Fabrication of the Ordered Mesoporous nZVI/Zr-Ce-SBA-15 Composites Used for Crystal Violet Removal and Their Optimization Using RSM and ANN–PSO
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of nZVI and nZVI/Zr-Ce-SBA-15
2.3. Characterizations
2.4. Batch Experiments
2.5. RSM and an Artificial Neural Network Combined with Particle Swarm Optimization (ANN–PSO)
2.5.1. RSM Used for Optimizing the Parameters in CV Removal
2.5.2. ANN–PSO Used for Optimizing the Parameters in CV Removal
3. Results and Discussion
3.1. Characterization of the nZVI and the nZVI/Zr-Ce-SBA-15 Composites
3.2. Optimization of the CV Removal from Simulated Wastewater by RSM
3.3. Optimization the CV Removal from Simulated Wastewater by ANN–PSO and RBF
3.4. Kinetic Model, Isothermal Adsorption, and Thermodynamic Parameters for CV Removal
3.5. Stability and Regeneration of the nZVI/Zr-Ce-SBA-15 Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wathukarage, A.; Herath, I.; Iqbal, M.; Vithanage, M. Mechanistic understanding of crystal violet dye sorption by woody biochar: Implications for wastewater treatment. Environ. Geochem. Health 2017, 41, 1647–1661. [Google Scholar] [CrossRef] [PubMed]
- Sabna, V.; Thampi, S.G.; Chandrakaran, S. Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: Equilibrium and kinetic studies. Ecotox. Environ. Saf. 2016, 134, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Eldad, S.; Revital, S.; Adi, E.; Asher, Z.; Gilad, B.G.; Esi, S.; Yoav, P.; Yael, H.H.; Nurit, B. Antibacterial Activity of Orthodontic Cement Containing Quaternary Ammonium Polyethylenimine Nanoparticles Adjacent to Orthodontic Brackets. Int. J. Environ. Res. Public Health 2018, 15, 606–611. [Google Scholar]
- Ma, D.L.; Kwan, M.H.T.; Chan, D.S.H.; Lee, P.; Yang, H.; Ma, V.P.Y.; Bai, L.P.; Jiang, Z.H.; Leung, C.H. Crystal violet as a fluorescent switch-on probe for i-motif: Label-free DNA-based logic gate. Analyst 2011, 136, 2692–2696. [Google Scholar] [CrossRef]
- Li, C.; Huang, Y.; Pei, L. Analyses of Trace Crystal Violet and Leucocrystal Violet with Gold Nanospheres and Commercial Gold Nanosubstrates for Surface-Enhanced Raman Spectroscopy. Food Anal. Method 2014, 7, 2107–2112. [Google Scholar] [CrossRef]
- Oplatowska, M.; Donnelly, R.F.; Majithiya, R.J.; Kennedy, D.G.; Elliott, C.T. The potential for human exposure, direct and indirect, to the suspected carcinogenic triphenylmethane dye Brilliant Green from green paper towels. Food Chem. Toxicol. 2011, 49, 1870–1876. [Google Scholar] [CrossRef]
- Xiao, H.P.; Han, S.; He, Z.Y. Research Progress on Detection of Crystal Violet in Aquatic Products. Adv. Mater. Res. 2011, 396–398, 2452–2458. [Google Scholar] [CrossRef]
- Ghosh, K.; Bar, N.; Biswas, A.B. Elimination of crystal violet from synthetic medium by adsorption using unmodified and acid-modified eucalyptus leaves with MPR and GA application. Sustain. Chem. Pharm. 2021, 1, 100370. [Google Scholar] [CrossRef]
- Upama, B.; Avijit, D.; Manna, U. Synthesis of Dual-Functional and Robust Underwater Superoleophobic Interfaces. ACS Appl. Mater. Interfaces 2019, 11, 28571–28581. [Google Scholar]
- Wei, S.; Wang, Y.; Lu, Y.; Hu, A.; Fan, S.; Sun, Z. High sensitive simultaneously electrochemical detection of hydroquinone and catechol with a poly(crystal violet) functionalized graphene modified carbon ionic liquid electrode. Sens. Actuators B Chem. 2013, 188, 564–570. [Google Scholar]
- Rani, U.A.; Ng, L.Y.; Ng, C.Y.; Mahmoudi, E.; Hairom, N.H.H. Photocatalytic degradation of crystal violet dye using sulphur-doped carbon quantum dots. Mater. Today Proc. 2021, 46, 1934–1939. [Google Scholar] [CrossRef]
- Njiki, A.; Youbi, G.K.; Laminsi, S. Gliding arc discharge-assisted biodegradation of crystal violet in solution with Aeromonas hydrophila strain. Int. J. Environ. Sci. Technol. 2015, 13, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Mittal, A.; Mittal, J.; Malviya, A. Adsorption of hazardous dye crystal violet from wastewater by waste materials. J. Colloid Interfaces Sci. 2010, 343, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.C.; Naidu, G.; Moon, H.; Vigneswaran, S. Continuous and selective copper recovery by multi-modified and granulated SBA-15. Chemosphere 2021, 271, 129820. [Google Scholar] [CrossRef] [PubMed]
- Kumaravel, S.; Thiripuranthagan, S.; Vembuli, T. Fabrication of mesoporous WO3-SBA-15 catalysts and enhanced photocatalytic degradation of harmful dyes. Optik 2021, 235, 166599. [Google Scholar] [CrossRef]
- Chong, C.C.; Cheng, Y.W.; Bukhari, S.N. Methane dry reforming over Ni/fibrous SBA-15 catalysts: Effects of support morphology (rod-liked F-SBA-15 and dendritic DFSBA-15). Catal. Today 2020, 375, 245–257. [Google Scholar] [CrossRef]
- Zhang, R.M.; Han, C.H.; Qi, L. Reduction of nitrobenzene by supported nano zero valent iron and changes of iron morphology. Hubei Agric. Sci. 2017, 56, 5–12. (In Chinese) [Google Scholar]
- Zhang, R.M.; Li, J.S.; Guan, Y. Reduction of Trinitrotoluene by Nanoscale Zero-Valent Iron Confined in Mesoporous Channels. Technol. Water Treat. 2017, 43, 5–11. (In Chinese) [Google Scholar]
- Yuan, J.F.; Li, J.S.; Shen, Z.H. Synthesis and Morphological Control of ’Zr-Ce-SBA-15 Mesoporous Materials. Rare Met. Mater. Eng. 2011, 40, 6–10. (In Chinese) [Google Scholar]
- Zhou, J.; Zhou, Y.; You, X. Potential promotion of activated carbon supported nano zero-valent iron on anaerobic digestion of waste activated sludge. Environ. Technol. 2021, 11, 1–34. [Google Scholar] [CrossRef]
- Tang, L.; Tang, J.; Zeng, G. Rapid reductive degradation of aqueous p-nitrophenol using nanoscale zero-valent iron particles immobilized on mesoporous silica with enhanced antioxidation effect. Appl. Surf. Sci. 2015, 333, 220–228. [Google Scholar] [CrossRef]
- Arjomand, M.A.; Mostafaei, Y.; Kutanaei, S.S. Modeling and sensitivity analysis of bearing capacity in driven piles using hybrid ANN–PSO algorithm. Arab. J. Geosci. 2022, 15, 309. [Google Scholar] [CrossRef]
- Li, G.; Wang, B.; Sun, B.; Xu, W.; Han, Y. Adsorption of lead ion on amino-functionalized fly-ash-based SBA-15 mesoporous molecular sieves prepared via two-step hydrothermal method. Micropor. Mesopor. Mat. 2017, 252, 105–115. [Google Scholar] [CrossRef]
- Zhang, C.A.; Jin, L.; Huang, Y.P. Anti-oxidation ability of nanoscale zero valent iron viaacetone flushing method. Environ. Chem. 2021, 40, 790–798. (In Chinese) [Google Scholar]
- Chen, Q.; Li, J.; Wu, Y. Biological responses of Gram-positive and Gram-negative bacteria to nZVI (Fe0), Fe2+ and Fe3+. RSC Adv. 2013, 3, 13835–13842. [Google Scholar] [CrossRef]
- Semerád, J.; Filip, J.; Evc, A. Environmental fate of sulfidated nZVI particles: The interplay of nanoparticle corrosion and toxicity during aging. Environ. Sci. Nano 2020, 7, 1794–1806. [Google Scholar] [CrossRef]
- Chao, X.; Peng, Y.M.; Chen, A.W. Drastically inhibited nZVI-Fenton oxidation of organic pollutants by cysteine: Multiple roles in the nZVI/O2/hv system. J. Colloid Interfaces Sci. 2021, 582, 22–29. [Google Scholar]
- Shan, A.; Idrees, A.; Zaman, W.Q. Synthesis of nZVI-Ni@BC composite as a stable catalyst to activate persulfate: Trichloroethylene degradation and insight mechanism. J. Environ. Chem. Eng. 2021, 9, 104808. [Google Scholar] [CrossRef]
- Yang, D.; Wang, L.; Li, Z. Simultaneous adsorption of Cd(II) and As(III) by a novel biochar-supported nanoscale zero-valent iron in aqueous systems. Sci. Total Environ. 2019, 708, 134823. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, X.Q.; Wu, H.M. Preparation of 2-hydroxy-1-naphthalene Functionalized SBA-15 Adsorbent for the Adsorption of Chromium(III) Ions from Aqueous Solution. J. Inorg. Mater. 2021, 36, 1163–1170. (In Chinese) [Google Scholar] [CrossRef]
- Anbarasu, G.; Malathy, M.; Karthikeyan, P.; Rajavel, R. Silica functionalized Cu(II) acetylacetonate Schiff base complex: An efficient catalyst for the oxidative condensation reaction of benzyl alcohol with amines. J. Solid State Chem. 2017, 253, 305–312. [Google Scholar] [CrossRef]
- Ebrahim, A.D.; Mehrorang, G.; Abdolmohammad, G. Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: Kinetics and equilibrium study. J. Taiwan Inst. Chem. Eng. 2016, 59, 210–220. [Google Scholar]
- Satapathy, M.K.; Das, P. Optimization of crystal violet dye removal using novel soil-silver nanocomposite as nanoadsorbent using response surface methodology. J. Environ. Chem. Eng. 2014, 2, 708–714. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Wang, L.P.; Li, Y.Y.; Xu, Y.N.; Zhang, L.Q. Study on adsorption of crystal violet dye by poplar leaf dry powder by Response Surface Methodology. New Chem. Mater. 2016, 44, 4–10. (In Chinese) [Google Scholar]
- Wang, W.Y.; Wu, X.L.; Long, S.X. Optimizing the Methylene Blue Removal from Aqueous Solution Using Pomelo Peel Based Biochar Assisted by RSM and ANN-PSO. Pol. J. Environ. Stud. 2022, 31, 329–346. [Google Scholar] [CrossRef]
- Ma, J.C.; Ma, D.L.; Zhang, H.L. Extraction Process Optimization for Buyanghuanwu Decoction by Response Surface Methodology and Back Propagation Artificial Neural Network. Lishizhen Med. Mater. Med. Res. 2019, 2, 4–10. [Google Scholar]
- Zhou, M.Z.; Wu, S.; Liu, N. Modelling Research of the Selenium Enrichment by Bacillus subtilis Base on Artificial Neural Network. J. Chin. Inst. Food Sci. Technol. 2016, 16, 9–18. (In Chinese) [Google Scholar]
- Kang, S.H.; Choi, W. Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electrorshuttle. Environ. Sci. Technol. 2008, 43, 878–883. [Google Scholar] [CrossRef]
- Zhou, D.; Brusseau, M.L.; Zhang, Y. Simulating PFAS adsorption kinetics, adsorption isotherms, and nonideal transport in saturated soil with tempered one-sided stable density (TOSD) based models. J. Hazard. Mater. 2021, 411, 125169. [Google Scholar] [CrossRef]
- Saeed, A.; Sharif, M.; Iqbal, M. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption. J. Hazard. Mater. 2010, 179, 564–572. [Google Scholar] [CrossRef]
- Wang, C.; Zou, C.; Cao, Y. Electrochemical and isothermal adsorption studies on corrosion inhibition performance of β-cyclodextrin grafted polyacrylamide for X80 steel in oil and gas production. J. Mol. Struct. 2020, 1228, 129737. [Google Scholar] [CrossRef]
- Madhavakrishnan, S.; Manickavasagam, K.; Vasanthakumar, R. Adsorption of Crystal Violet Dye from Aqueous Solution Using Ricinus Communis Pericarp Carbon as an Adsorbent. J. Chem. 2009, 6, 1109–1116. [Google Scholar]
- Zhang, Y.; Li, J.; Cheng, X.; Bian, W.; Chen, G. Fabrication of a polymer electrolyte membrane with uneven side chains for enhancing proton conductivity. RSC Adv. 2016, 6, 51337–51346. [Google Scholar] [CrossRef]
- Gopi, S.; Pius, A.; Thomas, S. Enhanced adsorption of crystal violet by synthesized and characterized chitin nano whiskers from shrimp shell. J. Water Process Eng. 2016, 14, 1–8. [Google Scholar] [CrossRef]
- Chen, X.; Chin, C.J.M. Adsorption and desorption of crystal violet and basic red 9 by multi-walled carbon nanotubes. Water Sci. Technol. 2019, 79, 1541–1549. [Google Scholar] [CrossRef]
- Qin, J.; Qiu, F.; Rong, X.; Yan, J.; Zhao, H.; Yang, D. Adsorption behavior of crystal violet from aqueous solutions with chitosan–graphite oxide modified polyurethane as an adsorbent. J. Appl. Polym. Sci. 2015, 132, 41828. [Google Scholar] [CrossRef]
- Malarvizhi, R.; Ho, Y.S. The influence of pH and the structure of the dye molecules on adsorption isotherm modeling using activated carbon. Desalin 2010, 264, 97–101. [Google Scholar] [CrossRef]
- Kannan, C.; Buvaneswari, N.; Palvannan, T. Removal of plant poisoning dyes by adsorption on Tomato Plant Root and green carbon from aqueous solution and its recovery. Desalination 2009, 249, 1132–1138. [Google Scholar] [CrossRef]
- Karagöz, S.; Tay, T.; Ucar, S.; Erdem, M. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresour. Technol. 2008, 99, 6214–6222. [Google Scholar] [CrossRef]
- Aygün, A.; Yenisoy-Karaka, S.; Duman, I. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Micropor. Mesopor. Mater. 2003, 66, 189–195. [Google Scholar] [CrossRef]
- Kavitha, D.; Namasivayam, C. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour. Technol. 2007, 98, 14–21. [Google Scholar] [CrossRef]
- El-Sayed, G.O. Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber. Desalination 2011, 272, 225–232. [Google Scholar] [CrossRef]
- Altameemi, I.A.; Thuraya, M.A. Removal of manganese (Mn+2) from aqueous solution by low-cost adsorbents and study the adsorption thermodynamics and kinetics. J. Phys. Conf. Ser. 2021, 1773, 012038. [Google Scholar] [CrossRef]
- Wan, Y.C.; Qiao, X.L.; Huang, L.P. Study on removal of molybdenum from water by zero valent iron. Environ. Sci. Technol. 2007, 30, 69–71. (In Chinese) [Google Scholar]
Code | Factors | Maximum | Middle | Minimum |
---|---|---|---|---|
x1 | Initial CV concentration | 400 | 300 | 200 |
x2 | Initial pH | 5 | 4 | 3 |
x3 | Contact time (min) | 20 | 15 | 10 |
x4 | Temperature (°C) | 45 | 35 | 25 |
Order | Initial CV Concentration (mg/L) | Initial pH | Contact Time (min) | Temperature (°C) | CV Removal Efficiency (%) |
---|---|---|---|---|---|
1 | 200 | 4 | 15 | 25 | 74 |
2 | 300 | 4 | 15 | 35 | 70.4 |
3 | 200 | 3 | 15 | 35 | 85.1 |
4 | 200 | 5 | 15 | 35 | 73.5 |
5 | 400 | 4 | 10 | 35 | 77.3 |
6 | 300 | 4 | 10 | 25 | 63.1 |
7 | 400 | 4 | 15 | 45 | 78.7 |
8 | 300 | 5 | 10 | 35 | 71.3 |
9 | 300 | 3 | 20 | 35 | 89.8 |
10 | 300 | 4 | 20 | 45 | 76.9 |
11 | 400 | 3 | 15 | 35 | 82.9 |
12 | 400 | 5 | 15 | 35 | 72.5 |
13 | 300 | 3 | 15 | 25 | 75.8 |
14 | 300 | 3 | 10 | 35 | 72.2 |
15 | 400 | 4 | 20 | 35 | 76.3 |
16 | 300 | 5 | 20 | 35 | 68.8 |
17 | 400 | 4 | 15 | 25 | 71.1 |
18 | 300 | 5 | 15 | 45 | 71.1 |
19 | 200 | 4 | 15 | 45 | 76.2 |
20 | 300 | 4 | 15 | 35 | 70.9 |
21 | 300 | 5 | 15 | 25 | 62.1 |
22 | 300 | 4 | 10 | 45 | 71.7 |
23 | 200 | 4 | 20 | 35 | 86.7 |
24 | 300 | 4 | 15 | 35 | 70.7 |
25 | 300 | 4 | 20 | 25 | 72.6 |
26 | 300 | 3 | 15 | 45 | 79.3 |
27 | 300 | 4 | 15 | 35 | 71.3 |
28 | 300 | 4 | 15 | 35 | 70.7 |
29 | 200 | 4 | 10 | 35 | 71 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F Value | p Value | |
---|---|---|---|---|---|---|
Model | 1074.51 | 14 | 76.75 | 229.39 | <0.0001 | significant |
x1 | 4.94 | 1 | 4.94 | 14.77 | 0.0018 | |
x2 | 360.80 | 1 | 360.80 | 1078.37 | <0.0001 | |
x3 | 165.02 | 1 | 165.02 | 493.21 | <0.0001 | |
x4 | 103.25 | 1 | 103.25 | 308.60 | <0.0001 | |
x1x2 | 0.3600 | 1 | 0.3600 | 1.08 | 0.3172 | |
x1x3 | 69.72 | 1 | 69.72 | 208.39 | <0.0001 | |
x1x4 | 7.29 | 1 | 7.29 | 21.79 | 0.0004 | |
x2x3 | 101.00 | 1 | 101.00 | 301.88 | <0.0001 | |
x2x4 | 7.56 | 1 | 7.56 | 22.60 | 0.0003 | |
x3x4 | 4.62 | 1 | 4.62 | 13.82 | 0.0023 | |
179.64 | 1 | 179.64 | 536.90 | <0.0001 | ||
45.55 | 1 | 45.55 | 136.14 | <0.0001 | ||
21.31 | 1 | 21.31 | 63.69 | <0.0001 | ||
11.39 | 14 | 11.39 | 34.04 | <0.0001 | ||
Lack of Fit | 4.68 | 10 | 0.3346 | not significant | ||
Pure Error | 4.24 | 4 | 0.4244 | 3.86 | 0.1025 | |
Cor Total | 0.4400 | 28 | 0.1100 |
Materials | Model | 298 K | 308 K | 318 K | |
---|---|---|---|---|---|
Zr-Ce-SBA-15 | Langmuir model | qm | 67 | 88 | 105 |
KL | 0.014 | 0.017 | 0.035 | ||
R2 | 0.990 | 0.997 | 0.996 | ||
Freundlich model | KF | 2.29 | 4.02 | 9.98 | |
n | 1.63 | 1.75 | 2.16 | ||
R2 | 0.978 | 0.991 | 0.958 |
Materials | qmax | References |
---|---|---|
Ricinus communis pericarp carbon | 48 | [42] |
Diatomite earth and carbon | 87.05 | [43] |
Chitin nanowhiskers | 39.56 | [44] |
A-MWCNTs | 57.8 | [45] |
Ch–GO/PUF | 64.93 | [46] |
Tomato plant root | 83.3 | [47] |
Wood apple | 40.1 | [48] |
Activated carbon from sunflower oil cake | 16.4 | [49] |
Activated carbon from hazelnut shell | 8.8 | [50] |
Activated carbon (coir pith) | 5.8 | [51] |
Palm kernel fiber | 95.4 | [52] |
Zr-Ce-SBA-15 | 105 | In this study |
Temperature (K) | ΔG0 (kJ/mol−1) | ΔS0 (kJ·mol−1 K−1) | ΔH0 (kJ·mol−1) |
---|---|---|---|
283.15 | −0.8306 | 0.3824 | 107.5 |
288.15 | −2.743 | ||
293.15 | −4.655 | ||
298.15 | −6.567 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, G.; Long, S.; Dang, A. Fabrication of the Ordered Mesoporous nZVI/Zr-Ce-SBA-15 Composites Used for Crystal Violet Removal and Their Optimization Using RSM and ANN–PSO. Sustainability 2022, 14, 6566. https://doi.org/10.3390/su14116566
Xiang G, Long S, Dang A. Fabrication of the Ordered Mesoporous nZVI/Zr-Ce-SBA-15 Composites Used for Crystal Violet Removal and Their Optimization Using RSM and ANN–PSO. Sustainability. 2022; 14(11):6566. https://doi.org/10.3390/su14116566
Chicago/Turabian StyleXiang, Gang, Shengxing Long, and Anzhi Dang. 2022. "Fabrication of the Ordered Mesoporous nZVI/Zr-Ce-SBA-15 Composites Used for Crystal Violet Removal and Their Optimization Using RSM and ANN–PSO" Sustainability 14, no. 11: 6566. https://doi.org/10.3390/su14116566
APA StyleXiang, G., Long, S., & Dang, A. (2022). Fabrication of the Ordered Mesoporous nZVI/Zr-Ce-SBA-15 Composites Used for Crystal Violet Removal and Their Optimization Using RSM and ANN–PSO. Sustainability, 14(11), 6566. https://doi.org/10.3390/su14116566