Application of Data Envelopment Analysis (DEA) in the Selection of Sustainable Suppliers: A Review and Bibliometric Analysis
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Sustainable/Green Suppliers
2.2. Data Envelopment Analysis (DEA)
3. Results on DEA Articles in the Selection of Sustainable Suppliers
3.1. Research Approach—A Survey and Bibliometric Analysis of DEA Literature Regarding the Selection of Sustainable Suppliers
3.2. Publication Years, Document Types, and Keywords Analysis
3.3. Authors and Journals Analysis
3.4. Affiliations Analysis
3.5. Citations Analysis
3.6. Co-Authorship Analysis
3.7. Research Gap
4. Discussion, Implications, and Future Trends for DEA in the Selection of Sustainable Suppliers
Title of Paper | Keywords | Review and Discussion | Combination of DEA and MCDM |
---|---|---|---|
An integrated model for green supplier selection under fuzzy environment: application of data envelopment analysis and genetic programming approach [51] | Artificial intelligence; Data envelopment analysis (DEA); Ge-netic programming (GP); Green supplier selection; Parametric analysis | The paper research models based on hybrid artificial intelligence (AI) that deal with supplier evaluation. It highlights the artificial neural network (DEA-ANN) as one of the applied methods in the assessment of suppliers by a combination of artificial intelligence and DEA. The paper also investigates how to improve previous models and creates a new robust nonlinear mathematical equation for evaluating efficiency and selecting suppliers using established criteria and genetic programming. | DEA + Artificial Intelligence + Supplier Selection |
Sustainable supplier evaluation and selection with a novel two-stage DEA model in the presence of uncontrollable inputs and undesirable outputs: a plastic case study [28] | Multiple criteria decision-making; Supply chain management; Sustainable supplier selection; Two-stage data envelopment analysis; Uncontrollable inputs; Undesirable outputs | The study “proposes new two-stage DEA network model in the presence of uncontrolled inputs and undesirable outputs with consideration of a set of intermediates between the two phases for evaluation and selection of the best sustainable supplier” | DEA + Supplier Selection |
Supplier selection considering sustainability measures: An application of weight restriction fuzzy-DEA approach [52] | Data envelopment analysis; Fuzzy set theory; Supplier selection; Sustainable development; α-cut approach | The study proposes a new model for supplier evaluation and ranking and integrates fuzzy set theory and DEA into the new model, taking into account the decision-makers’ preferences and resolving ambiguities and uncertainties in the supplier selection process. This paper presents and “developed a new fuzzy-DEA model, using the α-cut approach and taking into account weight constraints”. | DEA + Fuzzy-DEA model + Supplier Selection (automotive parts supplier) |
A comparison of fuzzy DEA and fuzzy TOPSIS in sustainable supplier selection: Implications for sourcing strategy [53] | DEA; Logistics; Sourcing; Suppliers; Sustainability; TOPSIS | The paper combines two methods in supplier selection, “technique for ordering preference by similarity to ideal solution” (TOPSIS) and DEA. Based on a small number of evaluation criteria, the study proves that the combination of these two methods is applicable and useful for shortlisting potential sustainable suppliers (the paper suggestions for expanding research take the application of selected models to a number of criteria into account). | DEA + TOPSIS + Sustainable Supplier Selection |
How to use fuzzy screening system and data envelopment analysis for clustering sustainable sup-pliers? A case study in Iran [54] | Data envelopment analysis (DEA); DEA-Based clustering method; Enhanced Russell model (ERM); Fuzzy screening system; Sustainable supply chain management | The study uses the DEA method to group suppliers into clusters and thus identifies and eliminates unqualified suppliers. The paper presents a new algorithm that uses the fuzzy screening system and the DEA method to select suppliers. | DEA + Fuzzy-DEA model + Supplier Selection |
Production and scale efficiency of South African water utilities: The case of water boards [55] | Data Envelopment Analysis; Scale efficiency; Technical efficiency; Water boards; Water losses | The study applies the DEA model to be able to measure the technical efficiency of utility companies in South Africa. Therefore, the DEA serves to determine, measure, analyze, and compare the technical performance of all water panels in South Africa. | DEA + Supplier Selection |
A Hybrid Supplier Selection Approach Using Machine Learning and Data Envelopment Analysis [56] | Data Envelopment Analysis; Decision Tree; Kernel Support Vector Machine; Logistic Regression; Machine Learning; Supplier Selection | This study integrates and combines DEA and machine learning, where specific machine learning algorithms applicable to DEA results are presented. The paper focuses on developing a hybrid model for supplier selection by combining DEA methods and machine learning algorithms. | DEA + Supplier Selection + Machine Learning |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. List of Selected Papers for Bibliometric Literature Review
1. | Aggarwal, I. Gunreddy, N., Rajan, A.J. A Hybrid Supplier Selection Approach Using Machine Learning and Data Envelopment Analysis, 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), 2021, pp. 1–5, doi: 10.1109/i-PACT52855.2021.9696826. |
2. | Amindoust, A. (2018). A resilient-sustainable based supplier selection model using a hybrid intelligent method. Computers and Industrial Engineering, 126, 122–135. doi:10.1016/j.cie.2018.09.031 |
3. | Amindoust, A. (2018). Supplier selection considering sustainability measures: An application of weight restriction fuzzy-DEA approach. RAIRO—Operations Research, 52(3), 981–1001. doi:10.1051/ro/2017033 |
4. | Amindoust, A., Ahmed, S., & Saghafinia, A. (2012). Supplier performance measurement of palm oil industries from a sustainable point of view in malaysia. BioTechnology: An Indian Journal, 6(6), 155–158. Retrieved from www.scopus.com |
5. | Amindoust, A., Ahmed, S., & Saghafinia, A. (2013). Using data envelopment analysis for green supplier selection in manufacturing under vague environment doi:10.4028/www.scientific.net/AMR.622-623.1682 Retrieved from www.scopus.com |
6. | Azadi, M., Izadikhah, M., Ramezani, F., & Khadeer, F. (2020). A mixed ideal and anti-ideal DEA model: An application to evaluate cloud service providers. IMA Journal of Management Mathematics, 31(2), 233–256. doi:10.1093/imaman/dpz012 |
7. | Azadi, M., Jafarian, M., Saen, R. F., & Mirhedayatian, S. M. (2015). A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Computers and Operations Research, 54, 274–285. doi:10.1016/j.cor.2014.03.002 |
8. | Azadi, M., Mirhedayatian, S. M., Saen, R. F., Hatamzad, M., & Momeni, E. (2017). Green supplier selection: A novel fuzzy double frontier data envelopment analysis model to deal with undesirable outputs and dual-role factors. International Journal of Industrial and Systems Engineering, 25(2), 160–181. doi:10.1504/IJISE.2017.081516 |
9. | Bai, C., & Sarkis, J. (2014). Determining and applying sustainable supplier key performance indicators. Supply Chain Management, 19(3), 275–291. doi:10.1108/SCM-12-2013-0441 |
10. | Bajec, P., Tuljak-Suban, D., & Zalokar, E. (2021). A distance-based AHP-DEA super-efficiency approach for selecting an electric bike sharing system provider: One step closer to sustainability and a win–win effect for all target groups. Sustainability (Switzerland), 13(2), 1–24. doi:10.3390/su13020549 |
11. | Boudaghi, E., & Farzipoor Saen, R. (2018). Developing a novel model of data envelopment analysis–discriminant analysis for predicting group membership of suppliers in sustainable supply chain. Computers and Operations Research, 89, 348–359. doi:10.1016/j.cor.2017.01.006 |
12. | Chang, K. (2021). A novel contractor selection technique using the extended PROMETHEE II method. Mathematical Problems in Engineering, 2021 doi:10.1155/2021/3664709 |
13. | Cheaitou, A., Larbi, R., & Al Housani, B. (2019). Decision making framework for tender evaluation and contractor selection in public organizations with risk considerations. Socio-Economic Planning Sciences, 68 doi:10.1016/j.seps.2018.02.007 |
14. | Choudhury, N., Raut, R. D., Gardas, B. B., Kharat, M. G., & Ichake, S. (2018). Evaluation and selection of third party logistics services providers using data envelopment analysis: A sustainable approach. International Journal of Business Excellence, 14(4), 427–453. doi:10.1504/IJBEX.2018.090311 |
15. | Dania, W. A. P., Sitepu, I. B. B., & Rucitra, A. L. (2021). Collaboration quality assessment in the sustainable rice supply chain by using an integrated model of QFD-FANP-DEA: A case study of the rice industry in malang. Paper presented at the IOP Conference Series: Earth and Environmental Science, 733(1) doi:10.1088/1755-1315/733/1/012041 Retrieved from www.scopus.com |
16. | Dania, W. A. P., Xing, K., & Amer, Y. (2022). The assessment of collaboration quality: A case of sugar supply chain in indonesia. International Journal of Productivity and Performance Management, 71(2), 504–539. doi:10.1108/IJPPM-11-2019-0527 |
17. | Dobos, I., & Vörösmarty, G. (2014). Green supplier selection and evaluation using DEA-type composite indicators. International Journal of Production Economics, 157(1), 273–278. doi:10.1016/j.ijpe.2014.09.026 |
18. | Dobos, I., & Vörösmarty, G. (2021). Green supplier selection using a common weights analysis of DEA and EOQ types of order allocation. Managerial and Decision Economics, 42(3), 612–621. doi:10.1002/mde.3258 |
19. | Ershadi, M. J., Qhanadi Taghizadeh, O., & Hadji Molana, S. M. (2021). Selection and performance estimation of green lean six sigma projects: A hybrid approach of technology readiness level, data envelopment analysis, and ANFIS. Environmental Science and Pollution Research, 28(23), 29394–29411. doi:10.1007/s11356-021-12595-5 |
20. | Fakhrzad, M. B., & Nasrollahi, S. (2018). A developed model of data envelopment analysis-discriminant analysis for predicting group membership of suppliers in green supply chain. International Journal of Value Chain Management, 9(4), 378–392. doi:10.1504/IJVCM.2018.095278 |
21. | Fallahpour, A., Olugu, E. U., Musa, S. N., Khezrimotlagh, D., & Wong, K. Y. (2016). An integrated model for green supplier selection under fuzzy environment: Application of data envelopment analysis and genetic programming approach. Neural Computing and Applications, 27(3), 707–725. doi:10.1007/s00521-015-1890-3 |
22. | Hatami-Marbini, A., Agrell, P. J., Tavana, M., & Khoshnevis, P. (2017). A flexible cross-efficiency fuzzy data envelopment analysis model for sustainable sourcing. Journal of Cleaner Production, 142, 2761–2779. doi:10.1016/j.jclepro.2016.10.192 |
23. | Hekmat, S., Amiri, M., & Madraki, G. (2021). Strategic supplier selection in payment industry: A multi-criteria solution for insufficient and interrelated data sources. International Journal of Information Technology and Decision Making, 20(6), 1711–1745. doi:10.1142/S0219622021500474 |
24. | Huang, Y., Wang, Y., & Lin, J. (2019). Two-stage fuzzy cross-efficiency aggregation model using a fuzzy information retrieval method. International Journal of Fuzzy Systems, 21(8), 2650–2666. doi:10.1007/s40815-019-00733-8 |
25. | Izadikhah, M., & Farzipoor Saen, R. (2020). Ranking sustainable suppliers by context-dependent data envelopment analysis. Annals of Operations Research, 293(2), 607–637. doi:10.1007/s10479-019-03370-4 |
26. | Izadikhah, M., & Farzipoor Saen, R. (2019). Solving voting system by data envelopment analysis for assessing sustainability of suppliers. Group Decision and Negotiation, 28(3), 641–669. doi:10.1007/s10726-019-09616-7 |
27. | Izadikhah, M., Farzipoor Saen, R., & Ahmadi, K. (2017). How to assess sustainability of suppliers in volume discount context? A new data envelopment analysis approach. Transportation Research Part D: Transport and Environment, 51, 102–121. doi:10.1016/j.trd.2016.11.030 |
28. | Izadikhah, M., Farzipoor Saen, R., Ahmadi, K., & Shamsi, M. (2020). How to use fuzzy screening system and data envelopment analysis for clustering sustainable suppliers? A case study in iran. Journal of Enterprise Information Management, 34(1), 199–229. doi:10.1108/JEIM-09-2019-0262 |
29. | Izadikhah, M., Saen, R. F., & Ahmadi, K. (2017). How to assess sustainability of suppliers in the presence of dual-role factor and volume discounts? A data envelopment analysis approach. Asia-Pacific Journal of Operational Research, 34(3) doi:10.1142/S0217595917400164 |
30. | Izadikhah, M., Saen, R. F., & Roostaee, R. (2018). How to assess sustainability of suppliers in the presence of volume discount and negative data in data envelopment analysis? Annals of Operations Research, 269(1–2), 241–267. doi:10.1007/s10479-018-2790-6 |
31. | Jafarzadeh Ghoushchi, S., Dodkanloi Milan, M., & Jahangoshai Rezaee, M. (2018). Evaluation and selection of sustainable suppliers in supply chain using new GP-DEA model with imprecise data. Journal of Industrial Engineering International, 14(3), 613–625. doi:10.1007/s40092-017-0246-2 |
32. | Jain, V., Kumar, S., Kumar, A., & Chandra, C. (2016). An integrated buyer initiated decision-making process for green supplier selection. Journal of Manufacturing Systems, 41, 256–265. doi:10.1016/j.jmsy.2016.09.004 |
33. | Jauhar, S. K., Amin, S. H., & Zolfagharinia, H. (2021). A proposed method for third-party reverse logistics partner selection and order allocation in the cellphone industry. Computers and Industrial Engineering, 162 doi:10.1016/j.cie.2021.107719 |
34. | Jauhar, S. K., & Pant, M. (2016). Using differential evolution to develop a carbon-integrated model for performance evaluation and selection of sustainable suppliers in indian automobile supply chain doi:10.1007/978-981-10-0451-3_47 Retrieved from www.scopus.com |
35. | Jauhar, S. K., Pant, M., & Nagar, M. C. (2015). Differential evolution for sustainable supplier selection in pulp and paper industry: A DEA based approach. Computer Methods in Materials Science, 15(1), 118–126. Retrieved from www.scopus.com |
36. | Karimi, A., Jafarzadeh-Ghoushchi, S., & Mohtadi-Bonab, M. A. (2020). Presenting a new model for performance measurement of the sustainable supply chain of shoa panjereh company in different provinces of iran (case study). International Journal of Systems Assurance Engineering and Management, 11(1), 140–154. doi:10.1007/s13198-019-00932-4 |
37. | Karimi, B., Azadi, M., Farzipoor Saen, R., & Fosso Wamba, S. (2022). Theory of binary-valued data envelopment analysis: An application in assessing the sustainability of suppliers. Industrial Management and Data Systems, 122(3), 682–701. doi:10.1108/IMDS-09-2021-0555 |
38. | Kaur, H., & Prakash Singh, S. (2021). Multi-stage hybrid model for supplier selection and order allocation considering disruption risks and disruptive technologies. International Journal of Production Economics, 231 doi:10.1016/j.ijpe.2020.107830 |
39. | Kumar, A., Jain, V., & Kumar, S. (2014). A comprehensive environment friendly approach for supplier selection. Omega (United Kingdom), 42(1), 109–123. doi:10.1016/j.omega.2013.04.003 |
40. | Kumar, A., Jain, V., Kumar, S., & Chandra, C. (2016). Green supplier selection: A new genetic/immune strategy with industrial application. Enterprise Information Systems, 10(8), 911–943. doi:10.1080/17517575.2014.986220 |
41. | Kuo, R. J., Wang, Y. C., & Tien, F. C. (2010). Integration of artificial neural network and MADA methods for green supplier selection. Journal of Cleaner Production, 18(12), 1161–1170. doi:10.1016/j.jclepro.2010.03.020 |
42. | Li, F., Deng, L., Li, L., Cheng, Z., & Yu, H. (2020). A two-stage model for monitoring the green supplier performance considering dual-role and undesirable factors. Asia Pacific Journal of Marketing and Logistics, 32(1), 253–280. doi:10.1108/APJML-02-2019-0110 |
43. | Li, F., Wu, L., Zhu, Q., Yu, Y., Kou, G., & Liao, Y. (2020). An eco-inefficiency dominance probability approach for chinese banking operations based on data envelopment analysis. Complexity, 2020 doi:10.1155/2020/3780232 |
44. | Mahdiloo, M., Saen, R. F., & Lee, K. (2015). Technical, environmental and eco-efficiency measurement for supplier selection: An extension and application of data envelopment analysis. International Journal of Production Economics, 168, 279–289. doi:10.1016/j.ijpe.2015.07.010 |
45. | Mahmoudi, A., Abbasi, M., & Deng, X. (2022). Evaluating the performance of the suppliers using hybrid DEA-OPA model: A sustainable development perspective. Group Decision and Negotiation, 31(2), 335–362. doi:10.1007/s10726-021-09770-x |
46. | Moghaddas, Z., Tosarkani, B. M., & Yousefi, S. (2022). A developed data envelopment analysis model for efficient sustainable supply chain network design. Sustainability (Switzerland), 14(1) doi:10.3390/su14010262 |
47. | Moheb-Alizadeh, H., & Handfield, R. (2018). An integrated chance-constrained stochastic model for efficient and sustainable supplier selection and order allocation. International Journal of Production Research, 56(21), 6890–6916. doi:10.1080/00207543.2017.1413258 |
48. | Moheb-Alizadeh, H., & Handfield, R. (2019). Sustainable supplier selection and order allocation: A novel multi-objective programming model with a hybrid solution approach. Computers and Industrial Engineering, 129, 192–209. doi:10.1016/j.cie.2019.01.011 |
49. | Moheb-Alizadeh, H., Handfield, R., & Warsing, D. (2021). Efficient and sustainable closed-loop supply chain network design: A two-stage stochastic formulation with a hybrid solution methodology. Journal of Cleaner Production, 308 doi:10.1016/j.jclepro.2021.127323 |
50. | Momeni, M., & Vandchali, H. R. (2017). Providing a structured methodology for supplier selection and evaluation for strategic outsourcing. International Journal of Business Performance and Supply Chain Modelling, 9(1), 66–85. doi:10.1504/IJBPSCM.2017.083888 |
51. | Nemati, M., Farzipoor Saen, R., & Matin, R. K. (2021). A data envelopment analysis approach by partial impacts between inputs and desirable-undesirable outputs for sustainable supplier selection problem. Industrial Management and Data Systems, 121(4), 809–838. doi:10.1108/IMDS-12-2019-0653 |
52. | Ngobeni, V., & Breitenbach, M. C. (2021). Production and scale efficiency of south african water utilities: The case of water boards. Water Policy, 23(4), 862–879. doi:10.2166/wp.2021.055 |
53. | Nikabadi, M. S., & Moghaddam, H. F. (2021). An integrated approach of adaptive neuro-fuzzy inference system and dynamic data envelopment analysis for supplier selection. International Journal of Mathematics in Operational Research, 18(4), 503–527. doi:10.1504/IJMOR.2021.114206 |
54. | Nikfarjam, H., Rostamy-Malkhalifeh, M., & Noura, A. (2018). A new robust dynamic data envelopment analysis approach for sustainable supplier evaluation. Advances in Operations Research, 2018 doi:10.1155/2018/7625025 |
55. | Pishchulov, G., Trautrims, A., Chesney, T., Gold, S., & Schwab, L. (2019). The voting analytic hierarchy process revisited: A revised method with application to sustainable supplier selection. International Journal of Production Economics, 211, 166–179. doi:10.1016/j.ijpe.2019.01.025 |
56. | Rajak, S., Parthiban, P., & Dhanalakshmi, R. (2021). A DEA model for evaluation of efficiency and effectiveness of sustainable transportation systems: A supply chain perspective. International Journal of Logistics Systems and Management, 40(2), 220–241. doi:10.1504/IJLSM.2021.118737 |
57. | Rashidi, K. (2020). AHP versus DEA: A comparative analysis for the gradual improvement of unsustainable suppliers. Benchmarking, 27(8), 2283–2321. doi:10.1108/BIJ-11-2019-0505 |
58. | Rashidi, K., & Cullinane, K. (2019). A comparison of fuzzy DEA and fuzzy TOPSIS in sustainable supplier selection: Implications for sourcing strategy. Expert Systems with Applications, 121, 266–281. doi:10.1016/j.eswa.2018.12.025 |
59. | Raut, R., Kharat, M., Kamble, S., & Kumar, C. S. (2018). Sustainable evaluation and selection of potential third-party logistics (3PL) providers: An integrated MCDM approach. Benchmarking, 25(1), 76–97. doi:10.1108/BIJ-05-2016-0065 |
60. | Ryu, Y., & Sueyoshi, T. (2021). Examining the relationship between the economic performance of technology-based small suppliers and socially sustainable procurement. Sustainability (Switzerland), 13(13) doi:10.3390/su13137220 |
61. | Shabanpour, H., Fathi, A., Yousefi, S., & Saen, R. F. (2019). Ranking sustainable suppliers using congestion approach of data envelopment analysis. Journal of Cleaner Production, 240 doi:10.1016/j.jclepro.2019.118190 |
62. | Shabanpour, H., Yousefi, S., & Farzipoor Saen, R. (2017). Future planning for benchmarking and ranking sustainable suppliers using goal programming and robust double frontiers DEA. Transportation Research Part D: Transport and Environment, 50, 129–143. doi:10.1016/j.trd.2016.10.022 |
63. | Shabanpour, H., Yousefi, S., & Saen, R. F. (2017). Forecasting efficiency of green suppliers by dynamic data envelopment analysis and artificial neural networks. Journal of Cleaner Production, 142, 1098–1107. doi:10.1016/j.jclepro.2016.08.147 |
64. | Sharafi, H., Soltanifar, M., & Lotfi, F. H. (2022). Selecting a green supplier utilizing the new fuzzy voting model and the fuzzy combinative distance-based assessment method. EURO Journal on Decision Processes, 10 doi:10.1016/j.ejdp.2021.100010 |
65. | Shi, P., Yan, B., Shi, S., & Ke, C. (2015). A decision support system to select suppliers for a sustainable supply chain based on a systematic DEA approach. Information Technology and Management, 16(1), 39–49. doi:10.1007/s10799-014-0193-1 |
66. | Soltanifar, M., & Sharafi, H. (2022). A modified DEA cross efficiency method with negative data and its application in supplier selection. Journal of Combinatorial Optimization, 43(1), 265–296. doi:10.1007/s10878-021-00765-7 |
67. | Tavana, M., Nazari-Shirkouhi, S., & Farzaneh Kholghabad, H. (2021). An integrated quality and resilience engineering framework in healthcare with Z-number data envelopment analysis. Health Care Management Science, 24(4), 768–785. doi:10.1007/s10729-021-09550-8 |
68. | Tavana, M., Shabanpour, H., Yousefi, S., & Farzipoor Saen, R. (2017). A hybrid goal programming and dynamic data envelopment analysis framework for sustainable supplier evaluation. Neural Computing and Applications, 28(12), 3683–3696. doi:10.1007/s00521-016-2274-z |
69. | Tavassoli, M., Saen, R. F., & Zanjirani, D. M. (2020). Assessing sustainability of suppliers: A novel stochastic-fuzzy DEA model. Sustainable Production and Consumption, 21, 78–91. doi:10.1016/j.spc.2019.11.001 |
70. | Torres-Ruiz, A., & Ravindran, A. R. (2019). Use of interval data envelopment analysis, goal programming and dynamic eco-efficiency assessment for sustainable supplier management. Computers and Industrial Engineering, 131, 211–226. doi:10.1016/j.cie.2019.02.008 |
71. | Tsai, C., Lee, H., & Gan, G. (2021). A new fuzzy dea model for solving the mcdm problems in supplier selection. Journal of Marine Science and Technology (Taiwan), 29(1), 89–95. doi:10.51400/2709-6998.1006 |
72. | Vörösmarty, G., & Dobos, I. (2020). A literature review of sustainable supplier evaluation with data envelopment analysis. Journal of Cleaner Production, 264 doi:10.1016/j.jclepro.2020.121672 |
73. | Vörösmarty, G., & Dobos, I. (2019). Supplier evaluation with environmental aspects and common DEA weights. Periodica Polytechnica Social and Management Sciences, 27(1), 17–25. doi:10.3311/PPso.11814 |
74. | Wang, C., Ho, H. T., Luo, S., & Lin, T. (2017). An integrated approach to evaluating and selecting green logistics providers for sustainable development. Sustainability (Switzerland), 9(2) doi:10.3390/su9020218 |
75. | Wang, C., Nguyen, V. T., Thai, H. T. N., Tran, N. N., & Tran, T. L. A. (2018). Sustainable supplier selection process in edible oil production by a hybrid fuzzy analytical hierarchy process and green data envelopment analysis for the SMEs food processing industry. Mathematics, 6(12) doi:10.3390/math6120302 |
76. | Wang, C, Pham, T. T., & Nhieu, N. (2021). Multi-layer fuzzy sustainable decision approach for outsourcing manufacturer selection in apparel and textile supply chain. Axioms, 10(4) doi:10.3390/axioms10040262 |
77. | Wang, C, Tsai, H., Ho, T., Nguyen, V., & Huang, Y. (2020). Multi-criteria decision making (MCDM) model for supplier evaluation and selection for oil production projects in vietnam. Processes, 8(2) doi:10.3390/pr8020134 |
78. | Wu, M, Zhang, C., Liu, X., & Fan, J. (2019). Green supplier selection based on DEA model in interval-valued pythagorean fuzzy environment. IEEE Access, 7, 108001–108013. doi:10.1109/ACCESS.2019.2932770 |
79. | Yan, X., Bao, X., Zhao, R., & Li, F. (2022). Performance measurement for green supplier selection based on data envelopment analysis. Environmental Science and Pollution Research, doi:10.1007/s11356-021-17897-2 |
80. | Yousefi, S., & Mohamadpour Tosarkani, B. (2022). An analytical approach for evaluating the impact of blockchain technology on sustainable supply chain performance. International Journal of Production Economics, 246 doi:10.1016/j.ijpe.2022.108429 |
81. | Yu, M. -Chun, & Su, M. -Hong. (2017). Using fuzzy DEA for green suppliers selection considering carbon footprints. Sustainability (Switzerland), 9(4) doi:10.3390/su9040495 |
82. | Zarbakhshnia, N., & Jaghdani, T. J. (2018). Sustainable supplier evaluation and selection with a novel two-stage DEA model in the presence of uncontrollable inputs and undesirable outputs: A plastic case study. International Journal of Advanced Manufacturing Technology, 97(5–8), 2933–2945. doi:10.1007/s00170-018-2138-z |
83. | Zhang, Z., & Liao, H. (2022). A stochastic cross-efficiency DEA approach based on the prospect theory and its application in winner determination in public procurement tenders. Annals of Operations Research, doi:10.1007/s10479-022-04539-0 |
84. | Zhao, S., Wang, J., Ye, M., Huang, Q., & Si, X. (2022). An evaluation of supply chain performance of China’s prefabricated building from the perspective of sustainability. Sustainability (Switzerland), 14(3) doi:10.3390/su14031299 |
85. | Zhou, X., Li, L., Wen, H., Tian, X., Wang, S., & Lev, B. (2021). Supplier’s goal setting considering sustainability: An uncertain dynamic data envelopment analysis based benchmarking model. Information Sciences, 545, 44–64. doi:10.1016/j.ins.2020.07.074 |
86. | Zhou, X., Pedrycz, W., Kuang, Y., & Zhang, Z. (2016). Type-2 fuzzy multi-objective DEA model: An application to sustainable supplier evaluation. Applied Soft Computing Journal, 46, 424–440. doi:10.1016/j.asoc.2016.04.038 |
87. | Zoroofchi, K. H., Saen, R. F., Lari, P. B., & Azadi, M. (2018). A combination of range-adjusted measure, cross-efficiency and assurance region for assessing sustainability of suppliers in the presence of undesirable factors. International Journal of Industrial and Systems Engineering, 29(2), 163–176. doi:10.1504/IJISE.2018.091898 |
Refs [15,49,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121] are part of Appendix A. |
References
- Dutta, P.; Jaikumar, B.; Arora, M.S. Applications of data envelopment analysis in supplier selection between 2000 and 2020: A literature review. Ann. Oper. Res. 2021, 1–56. [Google Scholar] [CrossRef]
- Bao, X.; Li, F. A methodology for supplier selection under the curse of dimensionality problem based on fuzzy quality function deployment and interval data envelopment analysis. PLoS ONE 2021, 16, e0253917. [Google Scholar] [CrossRef] [PubMed]
- Roostaee, R.; Izadikhah, M.; Lotfi, F.H.; Rostamy-Malkhalifeh, M. A Multi-Criteria Intuitionistic Fuzzy Group Decision Mak-ing Method for Supplier Selection with VIKOR Method. Int. J. Fuzzy Syst. 2012, 2, 1–17. [Google Scholar]
- Moghaddas, Z.; Tosarkani, B.M.; Yousefi, S. A Developed Data Envelopment Analysis Model for Efficient Sustainable Supply Chain Network Design. Sustainability 2022, 14, 262. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software, 2nd ed.; Springer: New York, NY, USA, 2007. [Google Scholar]
- Emrouznejad, A.; Yang, G.L. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ. Plan. Sci. 2018, 61, 4–8. [Google Scholar] [CrossRef]
- Crkvenčić, M.; Buntak, K.; Krpan, L. Upravljanje Lancima Opskrbe; Sveučilište Sjever: Koprivnica, Croatia, 2018. [Google Scholar]
- Zelenika, R.; Plic Skender, H. Upravljanje Logističkim Mrežama; Ekonomski Fakultet Sveučilišta u Rijeci: Rijeka, Croatia, 2007. [Google Scholar]
- Cavone, G.; Dotoli, M.; Epicoco, N.; Morelli, D.; Seatzu, C. A Game-theoretical Design Technique for Multi-Stage Supply Chains under Uncertainty. In Proceedings of the 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), Munich, Germany, 20–24 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 528–533. [Google Scholar] [CrossRef]
- Borozan, Đ. Makroekonomija; Ekonomski Fakultet u Osijeku: Osijek, Croatia, 2006. [Google Scholar]
- Pravdić, V. Sustainability and Sustainable Development: The Use in Policies and the Ongoing Debate on These Terms. Croa-Tian Int. Relat. Rev. 2001, 7, 93–100. [Google Scholar]
- Solow, R.M. An almost practical step towards sustainability. Resour. Policy 1993, 19, 162–172. [Google Scholar] [CrossRef]
- Pearce, D.W.; Barbier, E.; Markandya, A. Sustainable Development: Economics and Environment in the Third World; Elgar, E., Hants, G.B., Brookfield, V.T., Eds.; Routledge: Abingdon, UK, 1990. [Google Scholar]
- Amindoust, A.; Shamsuddin, A.; Saghafinia, A. Using Data Envelopment Analysis for Green Supplier Selection in Manufac-turing under Vague Environment. Adv. Mater. Res. 2012, 622–623, 1682–1685. [Google Scholar] [CrossRef]
- Mahdiloo, M.; Saen, R.F.; Lee, K.-H. Technical, environmental and eco-efficiency measurement for supplier selection: An extension and application of data envelopment analysis. Int. J. Prod. Econ. 2015, 168, 279–289. [Google Scholar] [CrossRef]
- Shabanpoura, H.; Fathi, A.; Yousefi, S.; Saen, R.F. Ranking sustainable suppliers using congestion approach of data envelop-ment analysis. J. Clean. Prod. 2019, 240, 118190. [Google Scholar] [CrossRef]
- Wang, C.-N.; Tsai, H.-T.; Ho, T.-P.; Nguyen, V.-T.; Huang, Y.-F. Multi-Criteria Decision Making (MCDM) Model for Supplier Evaluation and Selection for Oil Production Projects in Vietnam. Processes 2020, 8, 134. [Google Scholar] [CrossRef] [Green Version]
- Hatami-Marbini, A.; Hekmat, S.; Agrell, P.J. A strategy-based framework for supplier selection: A grey PCA-DEA approach. Oper. Res. Int. J. 2022, 22, 263–297. [Google Scholar] [CrossRef]
- Dobos, I.; Vörösmarty, G. Green supplier selection and evaluation using DEA-type composite indicators. Int. J. Prod. Econ. 2014, 157, 273–278. [Google Scholar] [CrossRef]
- Cavone, G.; Dotoli, M.; Epicoco, N.; Morelli, D.; Seatzu, C. Design of Modern Supply Chain Networks Using Fuzzy Bargaining Game and Data Envelopment Analysis. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1221–1236. [Google Scholar] [CrossRef]
- Moheb-Alizadeh, H.; Handfield, R. Sustainable supplier selection and order allocation: A novel multi-objective pro-gramming model with a hybrid solution approach. Comput. Ind. Eng. 2019, 129, 192–209. [Google Scholar] [CrossRef]
- Bai, C.; Sarkis, J. Determining and applying sustainable supplier key performance indicators. Supply Chain Manag. 2014, 19, 275–291. [Google Scholar] [CrossRef]
- Shi, P.; Yan, B.; Shi, S.; Ke, C. A decision support system to select suppliers for a sustainable supply chain based on a systematic DEA approach. Inf. Technol. Manag. 2015, 16, 39–49. [Google Scholar] [CrossRef]
- Jauhar, S.K.; Pant, M.; Nagar, M.C. Differential evolution for sustainable supplier selection in pulp and paper industry: A DEA based approach. Comput. Methods Mater. Sci. 2015, 15, 118–126. [Google Scholar]
- Kumar, A.; Jain, V.; Kumar, S.; Chandra, C. Green supplier selection: A new genetic/immune strategy with industrial applica-tion. Enterp. Inf. Syst. 2016, 10, 911–943. [Google Scholar] [CrossRef]
- Jain, V.; Kumar, S.; Kumar, A.; Chandra, C. An integrated buyer initiated decision-making process for green supplier selection. J. Manuf. Syst. 2016, 41, 256–265. [Google Scholar] [CrossRef]
- Zarbakhshnia, N.; Jaghdani, T.J. Sustainable supplier evaluation and selection with a novel two-stage DEA model in the presence of uncontrollable inputs and undesirable outputs: A plastic case study. Int. J. Adv. Manuf. Technol. 2018, 97, 2933–2945. [Google Scholar] [CrossRef]
- Boudaghi, E.; Saen, R.F. Developing a novel model of data envelopment analysis–discriminant analysis for predicting group membership of suppliers in sustainable supply chain. Comput. Oper. Res. 2018, 89, 348–359. [Google Scholar] [CrossRef]
- Sharafi, H.; Soltanifar, M.; Hosseinzadeh Lotfi, F. Selecting a green supplier utilizing the new fuzzy voting model and the fuzzy combinative distance-based assessment method. EURO J. Decis. Processes 2022, 10, 100010. [Google Scholar] [CrossRef]
- Fotova Čikovič, K.; Lozić, J. Application of Data Envelopment Analysis (DEA) in Information and Communication Technol-ogies. Teh. Glas. 2022, 16, 129–134. [Google Scholar] [CrossRef]
- Cavone, G.; Dotoli, M.; Epicoco, N.; Seatzu, C. Intermodal terminal planning by Petri Nets and Data Envelopment Analysis. Control. Eng. Pract. 2017, 69, 9–22. [Google Scholar] [CrossRef]
- Cavone, G.; Dotoli, M.; Epicoco, N.; Seatzu, C. A decision making procedure for robust train rescheduling based on mixed inte-ger linear programming and Data Envelopment Analysis. Appl. Math. Model. 2017, 52, 255–273. [Google Scholar] [CrossRef]
- Obadić, A.; Aristovnik, A. Relative Efficiency of Higher Education in Croatia and Slovenia: An International Comparison. Amfiteatru Econ. J. 2011, 13, 362–376. [Google Scholar]
- Cvetkoska, V. Data Envelopment Analysis Approach and Its Application in Information and Communication Technologies. In Proceedings of the International Conference on Information and Communication Technologies for Sustainable Agriproduction and Environment (HAICTA 2011), Skiathos, Greece, 8–11 September 2011. [Google Scholar]
- Cvetkoska, V.; Fotova Čiković, K. Efficiency Analysis of Macedonian and Croatian Banking Sectors with DEA. Econ. Bus. Dev. 2021, 2, 1–19. [Google Scholar] [CrossRef]
- Amirteimoori, A.; Zadmirzaei, M.; Hassanzadeh, F. Developing a new integrated artificial immune system and fuzzy non-discretionary DEA approach. Soft Comput. 2021, 25, 8109–8127. [Google Scholar] [CrossRef]
- Jorda, P.; Cascajo, R.; Monzón, A. Analysis of the Technical Efficiency of Urban Bus Services in Spain Based on SBM Models. ISRN Civ. Eng. 2012, 2012, 984758. [Google Scholar] [CrossRef] [Green Version]
- Škrinjarić, T. Evaluation of environmentally conscious tourism industry: Case of Croatian counties. Tour. Int. Interdiscip. J. 2018, 66, 254–268. [Google Scholar]
- Fotova Čiković, K.; Lozić, J.; Milković, M. Applications of data envelopment analysis (DEA) in empirical studies regarding the Croatian tourism. Tour. Int. Interdiscip. J. 2022, accepted. [Google Scholar]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Introduction to Data Envelopment Analysis and Its Uses: With DEA-Solver Software and References; Springer: New York, NY, USA, 2006. [Google Scholar]
- Hodžić, S.; Jurlina Alibegović, D. The efficiency of regional government expenditure in smart tourist destination: The case of Croatia. Tour. South East Eur. 2019, 5, 307–318. [Google Scholar] [CrossRef]
- Giustiniani, A.; Ross, K. Bank competition and efficiency in the FYR Macedonia. South-East. Eur. J. Econ. 2008, 2, 145–167. [Google Scholar]
- Baumgartner, R.J. Managing Corporate Sustainability and CSR: A Conceptual Framework Combining Values, Strategies and Instruments Contributing to Sustainable Development. Corp. Soc. Responsib. Environ. Manag. 2014, 21, 258–271. [Google Scholar] [CrossRef]
- Tessem, B.; Bjørnestad, S.; Chen, W.; Nyre, L. Word cloud visualisation of locative information. J. Locat. Based Serv. 2015, 9, 254–272. [Google Scholar] [CrossRef] [Green Version]
- Atenstaedt, R. Word cloud analysis of the BJGP. Br. J. Gen. Pract. J. R. Coll. Gen. Pract. 2012, 62, 148. [Google Scholar] [CrossRef] [Green Version]
- Peykani, P.; Saen, R.F.; Esmaeili, F.S.S.; Gheidar-Kheljani, J. Window data envelopment analysis approach: A review and bibliometric analysis. Expert Syst. 2021, 38, e12721. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Vorosmarty, G.; Dobos, I. A literature review of sustainable supplier evaluation with Data Envelopment Analysis. J. Clean. Prod. 2020, 264, 121672. [Google Scholar] [CrossRef]
- Tsai, C.M.; Lee, H.S.; Gan, G.Y. A New Fuzzy DEA Model for Solving the MCDM Problems in Supplier Selection. J. Mar. Sci. Technol. 2021, 29, 89–95. [Google Scholar] [CrossRef]
- Fallahpour, A.; Olugu, E.U.; Musa, S.N.; Khezrimotlagh, D.; Wong, K.Y. An integrated model for green supplier selection under fuzzy environment: Application of data envelopment analysis and genetic programming approach. Neural Comput. Appl. 2017, 27, 707–725. [Google Scholar] [CrossRef]
- Amindoust, A. Supplier selection considering sustainability measures: An application of weight restriction fuzzy-DEA ap-proach. RAIRO-Oper. Res. 2018, 52, 981–1001. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, K.; Cullinane, K. A comparison of fuzzy DEA and fuzzy TOPSIS in sustainable supplier selection: Implications for sourcing strategy. Expert Syst. Appl. 2019, 121, 266–281. [Google Scholar] [CrossRef]
- Izadikhah, M.; Farzipoor Saen, R.; Ahmadi, K.; Shamsi, M. How to use fuzzy screening system and data envelopment analysis for clustering sustainable suppliers? A case study in Iran. J. Enterp. Inf. Manag. 2020, 34, 199–229. [Google Scholar] [CrossRef]
- Ngobeni, V.; Breitenbach, M.C. Production and scale efficiency of South African water utilities: The case of water boards. Water Policy 2021, 23, 862–879. [Google Scholar] [CrossRef]
- Aggarwal, I.; Gunreddy, N.; Rajan, A.J. A Hybrid Supplier Selection Approach Using Machine Learning and Data Envelopment Analysis. In Proceedings of the 2021 Innovations in Power and Advanced Computing Technologies, Kuala Lumpur, Malaysaia, 27–29 November 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Cvetkoska, V.; Savić, G. DEA in banking: Analysis and visualization of bibliometric data. Data Envel. Anal. J. 2021, 5, 455–485. [Google Scholar] [CrossRef]
- Amindoust, A. A resilient-sustainable based supplier selection model using a hybrid intelligent method. Comput. Ind. Eng. 2018, 126, 122–135. [Google Scholar] [CrossRef]
- Amindoust, A.; Ahmed, S.; Saghafinia, A. Supplier performance measurement of palm oil industries from a sustainable point of view in malaysia. BioTechnol. Indian J. 2012, 6, 155–158. [Google Scholar]
- Azadi, M.; Izadikhah, M.; Ramezani, F.; Khadeer, F. A mixed ideal and anti-ideal DEA model: An application to evaluate cloud service providers. IMA J. Manag. Math. 2020, 31, 233–256. [Google Scholar] [CrossRef]
- Azadi, M.; Jafarian, M.; Saen, R.F.; Mirhedayatian, S.M. A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Comput. Oper. Res. 2015, 54, 274–285. [Google Scholar] [CrossRef]
- Azadi, M.; Mirhedayatian, S.M.; Saen, R.F.; Hatamzad, M.; Momeni, E. Green supplier selection: A novel fuzzy double frontier data envelopment analysis model to deal with undesirable outputs and dual-role factors. Int. J. Ind. Syst. Eng. 2017, 25, 160–181. [Google Scholar] [CrossRef]
- Bajec, P.; Tuljak-Suban, D.; Zalokar, E. A distance-based AHP-DEA super-efficiency approach for selecting an electric bike sharing system provider: One step closer to sustainability and a win–win effect for all target groups. Sustainability 2021, 13, 549. [Google Scholar] [CrossRef]
- Chang, K.-H. A novel contractor selection technique using the extended PROMETHEE II method. Math. Probl. Eng. 2021, 2021, 3664709. [Google Scholar] [CrossRef]
- Cheaitou, A.; Larbi, R.; Al Housani, B. Decision making framework for tender evaluation and contractor selection in public organizations with risk considerations. Socio-Econ. Plan. Sci. 2019, 68, 100620. [Google Scholar] [CrossRef]
- Choudhury, N.; Raut, R.D.; Gardas, B.B.; Kharat, M.G.; Ichake, S. Evaluation and selection of third party logistics services providers using data envelopment analysis: A sustainable approach. Int. J. Bus. Excell. 2018, 14, 427–453. [Google Scholar] [CrossRef]
- Dania, W.A.P.; Sitepu, I.B.B.; Rucitra, A.L. Collaboration quality assessment in the sustainable rice supply chain by using an integrated model of QFD-FANP-DEA: A case study of the rice industry in Malang. IOP Conf. Ser. Earth Environ. Sci. 2021, 733, 012041. [Google Scholar] [CrossRef]
- Dania, W.A.P.; Xing, K.; Amer, Y. The assessment of collaboration quality: A case of sugar supply chain in Indonesia. Int. J. Product. Perform. Manag. 2022, 71, 504–539. [Google Scholar] [CrossRef]
- Dobos, I.; Vörösmarty, G. Green supplier selection using a common weights analysis of DEA and EOQ types of order allocation. Manag. Decis. Econ. 2021, 42, 612–621. [Google Scholar] [CrossRef]
- Ershadi, M.J.; Qhanadi Taghizadeh, O.; Hadji Molana, S.M. Selection and performance estimation of green lean six sigma projects: A hybrid approach of technology readiness level, data envelopment analysis and ANFIS. Environ. Sci. Pollut. Res. 2021, 28, 29394–29411. [Google Scholar] [CrossRef] [PubMed]
- Fakhrzad, M.B.; Nasrollahi, S. A developed model of data envelopment analysis-discriminant analysis for predicting group membership of suppliers in green supply chain. Int. J. Value Chain Manag. 2018, 9, 378–392. [Google Scholar] [CrossRef]
- Hatami-Marbini, A.; Agrell, P.J.; Tavana, M.; Khoshnevis, P. A flexible cross-efficiency fuzzy data envelopment analysis model for sustainable sourcing. J. Clean. Prod. 2017, 142, 2761–2779. [Google Scholar] [CrossRef]
- Hekmat, S.; Amiri, M.; Madraki, G. Strategic supplier selection in payment industry: A multi-criteria solution for insufficient and interrelated data sources. Int. J. Inf. Technol. Decis. Mak. 2021, 20, 1711–1745. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y.-M.; Lin, J. Two-stage fuzzy cross-efficiency aggregation model using a fuzzy information retrieval method. Int. J. Fuzzy Syst. 2019, 21, 2650–2666. [Google Scholar] [CrossRef]
- Izadikhah, M.; Farzipoor Saen, R. Ranking sustainable suppliers by context-dependent data envelopment analysis. Ann. Oper. Res. 2020, 293, 607–637. [Google Scholar] [CrossRef]
- Izadikhah, M.; Farzipoor Saen, R. Solving voting system by data envelopment analysis for assessing sustainability of suppliers. Group Decis. Negot. 2019, 28, 641–669. [Google Scholar] [CrossRef]
- Izadikhah, M.; Farzipoor Saen, R.; Ahmadi, K. How to assess sustainability of suppliers in volume discount context? A new data envelopment analysis approach. Transp. Res. Part D Transp. Environ. 2017, 51, 102–121. [Google Scholar] [CrossRef]
- Izadikhah, M.; Saen, R.F.; Ahmadi, K. How to assess sustainability of suppliers in the presence of dual-role factor and volume discounts? A data envelopment analysis approach. Asia-Pac. J. Oper. Res. 2017, 34, 1740016. [Google Scholar] [CrossRef]
- Izadikhah, M.; Saen, R.F.; Roostaee, R. How to assess sustainability of suppliers in the presence of volume discount and negative data in data envelopment analysis? Ann. Oper. Res. 2018, 269, 241–267. [Google Scholar] [CrossRef]
- Jafarzadeh Ghoushchi, S.; Dodkanloi Milan, M.; Jahangoshai Rezaee, M. Evaluation and selection of sustainable suppliers in supply chain using new GP-DEA model with imprecise data. J. Ind. Eng. Int. 2018, 14, 613–625. [Google Scholar] [CrossRef] [Green Version]
- Jauhar, S.K.; Amin, S.H.; Zolfagharinia, H. A proposed method for third-party reverse logistics partner selection and order allocation in the cellphone industry. Comput. Ind. Eng. 2021, 162, 107719. [Google Scholar] [CrossRef]
- Jauhar, S.K.; Pant, M. Using differential evolution to develop a carbon-integrated model for performance evaluation and selection of sustainable suppliers in Indian automobile supply chain. In Proceedings of the Fifth International Conference on Soft Computing for Problem Solving, Uttarakhand, India, 18–20 December 2016; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Karimi, A.; Jafarzadeh-Ghoushchi, S.; Mohtadi-Bonab, M.A. Presenting a new model for performance measurement of the sustainable supply chain of Shoa Panjereh Company in different provinces of Iran (case study). Int. J. Syst. Assur. Eng. Manag. 2020, 11, 140–154. [Google Scholar] [CrossRef]
- Karimi, B.; Azadi, M.; Farzipoor Saen, R.; Fosso Wamba, S. Theory of binary-valued data envelopment analysis: An application in assessing the sustainability of suppliers. Ind. Manag. Data Syst. 2022, 122, 682–701. [Google Scholar] [CrossRef]
- Kaur, H.; Prakash Singh, S. Multi-stage hybrid model for supplier selection and order allocation considering disruption risks and disruptive technologies. Int. J. Prod. Econ. 2021, 231, 107830. [Google Scholar] [CrossRef]
- Kumar, A.; Jain, V.; Kumar, S. A comprehensive environment friendly approach for supplier selection. Omega 2014, 42, 109–123. [Google Scholar] [CrossRef]
- Kuo, R.J.; Wang, Y.C.; Tien, F.C. Integration of artificial neural network and MADA methods for green supplier selection. J. Clean. Prod. 2010, 18, 1161–1170. [Google Scholar] [CrossRef]
- Li, F.; Deng, L.; Li, L.; Cheng, Z.; Yu, H. A two-stage model for monitoring the green supplier performance considering dual-role and undesirable factors. Asia Pac. J. Mark. Logist. 2020, 32, 253–280. [Google Scholar] [CrossRef]
- Li, F.; Wu, L.; Zhu, Q.; Yu, Y.; Kou, G.; Liao, Y. An eco-inefficiency dominance probability approach for Chinese banking operations based on data envelopment analysis. Complexity 2020, 2020, 3780232. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Abbasi, M.; Deng, X. Evaluating the performance of the suppliers using hybrid DEA-OPA model: A sustainable development perspective. Group Decis. Negot. 2022, 31, 335–362. [Google Scholar] [CrossRef]
- Moheb-Alizadeh, H.; Handfield, R. An integrated chance-constrained stochastic model for efficient and sustainable supplier selection and order allocation. Int. J. Prod. Res. 2018, 56, 6890–6916. [Google Scholar] [CrossRef]
- Moheb-Alizadeh, H.; Handfield, R.; Warsing, D. Efficient and sustainable closed-loop supply chain network design: A two-stage stochastic formulation with a hybrid solution methodology. J. Clean. Prod. 2021, 308, 127323. [Google Scholar] [CrossRef]
- Momeni, M.; Vandchali, H.R. Providing a structured methodology for supplier selection and evaluation for strategic outsourcing. Int. J. Bus. Perform. Supply Chain Model. 2017, 9, 66–85. [Google Scholar] [CrossRef]
- Nemati, M.; Farzipoor Saen, R.; Matin, R.K. A data envelopment analysis approach by partial impacts between inputs and desirable-undesirable outputs for sustainable supplier selection problem. Ind. Manag. Data Syst. 2021, 121, 809–838. [Google Scholar] [CrossRef]
- Nikabadi, M.S.; Moghaddam, H.F. An integrated approach of adaptive neuro-fuzzy inference system and dynamic data envelopment analysis for supplier selection. Int. J. Math. Oper. Res. 2021, 18, 503–527. [Google Scholar] [CrossRef]
- Nikfarjam, H.; Rostamy-Malkhalifeh, M.; Noura, A. A new robust dynamic data envelopment analysis approach for sustainable supplier evaluation. Adv. Oper. Res. 2018, 2018, 7625025. [Google Scholar] [CrossRef] [Green Version]
- Pishchulov, G.; Trautrims, A.; Chesney, T.; Gold, S.; Schwab, L. The voting analytic hierarchy process revisited: A revised method with application to sustainable supplier selection. Int. J. Prod. Econ. 2019, 211, 166–179. [Google Scholar] [CrossRef]
- Rajak, S.; Parthiban, P.; Dhanalakshmi, R. A DEA model for evaluation of efficiency and effectiveness of sustainable transportation systems: A supply chain perspective. Int. J. Logist. Syst. Manag. 2021, 40, 220–241. [Google Scholar] [CrossRef]
- Rashidi, K. AHP versus DEA: A comparative analysis for the gradual improvement of unsustainable suppliers. Benchmarking 2020, 27, 2283–2321. [Google Scholar] [CrossRef]
- Raut, R.; Kharat, M.; Kamble, S.; Kumar, C.S. Sustainable evaluation and selection of potential third-party logistics (3PL) providers: An integrated MCDM approach. Benchmarking 2018, 25, 76–97. [Google Scholar] [CrossRef]
- Ryu, Y.; Sueyoshi, T. Examining the relationship between the economic performance of technology-based small suppliers and socially sustainable procurement. Sustainability 2021, 13, 7220. [Google Scholar] [CrossRef]
- Shabanpour, H.; Yousefi, S.; Farzipoor Saen, R. Future planning for benchmarking and ranking sustainable suppliers using goal programming and robust double frontiers DEA. Transp. Res. Part D Transp. Environ. 2017, 50, 129–143. [Google Scholar] [CrossRef]
- Shabanpour, H.; Yousefi, S.; Saen, R.F. Forecasting efficiency of green suppliers by dynamic data envelopment analysis and artificial neural networks. J. Clean. Prod. 2017, 142, 1098–1107. [Google Scholar] [CrossRef]
- Soltanifar, M.; Sharafi, H. A modified DEA cross efficiency method with negative data and its application in supplier selection. J. Comb. Optim. 2022, 43, 265–296. [Google Scholar] [CrossRef]
- Tavana, M.; Nazari-Shirkouhi, S.; Farzaneh Kholghabad, H. An integrated quality and resilience engineering framework in healthcare with Z-number data envelopment analysis. Health Care Manag. Sci. 2021, 24, 768–785. [Google Scholar] [CrossRef]
- Tavana, M.; Shabanpour, H.; Yousefi, S.; Farzipoor Saen, R. A hybrid goal programming and dynamic data envelopment analysis framework for sustainable supplier evaluation. Neural Comput. Appl. 2017, 28, 3683–3696. [Google Scholar] [CrossRef]
- Tavassoli, M.; Saen, R.F.; Zanjirani, D.M. Assessing sustainability of suppliers: A novel stochastic-fuzzy DEA model. Sustain. Prod. Consum. 2020, 21, 78–91. [Google Scholar] [CrossRef]
- Torres-Ruiz, A.; Ravindran, A.R. Use of interval data envelopment analysis, goal programming and dynamic eco-efficiency assessment for sustainable supplier management. Comput. Ind. Eng. 2019, 131, 211–226. [Google Scholar] [CrossRef]
- Vörösmarty, G.; Dobos, I. Supplier evaluation with environmental aspects and common DEA weights. Period. Polytech. Soc. Manag. Sci. 2019, 27, 17–25. [Google Scholar] [CrossRef]
- Wang, C.-N.; Ho, H.T.-X.; Luo, S.-H.; Lin, T.-F. An integrated approach to evaluating and selecting green logistics providers for sustainable development. Sustainability 2017, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-N.; Nguyen, V.T.; Thai, H.T.N.; Tran, N.N.; Tran, T.L.A. Sustainable supplier selection process in edible oil production by a hybrid fuzzy analytical hierarchy process and green data envelopment analysis for the SMEs food processing industry. Mathematics 2018, 6, 302. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-N.; Pham, T.-D.T.; Nhieu, N.-L. Multi-layer fuzzy sustainable decision approach for outsourcing manufacturer selection in apparel and textile supply chain. Axioms 2021, 10, 262. [Google Scholar] [CrossRef]
- Wu, M.-Q.; Zhang, C.-H.; Liu, X.-N.; Fan, J.-P. Green supplier selection based on DEA model in interval-valued pythagorean fuzzy environment. IEEE Access 2019, 7, 108001–108013. [Google Scholar] [CrossRef]
- Yan, X.; Bao, X.; Zhao, R.; Li, F. Performance measurement for green supplier selection based on data envelopment analysis. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Yousefi, S.; Mohamadpour Tosarkani, B. An analytical approach for evaluating the impact of blockchain technology on sustainable supply chain performance. Int. J. Prod. Econ. 2022, 246, 108429. [Google Scholar] [CrossRef]
- Yu, M.-C.; Su, M.-H. Using fuzzy DEA for green suppliers selection considering carbon footprints. Sustainability 2017, 9, 495. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liao, H. A stochastic cross-efficiency DEA approach based on the prospect theory and its application in winner determination in public procurement tenders. Ann. Oper. Res. 2022, 1–29. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, J.; Ye, M.; Huang, Q.; Si, X. An evaluation of supply chain performance of China’s prefabricated building from the perspective of sustainability. Sustainability 2022, 14, 1299. [Google Scholar] [CrossRef]
- Zhou, X.; Li, L.; Wen, H.; Tian, X.; Wang, S.; Lev, B. Supplier’s goal setting considering sustainability: An uncertain dynamic data envelopment analysis based benchmarking model. Inf. Sci. 2021, 545, 44–64. [Google Scholar] [CrossRef]
- Zhou, X.; Pedrycz, W.; Kuang, Y.; Zhang, Z. Type-2 fuzzy multi-objective DEA model: An application to sustainable supplier evaluation. Appl. Soft Comput. J. 2016, 46, 424–440. [Google Scholar] [CrossRef]
- Zoroofchi, K.H.; Saen, R.F.; Lari, P.B.; Azadi, M. A combination of range-adjusted measure, cross-efficiency and assurance region for assessing sustainability of suppliers in the presence of undesirable factors. Int. J. Ind. Syst. Eng. 2018, 29, 163–176. [Google Scholar] [CrossRef]
Search Strategy | Hits | Timespan | Indexes |
---|---|---|---|
Data Envelopment Analysis (Title) AND Data Envelopment Analysis (Abstract), Data Envelopment Analysis (Keywords) | 2.371 | 1990–March 2022 | SCIEXPAND., SSCI, A&HCI, ESCI |
Refined by: Supplier AND Sustainable | 18 | 2017–March 2022 | SCIEXPAND., SSCI, A&HCI, ESCI |
Search Strategy | Hits | Timespan | Indexes |
---|---|---|---|
TITLE-ABS-KEY (data AND envelopment AND analysis) | 4.991 | 1980–March 2022 | Scopus |
Refined by: Supplier AND Sustainable | 795 | 2003–March 2022 | Scopus |
Author | JP | CP | First | Second | Third | Fourth | Total |
---|---|---|---|---|---|---|---|
Saen R.F. | 18 | 11 | 5 | 2 | 18 | ||
Izadikhah M. | 7 | 6 | 1 | 7 | |||
Yousefi S. | 6 | 1 | 2 | 3 | 6 | ||
Azadi M. | 5 | 3 | 1 | 1 | 5 | ||
Shabanpour H. | 4 | 3 | 1 | 4 | |||
Wang C.-N | 4 | 4 | 4 | ||||
Amindoust A. | 3 | 1 | 4 | 4 | |||
Dania W.A.P. | 3 | 1 | 2 | 2 | 4 | ||
Dobos I. | 3 | 1 | 1 | 2 | |||
Vörösmarty G. | 3 | 1 | 2 | 2 | 4 | ||
Tavana M | 3 | 2 | 1 | 3 | |||
Ahmadi K. | 3 | 3 | 3 | ||||
Jain V. | 3 | 1 | 2 | 3 | |||
Kumar S. | 3 | 1 | 2 | 3 | |||
Kumar A | 3 | 2 | 1 | 3 | |||
Li F. | 3 | 2 | 1 | 3 | |||
Moheb-Alizadeh H | 3 | 3 | 3 | ||||
Handfield R. | 3 | 3 | 3 | ||||
Jauhar S.K. | 2 | 1 | 3 | 3 | |||
Jafarzadeh Ghoushchi S | 2 | 1 | 1 | 2 | |||
Chandra C. | 2 | 2 | 2 | ||||
Pant M. | 2 | 2 | 2 | ||||
Rashidi K. | 2 | 2 | 2 | ||||
Raut R. | 2 | 1 | 1 | 2 | |||
Kharat M. | 2 | 1 | 1 | 2 | |||
Sharafi H. | 2 | 1 | 1 | 2 | |||
Soltanifar M | 2 | 1 | 1 | 2 | |||
Zhang Z | 2 | 1 | 1 | 2 | |||
Zhou X | 2 | 2 | 2 |
Journal | 2010–2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Total |
---|---|---|---|---|---|---|---|---|---|
International Journal of Production Economics | 2 | 1 | 1 | 1 | 1 | 6 | |||
Journal of Cleaner Production | 1 | 2 | 1 | 1 | 1 | 6 | |||
Sustainability (Switzerland) | 2 | 2 | 2 | 6 | |||||
Computers and Industrial Engineering | 1 | 2 | 1 | 4 | |||||
Annals of Operations Research | 1 | 1 | 1 | 3 | |||||
Benchmarking | 1 | 1 | 2 | ||||||
Computers and Operations Research | 1 | 1 | 2 | ||||||
Environmental Science and Pollution Research | 1 | 1 | 2 | ||||||
Group Decision and Negotiation | 1 | 1 | 2 | ||||||
Industrial Management and Data | 1 | 1 | 2 | ||||||
International Journal of Industrial and Systems Engineering | 1 | 1 | 2 | ||||||
Neural Computing and Applications | 1 | 1 | 2 | ||||||
Transportation Research Part D: Transport and Environment | 2 | 2 |
Countries/Territories | Number of Publications | Organizations/Institutions | Number of Publications |
---|---|---|---|
Iran | 60 | Islamic Azad University | 27 |
China | 28 | North Carolina State University | 6 |
United States | 20 | Indian Institute of Technology | 5 |
India | 18 | Corvinus University of Budapest | 4 |
Taiwan | 15 | National Institute of Industrial Engineering | 5 |
Hungary | 7 | Sohar University | 3 |
Malaysia | 7 | La Salle University | 3 |
Australia | 6 | University of Malaya | 3 |
Germany | 5 | La Salle University, Philadelphia | 3 |
Canada | 5 | University of St. Thomas | 3 |
Oman | 4 | Budapest University of Technology and Economics | 3 |
Slovenia | 3 | University of Chinese Academy of Sciences | 3 |
United Arab Emirates | 3 | Universitas Brawijaya, Malang, Indonesia | 2 |
United Kingdom | 3 | University of Technology, Sydney | 2 |
Indonesia | 2 | National Kaohsiung University of Applied Sciences | 3 |
South Africa | 2 | University of Tehran | 3 |
Sweden | 2 | University of Paderborn | 3 |
Vietnam | 2 | Fuzhou University | 2 |
Belgium | 2 | University of British Columbia | 2 |
Denmark | 1 | National Institute of Technology | 3 |
France | 1 | University of Sharjah | 3 |
Japan | 1 | University of Gothenburg | 2 |
Mexico | 1 | Fortune Institute of Technology | 2 |
Singapore | 1 | Griffith Business School, Griffith University | 2 |
Norway | 1 | National Kaohsiung University of Applied Sciences | 2 |
New Zealand | 1 | University of Technology, Sydney | 2 |
Saudi Arabia | 1 | Dongbei University of Finance and Economics | 2 |
Switzerland | 1 | University of Ljubljana | 2 |
Poland | 1 | University of Michigan–Dearborn | 2 |
Tunisia | 1 | Indian Institute of Management | 2 |
Russian Federation | 1 | Urmia University of Technology | 2 |
Year | Author (s) | Publication | Citations |
---|---|---|---|
2010 | Kuo R.J., Wang Y.C., Tien F.C. | Journal of Cleaner Production | 443 |
2015 | Azadi M., Jafarian M., Saen R.F., Mirhedayatian S.M. | Computers and Operations Research | 247 |
2014 | Kumar A., Jain V., Kumar S. | Omega (United Kingdom) | 199 |
2014 | Bai C., Sarkis J. | Supply Chain Management | 143 |
2019 | Rashidi K., Cullinane K. | Expert Systems with Applications | 114 |
2014 | Dobos I., Vörösmarty G. | International Journal of Production Economics | 109 |
2015 | Mahdiloo M., Saen R.F., Lee K.-H. | International Journal of Production Economics | 93 |
2016 | Fallahpour A., Olugu E.U., Musa S.N., Khezrimotlagh D., Wong K.Y. | Neural Computing and Applications | 91 |
2016 | Zhou X., Pedrycz W., Kuang Y., Zhang Z. | Applied Soft Computing Journal | 75 |
2017 | Hatami-Marbini A., Agrell P.J., Tavana M., Khoshnevis P. | Journal of Cleaner Production | 69 |
2017 | Shabanpour H., Yousefi S., Saen R.F. | Journal of Cleaner Production | 59 |
2019 | Moheb-Alizadeh H., Handfield R. | Computers and Industrial Engineering | 49 |
2015 | Shi P., Yan B., Shi S., Ke C. | Information Technology and Management | 46 |
2018 | Amindoust A. | Computers and Industrial Engineering | 40 |
2019 | Pishchulov G., Trautrims A., Chesney T., Gold S., Schwab L. | International Journal of Production Economics | 34 |
2018 | Moheb-Alizadeh H., Handfield R. | International Journal of Production Research | 33 |
2017 | Shabanpour H., Yousefi S., Farzipoor Saen R. | Transportation Research Part D: Transport and Environment | 32 |
2016 | Jain V., Kumar S., Kumar A., Chandra C. | Journal of Manufacturing Systems | 30 |
2017 | Tavana M., Shabanpour H., Yousefi S., Farzipoor Saen R. | Neural Computing and Applications | 29 |
2019 | Cheaitou A., Larbi R., Al Housani B. | Socio-Economic Planning Sciences | 29 |
2017 | Izadikhah M., Farzipoor Saen R., Ahmadi K. | Transportation Research Part D: Transport and Environment | 28 |
2018 | Wang C.-N., Nguyen V.T., Thai H.T.N., Tran N.N., Tran T.L.A. | Mathematics | 28 |
2018 | Raut R., Kharat M., Kamble S., Kumar C.S. | Benchmarking | 28 |
2018 | Jafarzadeh Ghoushchi S., Dodkanloi Milan M., Jahangoshai Rezaee M. | Journal of Industrial Engineering International | 27 |
2018 | Zarbakhshnia N., Jaghdani T.J. | International Journal of Advanced Manufacturing Technology | 25 |
2021 | Kaur H., Prakash Singh S. | International Journal of Production Economics | 25 |
2020 | Tavassoli M., Saen R.F., Zanjirani D.M. | Sustainable Production and Consumption | 22 |
2019 | Torres-Ruiz A., Ravindran A.R. | Computers and Industrial Engineering | 20 |
2019 | Wu M.-Q., Zhang C.-H., Liu X.-N., Fan J.-P. | IEEE Access | 20 |
2018 | Boudaghi E., Farzipoor Saen R. | Computers and Operations Research | 18 |
2017 | Izadikhah M., Saen R.F., Ahmadi K. | Asia-Pacific Journal of Operational Research | 17 |
2020 | Wang C.-N., Tsai H.-T., Ho T.-P., Nguyen V.-T., Huang Y.-F. | Processes | 17 |
2016 | Kumar A., Jain V., Kumar S., Chandra C. | Enterprise Information Systems | 16 |
2017 | Wang C.-N., Ho H.T., Luo S.-H., Lin T.-F. | Sustainability (Switzerland) | 16 |
2018 | Choudhury N., Raut R.D., Gardas B.B., Kharat M.G., Ichake S. | International Journal of Business Excellence | 16 |
2017 | Yu M.-C., Su M.-H. | Sustainability (Switzerland) | 14 |
2013 | Amindoust A., Ahmed S., Saghafinia A. | Advanced Materials Research | 12 |
2015 | Jauhar S.K., Pant M., Nagar M.C. | Computer Methods in Materials Science | 12 |
2018 | Izadikhah M., Saen R.F., Roostaee R. | Annals of Operations Research | 12 |
2020 | Vörösmarty G., Dobos I. | Journal of Cleaner Production | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fotova Čiković, K.; Martinčević, I.; Lozić, J. Application of Data Envelopment Analysis (DEA) in the Selection of Sustainable Suppliers: A Review and Bibliometric Analysis. Sustainability 2022, 14, 6672. https://doi.org/10.3390/su14116672
Fotova Čiković K, Martinčević I, Lozić J. Application of Data Envelopment Analysis (DEA) in the Selection of Sustainable Suppliers: A Review and Bibliometric Analysis. Sustainability. 2022; 14(11):6672. https://doi.org/10.3390/su14116672
Chicago/Turabian StyleFotova Čiković, Katerina, Ivana Martinčević, and Joško Lozić. 2022. "Application of Data Envelopment Analysis (DEA) in the Selection of Sustainable Suppliers: A Review and Bibliometric Analysis" Sustainability 14, no. 11: 6672. https://doi.org/10.3390/su14116672
APA StyleFotova Čiković, K., Martinčević, I., & Lozić, J. (2022). Application of Data Envelopment Analysis (DEA) in the Selection of Sustainable Suppliers: A Review and Bibliometric Analysis. Sustainability, 14(11), 6672. https://doi.org/10.3390/su14116672