | 265 | 15.00 |
0.5% | 305 | 15.91 |
1% | 478 | 13.64 |
1.5% | 493 | 13.48 |
Fiber Content (%) | Swell Stress (kPa) | Maximum Swelling Strain ∆H/H% |
---|---|---|
0% | 7 | 1.6 |
0.5% | 1.405 | |
1% | 1.205 | |
1.5% | 1.205 | |
0% | 50 | 1.275 |
0.5% | 1.03 | |
1% | 0.78 | |
1.5% | 0.62 | |
0% | 100 | 0.6 |
0.5% | 0.145 | |
1% | −0.245 | |
1.5% | −0.395 | |
0% | 160 | −0.2 |
0.5% | −0.1 | |
1% | −0.32 | |
1.5% | −1.045 |
Fiber Content (%) | Swell Stress SS (kPa) |
---|---|
0% | 145 |
0.5% | 124 |
1% | 85 |
1.5% | 78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taleb, T.; Unsever, Y.S. Study on Strength and Swell Behavioral Change and Properties of the Clay–Fiber Mixtures. Sustainability 2022, 14, 6767. https://doi.org/10.3390/su14116767
Taleb T, Unsever YS. Study on Strength and Swell Behavioral Change and Properties of the Clay–Fiber Mixtures. Sustainability. 2022; 14(11):6767. https://doi.org/10.3390/su14116767
Chicago/Turabian StyleTaleb, Talal, and Yesim S. Unsever. 2022. "Study on Strength and Swell Behavioral Change and Properties of the Clay–Fiber Mixtures" Sustainability 14, no. 11: 6767. https://doi.org/10.3390/su14116767