Do Immersive Displays Influence Exhibition Attendees’ Satisfaction?: A Stimulus-Organism-Response Approach
Abstract
:1. Introduction
2. Literature Review
2.1. Exhibition and Its Trends
2.2. Immersive Technology
2.3. Immersive Displays
2.4. Factors That Influenced Exhibition Attendees’ Satisfaction
2.5. Stimulus-Organism-Response (S-O-R) Framework
3. Method
3.1. Measurement Development
3.2. Data Collection
3.3. Data Analysis
4. Results
4.1. Socio-Demographic Profile
4.2. Perception of Immersive Displays at Exhibitions
4.3. Perception of the Immersive Displays among Socio-Demographics
4.3.1. Different Perception of the Immersive Displays by Gender
4.3.2. Different Perception of the Immersive Displays by Age
4.3.3. Different Perception of the Immersive Displays by Education
4.4. Relationship between Attendees’ Perceptions of Immersive Displays and Overall Show Satisfaction
4.5. Attendees’ Expectations of Immersive Displays in Future Exhibitions
5. Discussion
5.1. Theoretical Implications
5.2. Managerial Implications
6. Conclusions
7. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, M.J.; Yeung, S.; Dewald, B. An exploratory study examining the determinants of attendance motivations as perceived by attendees at Hong Kong exhibitions. J. Conv. Event Tour. 2010, 11, 195–208. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, S.; Joo, Y.M. The effects of exhibition service quality on exhibitor satisfaction and behavioral intentions. J. Hosp. Mark. Manag. 2015, 24, 638–707. [Google Scholar] [CrossRef]
- Siu, N.Y.-M.; Wan, P.Y.K.; Dong, P. The impact of the servicescape on the desire to stay in convention and exhibition centers: The case of Macao. Int. J. Hosp. Manag. 2012, 31, 236–246. [Google Scholar] [CrossRef]
- Wang, M. On the application of multimedia arts in the exhibition industry in the computer era. Procedia Eng. 2011, 15, 3164–3168. [Google Scholar] [CrossRef] [Green Version]
- Jasoren. Business Value and Cost of VR App Development for Exhibitions and Trade Shows. Available online: https://jasoren.com/business-value-and-cost-of-vr-app-development-for-exhibitions-and-trade-shows/ (accessed on 28 February 2022).
- Vi, C.T.; Ablart, D.; Gatti, E.; Velascoba, C.; Obris, M. Not just seeing, but also feeling art: Mid-air haptic experiences integrated in a multisensory art exhibition. Int. J. Hum.-Comput. Stud. 2017, 108, 1–14. [Google Scholar] [CrossRef]
- Dancstep, T.; Gutwill, J.P.; Sindorf, L. Comparing the visitor experience at immersive and tabletop exhibits. Mus. J. 2015, 56, 401–422. [Google Scholar] [CrossRef]
- Collin-Lachaud, I.; Passebois, J. Do immersive technologies add value to the museum going experience An exploratory study conducted at France’s Paleosite. Int. J. Arts Manag. 2018, 11, 60–71. [Google Scholar]
- Bao, J.S.; Jin, Y.; Gu, M.Q.; Yan, J.Q.; Ma, D.Z. Immersive virtual product development. J. Mater. Process. Technol. 2002, 129, 592–596. [Google Scholar] [CrossRef]
- Ye, J.; Campbell, R.I.; Page, T.; Badni, K.S. An investigation into the implementation of virtual reality technologies in support of conceptual design. Des. Stud. 2006, 27, 77–97. [Google Scholar] [CrossRef]
- Starner, T.; Leibe, B.; Minnen, D.; Westyn, T.; Hurst, A.; Weeks, J. The perceptive workbench: Computer-vision-based gesture tracking, object tracking, and 3D reconstruction for augmented desks. Mach. Vis. Appl. 2003, 14, 59–71. [Google Scholar] [CrossRef]
- Cleaveland, P. Haptic controls: A touching experience; Providing tactile output is increasing in applications as benefits grow and costs drop. Control Eng. 2006, 53, 48–50. [Google Scholar]
- Arce, T.; Fuchs, H.; McMullen, K. The effects of 3D audio on hologram localization in augmented reality environments. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Los Angeles, CA, USA, 26–30 October 2017; pp. 2115–2119. [Google Scholar]
- Ashline, P.C.; Lai, V.S. Virtual reality an emerging user-interface technology. Inf. Syst. Manag. 1995, 12, 82–85. [Google Scholar] [CrossRef]
- Mehrabian, A.; Russell, J.A. An Approach to Environmental Psychology; The MIT Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Rittichainuwat, B.; Mair, J. Visitor attendance motivations at consumer travel exhibitions. Tour. Manag. 2012, 33, 1236–1244. [Google Scholar] [CrossRef]
- Kim, S.S.; Chon, K. An economic impact analysis of the Korean exhibition industry. Int. J. Tour. Res. 2009, 11, 311–318. [Google Scholar] [CrossRef]
- Cai, G.; Xu, L.; Gao, W.; Hong, Y.; Ying, X.; Wang, Y.; Qian, F. The positive impacts of exhibition-driven tourism on sustainable tourism, economics, and population: The case of the Echigo–Tsumari Art Triennale in Japan. Int. J. Environ. Res. Public Health 2020, 17, 1489. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y. Big data technology in museum exhibition digitization. J. Phys. Conf. Ser. 2020, 1648, 042044. [Google Scholar] [CrossRef]
- Yu, X. Research and practice on application of virtual reality technology in virtual estate exhibition. Procedia Eng. 2011, 15, 1245–1250. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, S.; Xu, Q.; Liu, H. Holographic projection technology in the field of digital media art. Wirel. Commun. Mob. Comput. 2021, 2021, 9997037. [Google Scholar] [CrossRef]
- Zhuang, K. Film and television industry cloud exhibition design based on 3D imaging and virtual reality. Displays 2021, 70, 102107. [Google Scholar] [CrossRef]
- Ahmad, S.; Abbas, M.Y.; Taib, M.Z.M.; Masri, M. Museum exhibition design: Communication of meaning and the shaping of knowledge. Procedia Soc. Behav. Sci. 2014, 153, 254–265. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, H. Immersive exhibitions: What’s the big deal? Visit. Stud. Today 2002, 5, 10–13. [Google Scholar]
- Slater, M.; Wilbur, S. A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence Teleoper. Virtual Environ. 1997, 6, 603–616. [Google Scholar] [CrossRef]
- Kitson, A.; Prpa, M.; Riecke, B.E. Immersive interactive technologies for positive change: A scoping review and design considerations. Front. Psychol. 2018, 9, 1354. [Google Scholar] [CrossRef] [PubMed]
- Suh, A.; Prophet, J. The state of immersive technology research: A literature analysis. J. Comput. Hum. Behav. 2018, 86, 77–90. [Google Scholar] [CrossRef]
- Soliman, M.; Peetz, J.; Davydenko, M. The impact of immersive technology on nature relatedness and pro-environmental behavior. J. Media Psychol. 2017, 29, 8–17. [Google Scholar] [CrossRef]
- Slater, M. Place illusion and plausibility can lead to realistic behavior in immersive virtual environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3549–3557. [Google Scholar] [CrossRef] [Green Version]
- Bekele, M.K.; Pierdicca, R.; Frontoni, E.; Malinverni, E.S.; Gain, J. A survey of augmented, virtual, and mixed reality for cultural heritage. J. Comput. Cult. Herit. 2018, 11, 1–36. [Google Scholar] [CrossRef]
- Lee, H.-G.; Chung, S.; Lee, W.-H. Presence in virtual golf simulators: The effects of presence on perceived enjoyment, perceived value, and behavioral intention. New Media Soc. 2013, 15, 930–946. [Google Scholar] [CrossRef]
- Govindarajan, U.H.; Trappey, A.J.C.; Trappey, C.V. Immersive technology for human-centric cyberphysical systems in complex manufacturing processes: A comprehensive overview of the global patent profile using collective intelligence. Complexity 2018, 2018, 4283634. [Google Scholar] [CrossRef]
- Williams, P.; Hobson, J.P. Virtual reality and tourism: Fact or fantasy? Tour. Manag. 1995, 16, 423–427. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, C.-K.; Jung, T. Exploring consumer behavior in virtual reality tourism using an extended stimulus-organism-response model. J. Travel Res. 2018, 59, 69–89. [Google Scholar] [CrossRef] [Green Version]
- Atzeni, M.; Chiappa, G.D.; Pung, J.M. Enhancing visit intention in heritage tourism: The role of object-based and existential authenticity in non-immersive virtual reality heritage experiences. Int. J. Tour. Res. 2021, 24, 240–255. [Google Scholar] [CrossRef]
- Lee, S.A.; Lee, M.; Jeong, M. The role of virtual reality on information sharing and seeking behaviors. J. Hosp. Tour. Manag. 2021, 46, 215–223. [Google Scholar] [CrossRef]
- Edgar, J. Virtual exhibitions. J. Conv. Exhib. Manag. 2002, 4, 69–79. [Google Scholar] [CrossRef]
- Hamm, S.; Frew, E.; Lade, C. Hybrid and virtual conferencing modes versus traditional face-to-face conference delivery: A conference industry perspective. Event Manag. 2018, 22, 717–733. [Google Scholar] [CrossRef]
- Yung, R.; Khoo-Lattimore, C. New realities: A systematic literature review on virtual reality and augmented reality in tourism research. Curr. Issues Tour. 2019, 22, 2056–2081. [Google Scholar] [CrossRef]
- Loureiro, S.M.C.; Guerreiroa, J.; Ali, F. 20 years of research on virtual reality and augmented reality in tourism context: A text-mining approach. Tour. Manag. 2020, 77, 104028. [Google Scholar] [CrossRef]
- Merchant, Z.; Goetz, E.T.; Cifuentes, L.; Keeney-Kennicutt, W.; Davis, T.J. Effectiveness of virtual reality-based instruction on students’ learning outcomes in K-12 and higher education: A meta-analysis. Comput. Educ. 2014, 70, 29–40. [Google Scholar] [CrossRef]
- Ahmad, B.I.; Murphy, J.K.; Langdon, P.M.; Godsill, S.J.; Hardy, R.; Skrypchuk, L. Intent inference for hand pointing gesture-based interactions in vehicles. IEEE Trans. Cybern. 2016, 46, 878–889. [Google Scholar] [CrossRef] [Green Version]
- Bi, L.; Fan, X.-A.; Luo, N.; Jie, K.; Li, Y.; Liu, Y. A head-up display-based P300 brain–computer interface for destination selection. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1996–2001. [Google Scholar] [CrossRef]
- Xia, X.; Liu, X.; Li, H.; Zheng, Z.; Wang, H.; Peng, Y.; Shen, W. A 360-degree floating 3D display based on light field regeneration. Opt. Express 2013, 21, 11237–11247. [Google Scholar] [CrossRef] [PubMed]
- Takaki, Y.; Uchida, S. Table screen 360-degree three-dimensional display using a small array of high-speed projectors. Opt. Express 2012, 20, 8848–8861. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Kim, Y.; Choi, H.-J.; Hahn, J.; Park, J.-H.; Kim, H.; Min, S.-W.; Chen, N.; Lee, B. Three-dimensional display technologies of recent interest: Principles, status, and issues [Invited]. Appl. Opt. 2011, 50, H87–H115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klahr, D.M. Traveling via Rome through the stereoscope: Reality, memory, and virtual travel. Archit. Hist. 2016, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Schautz, A.M.; van Dijk, E.M.; Meisert, A. The use of audio guides to collect individualized timing and tracking data in a science center exhibition. Visit. Stud. 2016, 19, 96–116. [Google Scholar] [CrossRef]
- Schoeffler, M.; Silzle, A.; Herre, J. Evaluation of spatial/3D audio: Basic audio quality versus quality of experience. IEEE J. Sel. Top. Signal Process. 2017, 11, 75–88. [Google Scholar] [CrossRef]
- Jackman, A.H. 3-D cinema: Immersive media technology. GeoJournal 2015, 80, 853–866. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Dong, H.; Alelaiwi, A.; Saddik, A.E. See in 3D: State of the art of 3D display technologies. Multimed. Tools Appl. 2016, 75, 17121–17155. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, H.; He, M.; Li, D.; Wang, Q. Dual-view integral imaging 3D display based on multiplexed lens-array holographic optical element. Appl. Sci. 2019, 9, 3852. [Google Scholar] [CrossRef] [Green Version]
- Ross, M. The 3-D aesthetic: Avatar and hyperhaptic visuality. Screen 2012, 53, 381–397. [Google Scholar] [CrossRef]
- Tempel, M.; ten Thije, J.D. The appreciation of cultural and linguistic adjustments in multilingual museum audio tours by international tourist. J. Multiling. Multicult. Dev. 2012, 33, 643–664. [Google Scholar] [CrossRef]
- Jot, J.-M. Real-time spatial processing of sounds for music, multimedia and interactive human-computer interfaces. Multimed. Syst. 1999, 7, 55–69. [Google Scholar] [CrossRef]
- Filho, N.D.; Botelho, S.C.; Carvalho, J.T.; Marcos, P.d.B.; Maffei, R.d.Q.; Oliveira, R.R.; Oliveira, R.R.; Hax, V.A. An immersive and collaborative visualization system for digital manufacturing. Int. J. Adv. Manuf. Technol. 2010, 50, 1253–1261. [Google Scholar] [CrossRef]
- Yang, J.; Gan, W.-S.; Tan, S.-E. Improved sound separation using three loudspeakers. Acoust. Res. Lett. Online 2003, 4, 47–52. [Google Scholar] [CrossRef]
- Yuan, Y.; Xie, L.; Fu, Z.-H.; Xu, M.; Cong, Q. Sound image externalization for headphone based real-time 3D audio. Front. Comput. Sci. 2017, 11, 419–428. [Google Scholar] [CrossRef]
- Rigby, J.; Smith, S.P. Augmented Reality Challenges for Cultural Heritage; Working Paper Series; University of Newcastle, NSW: Newcastle, Australia, 2013. [Google Scholar]
- Sakurai, A.; Nakamura, M.; Nakamura, J. Self-organizing map analysis of sensor networks for human movement tracking. Sens. Actuators A Phys. 2011, 166, 141–148. [Google Scholar] [CrossRef]
- Packi, F.; Beutler, F.; Hanebeck, U.D. Wireless acoustic tracking for extended range telepresence. In Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 15–17 September 2010; pp. 1–9. [Google Scholar]
- Oliver, R.L. Satisfaction: A Behavioral Perspective on the Consumer; Routledge: London, UK, 2010. [Google Scholar]
- Whitfield, J.; Webber, D. Which exhibition attributes create repeat visitation? Int. J. Hosp. Manag. 2011, 30, 439–447. [Google Scholar] [CrossRef]
- Whitfield, J.; Dioko, L.; Webber, D.; Zhang, L. Attracting convention and exhibition attendance to complex MICE venues: Emerging data from Macao. Int. J. Tour. Res. 2012, 16, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-H. Examining the relationship among experience, perceived value, and satisfaction in exhibitions. Event Manag. 2020, 24, 169–184. [Google Scholar] [CrossRef]
- Brown, T.J.; Barry, T.E.; Dacin, P.A.; Gunst, R.F. Spreading the word: Investigating antecedents of consumers’ positive word-of-mouth intentions and behaviors in a retailing context. J. Acad. Mark. Sci. 2005, 33, 123–138. [Google Scholar] [CrossRef]
- Stevens, P.; Knutson, B.; Patton, M. Dineserv: A tool for measuring service quality in restaurants. Cornell Hotel Restaur. Adm. Q. 1995, 36, 56–60. [Google Scholar] [CrossRef]
- Lee, M.J.; Kang, Y.S. Subject areas and future research agendas in exhibition research: Exhibitors’ perspectives. Event Manag. 2014, 18, 185–194. [Google Scholar] [CrossRef]
- Pantano, E.; Servidio, R. Modeling innovative points of sales through virtual and immersive technologies. J. Retail. Consum. Serv. 2012, 19, 279–286. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, Y.; Wang, B.; Wu, S. The impacts of technological environments and co-creation experiences on customer participation. Inf. Manag. 2015, 52, 468–482. [Google Scholar] [CrossRef]
- Peng, C.; Kim, Y.G. Application of the stimuli-organism-response (S-O-R) framework to online shopping behavior. J. Internet Commer. 2014, 13, 159–176. [Google Scholar] [CrossRef]
- Roy, G.; Datta, B.; Mukherjee, S.; Basu, R. Effect of eWOM stimuli and eWOM response on perceived service quality and online recommendation. Tour. Recreat. Res. 2021, 46, 457–472. [Google Scholar] [CrossRef]
- Chen, Z.; King, B.; Suntikul, W. Festivalscapes and the visitor experience: An application of the stimulus organism response approach. Int. J. Tour. Res. 2019, 21, 758–771. [Google Scholar] [CrossRef]
- Jin, H.; Yan, J.; Zhang, Y.; Zhang, H. Research on the influence mechanism of users’ quantified-self immersive experience: On the convergence of mobile intelligence and wearable computing. Pers. Ubiquitous Comput. 2020. [Google Scholar] [CrossRef]
- Wu, H.-C.; Cheng, C.-C.; Ai, C.-H. A study of exhibition service quality, perceived value, emotion, satisfaction, and behavioral intentions. Event Manag. 2016, 20, 565–591. [Google Scholar] [CrossRef]
- Hsieh, Y.-H.; Yuan, S.-T. An application of technology-based design for exhibition services. Int. J. Qual. Serv. Sci. 2016, 8, 498–515. [Google Scholar] [CrossRef]
- Shereni, N.C.; Mpofu, N.; Ngwenya, K. Exhibitors’ perception of the 2017 Sanganai/Hlanganani world tourism expo. Afr. J. Hosp. Tour. Leis. 2018, 7, 1–13. [Google Scholar]
- Ch’ng, E.; Li, Y.; Cai, S.; Leow, F.-T. The effects of VR environments on the acceptance, experience, and expectations of cultural heritage learning. J. Comput. Cult. Herit. 2020, 13, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.J.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis, 3rd ed.; Macmillan: New York, NY, USA, 1995. [Google Scholar]
- Barandiaran, I.; Paloc, C.; Graña, M. Real-time optical markerless tracking for augmented reality applications. J. Real-Time Image Process. 2009, 5, 129–138. [Google Scholar] [CrossRef]
- Kawakita, M.; Iwasawa, S.; Lopez-Gulliver, R.; Inoue, N. Glasses-free large-screen three-dimensional display and super multiview camera for highly realistic communication. Opt. Eng. 2018, 57, 061610. [Google Scholar] [CrossRef] [Green Version]
- Santos, P.C.; Stork, A.; Buaes, A.; Pereira, C.E.; Jorge, J. A real-time low-cost marker-based multiple camera tracking solution for virtual reality applications. J. Real-Time Image Process. 2009, 5, 121–128. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Z. Modified particle filter-based infrared pedestrian tracking. Infrared Phys. Technol. 2010, 53, 280–287. [Google Scholar] [CrossRef]
- Portalés, C.; Lerma, J.L.; Pérez, C. Photogrammetry and augmented reality for cultural heritage applications. Photogramm. Rec. 2009, 24, 316–331. [Google Scholar] [CrossRef]
- Buttussi, F.; Chittaro, L. Effects of different types of virtual reality display on presence and learning in a safety training scenario. IEEE Trans. Vis. Comput. Graph. 2017, 24, 1063–1076. [Google Scholar] [CrossRef]
- Arino, J.-J.; Juan, M.-C.; Gil-Gómez, J.-A.; Mollá, R. A comparative study using an autostereoscopic display with augmented and virtual reality. Behav. Inf. Technol. 2014, 33, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Tsaia, C.-H.; Huang, J.-Y. Augmented reality display based on user behavior. Comput. Stand. Interfaces 2018, 55, 171–181. [Google Scholar] [CrossRef]
- Davidge, J. 5 Experiential Marketing Trends to Watch in 2016. Available online: https://www.becausexm.com/blog/5-experiential-marketing-trends-to-watch-in-2016 (accessed on 25 March 2022).
- Corcoran, N. Exhibition Trends 2017. Available online: https://dmndesignbuild.com/exhibition-trends-2017/ (accessed on 18 March 2022).
- ProExhibits. Trade Show Trends 2018. Available online: https://www.proexhibits.com/trade-show-trends-2018-slp/ (accessed on 5 March 2022).
- EXPODISPLAYSERVICE. 5 Hottest Exhibition Trends You Must Know. Available online: https://www.expodisplayservice.com/5-hottest-exhibition-trends-you-must-know/ (accessed on 18 March 2022).
- Rubino, I.; Barberis, C.; Xhembulla, J.; Malnati, G. Integrating a location-based mobile game in the museum visit. J. Comput. Cult. Herit. 2015, 8, 1–18. [Google Scholar] [CrossRef]
Sensory Factor | Immersive Displays | Reference |
---|---|---|
Visual displays |
| Suh and Prophet [27] Xia et al. [44] Takaki and Uchida [45] Hong et al. [46] Klahr [47] |
Auditory displays |
| Schautz et al. [48] Schoeffler et al. [49] |
Haptic displays | • Touch Screen | Jackman [50] Vi et al. [6] |
Movement-tracking displays | • Sensor-Based Tracking | Bekele et al. [30] |
Combination displays |
| Ashline and Lai [14] Arce et al. [13] Bekele et al. [30] |
Socio-Demographics | Frequency | Percent (%) |
---|---|---|
Gender | ||
Male | 205 | 71.9 |
Female | 80 | 28.1 |
Age | ||
18–20 | 8 | 2.8 |
21–29 | 41 | 14.1 |
30–39 | 98 | 34.4 |
40–49 | 106 | 37.2 |
50–59 | 19 | 6.7 |
60 or above | 13 | 4.6 |
Education | ||
High school graduate | 37 | 13.0 |
2-year diploma or equivalent | 21 | 7.4 |
Bachelor’s degree | 82 | 28.8 |
Master’s degree | 115 | 40.4 |
Doctoral degree | 30 | 10.5 |
Socio-Demographics | Consumer Exhibition | EXPO (Trade Fair) | Art Exhibition | Museum | Others | |||||
---|---|---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | N | % | N | % | |
Overall | 199 | 30.1 | 125 | 18.9 | 156 | 23.6 | 173 | 26.1 | 9 | 1.4 |
Gender | ||||||||||
Male | 159 | 33.5 | 89 | 18.8 | 103 | 21.7 | 116 | 24.5 | 7 | 1.5 |
Female | 40 | 21.3 | 36 | 19.1 | 53 | 28.2 | 57 | 30.3 | 2 | 1.1 |
Age | ||||||||||
18–20 | 2 | 13.3 | 0 | 0 | 7 | 46.7 | 6 | 40.4 | 0 | 0 |
21–29 | 29 | 32.6 | 15 | 16.9 | 24 | 27.0 | 21 | 23.6 | 0 | 0 |
30–39 | 75 | 29.5 | 48 | 18.9 | 65 | 25.6 | 63 | 24.8 | 3 | 0.5 |
40–49 | 75 | 32.2 | 45 | 19.3 | 49 | 21.0 | 59 | 25.3 | 5 | 0.8 |
50–59 | 11 | 25.6 | 11 | 25.6 | 6 | 14.0 | 14 | 32.6 | 1 | 0.2 |
60 or above | 7 | 25.0 | 6 | 21.4 | 5 | 17.9 | 10 | 35.7 | 0 | 0 |
Education | ||||||||||
High school graduate | 17 | 23.0 | 8 | 10.8 | 22 | 29.7 | 27 | 36.5 | 0 | 0 |
2-year diploma or equivalent | 13 | 28.3 | 9 | 19.6 | 10 | 21.7 | 12 | 26.1 | 2 | 0.3 |
Bachelor’s degree | 57 | 29.4 | 43 | 22.2 | 42 | 21.6 | 51 | 26.3 | 1 | 0.2 |
Master’s degree | 89 | 32.5 | 49 | 17.9 | 66 | 24.1 | 66 | 24.1 | 4 | 0.6 |
Doctoral degree | 23 | 31.1 | 16 | 21.6 | 16 | 21.6 | 17 | 23.0 | 2 | 0.3 |
Immersive Displays | Extremely Dislike | Dislike | Neutral | Like | Extremely Like |
---|---|---|---|---|---|
3D Video Projection | 4 (1.4%) | 1 (0.4%) | 21 (7.4%) | 107 (37.5%) | 52 (53.3%) |
3D Stereoscopic | 1 (0.4%) | 6 (2.1%) | 46 (16.1%) | 115 (40.4%) | 117 (41.1%) |
Holographic Display | 2 (0.7%) | 1 (0.4%) | 35 (12.3%) | 109 (38.2%) | 138 (48.4%) |
Headphone | 2 (0.7%) | 3 (1.1%) | 36 (12.6%) | 127 (44.6%) | 117 (41.1%) |
3D Sound Speaker | 1 (0.4%) | 5 (1.8%) | 46 (16.1%) | 95 (33.3%) | 138 (48.4%) |
Haptic (Touch Screen) | 3 (0.7%) | 3 (1.1%) | 38 (13.1%) | 120 (42.1%) | 122 (42.8%) |
Sensor Tracking (Motion Play) | 1 (0.4%) | 6 (2.1%) | 41 (14.4%) | 108 (37.9%) | 129 (45.3%) |
HMD (VR) | 2 (0.7%) | 6 (2.1%) | 49 (17.2%) | 92 (32.3%) | 136 (47.7%) |
CAVE (VR) | 1 (0.4%) | 10 (3.5%) | 90 (31.6%) | 83 (29.1%) | 101 (35.4%) |
Mobile Application (AR) | 0 (0.0%) | 4 (1.4%) | 42 (14.7%) | 114 (40.4%) | 125 (43.9%) |
Immersive Displays | Extremely Uninfluenced | Uninfluenced | Neutral | Influenced | Extremely Influenced |
---|---|---|---|---|---|
3D Video Projection | 3 (1.1%) | 1 (1.4%) | 34 (11.9%) | 115 (40.4%) | 132 (46.3%) |
3D Stereoscopic | 1 (0.4%) | 10 (3.5%) | 62 (21.8%) | 111 (38.9%) | 101 (35.4%) |
Holographic Display | 1 (0.4%) | 4 (1.4%) | 45 (15.8%) | 106 (37.2%) | 129 (45.3%) |
Headphone | 3 (1.1%) | 11 (3.9%) | 61 (21.4%) | 110 (38.6%) | 100 (35.1%) |
3D Sound Speaker | 1 (1.1%) | 11 (3.9%) | 51 (17.9%) | 112 (39.3%) | 108 (37.9%) |
Haptic (Touch Screen) | 2 (0.7%) | 8 (2.8%) | 59 (20.7%) | 105 (36.8%) | 111 (38.9%) |
Sensor Tracking (Motion Play) | 4 (1.4%) | 9 (3.2%) | 53 (18.6%) | 121 (42.5%) | 99 (34.7%) |
HMD (VR) | 1 (0.4%) | 13 (4.6%) | 52 (18.2%) | 111 (38.9%) | 108 (37.9%) |
CAVE (VR) | 4 (1.4%) | 18 (6.3%) | 86 (30.2%) | 82 (28.8%) | 95 (33.3%) |
Mobile Application (AR) | 3 (1.1%) | 9 (3.2%) | 53 (18.6%) | 121 (42.5%) | 99 (34.7%) |
Immersive Displayers | Extremely Unhelpful | Unhelpful | Neutral | Helpful | Extremely Helpful |
---|---|---|---|---|---|
3D Video Projection | 1 (0.4%) | 4 (1.4%) | 30 (10.5%) | 121 (42.5%) | 129 (45.3%) |
3D Stereoscopic | 4 (1.4%) | 6 (2.1%) | 61 (21.4%) | 108 (37.9%) | 106 (37.2%) |
Holographic Display | 1 (0.4%) | 3 (1.1%) | 51 (17.9%) | 110 (38.6%) | 120 (42.1%) |
Headphone | 1 (1.1%) | 4 (1.4%) | 47 (16.5%) | 125 (43.9%) | 106 (37.2%) |
3D Sound Speaker | 1 (0.4%) | 5 (1.8%) | 58 (20.4%) | 102 (35.8%) | 119 (41.8%) |
Haptic (Touch Screen) | 1 (0.4%) | 5 (1.8%) | 47 (16.5%) | 110 (38.6%) | 122 (42.8%) |
Sensor Tracking (Motion Play) | 2 (0.7%) | 6 (2.1%) | 45 (15.8%) | 114 (40.0%) | 118 (41.4%) |
HMD (VR) | 3 (1.1%) | 9 (3.2%) | 45 (15.8%) | 121 (42.5%) | 107 (37.5%) |
CAVE (VR) | 4 (1.4%) | 14 (4.6%) | 82 (28.8%) | 94 (33.0%) | 92 (32.3%) |
Mobile Application (AR) | 2 (0.7%) | 8 (2.8%) | 52 (18.2%) | 112 (39.3%) | 111 (38.9%) |
Immersive Displays | Very Poor | Poor | Neutral | Good | Excellent |
---|---|---|---|---|---|
3D Video Projection | 1 (0.4%) | 5 (1.8%) | 23 (8.1%) | 114 (40.0%) | 142 (49.8%) |
3D Stereoscopic | 1 (0.4%) | 4 (1.4%) | 43 (15.1%) | 125 (43.9%) | 112 (39.3%) |
Holographic Display | 1 (0.4%) | 5 (1.8%) | 34 (11.9%) | 109 (38.2%) | 136 (47.7%) |
Headphone | 3 (1.1%) | 3 (1.1%) | 35 (12.3%) | 114 (40.0%) | 130 (45.6%) |
3D Sound Speaker | 2 (0.7%) | 4 (1.4%) | 47 (16.5%) | 101 (35.4%) | 131 (46.0%) |
Haptic (Touch Screen) | 1 (0.4%) | 3 (1.1%) | 39 (13.7%) | 124 (43.5%) | 118 (41.4%) |
Sensor Tracking (Motion Play) | 1 (0.4%) | 2 (0.7%) | 46 (16.1%) | 108 (37.9%) | 128 (44.9%) |
HMD (VR) | 2 (0.7%) | 5 (1.8%) | 40 (14.0%) | 107 (37.5%) | 131 (46.0%) |
CAVE (VR) | 2 (0.7%) | 8 (2.8%) | 80 (28.1%) | 91 (31.9%) | 104 (36.5%) |
Mobile Application (AR) | 1 (0.4%) | 6 (2.1%) | 62 (21.8%) | 128 (44.9%) | 88 (30.9%) |
Immersive Displays | Extremely Dissatisfied | Dissatisfied | Neutral | Satisfied | Extremely Satisfied |
---|---|---|---|---|---|
3D Video Projection | 2 (0.7%) | 3 (1.1%) | 26 (9.1%) | 121 (42.5%) | 133 (46.7%) |
3D Stereoscopic | 1 (0.4%) | 4 (1.4%) | 43 (15.1%) | 126 (44.2%) | 111 (38.9%) |
Holographic Display | 1 (0.4%) | 4 (1.4%) | 39 (13.7%) | 111 (38.9%) | 130 (45.6%) |
Headphone | 3 (1.1%) | 7 (2.5%) | 40 (14.0%) | 125 (43.9%) | 110 (38.6%) |
3D Sound Speaker | 3 (1.1%) | 4 (1.4%) | 50 (17.5%) | 107 (37.5%) | 121 (42.5%) |
Haptic (Touch Screen) | 1 (0.4%) | 7 (2.5%) | 51 (17.9%) | 116 (40.7%) | 110 (38.6%) |
Sensor Tracking (Motion Play) | 2 (0.7%) | 4 (1.4%) | 37 (13.0%) | 111 (38.9%) | 131 (46.0%) |
HMD (VR) | 1 (0.4%) | 7 (2.5%) | 43 (15.1%) | 126 (44.2%) | 108 (37.9%) |
CAVE (VR) | 1 (0.4%) | 10 (3.5%) | 92 (32.3%) | 97 (34.0%) | 85 (29.8%) |
Mobile Application (AR) | 0 (0.0%) | 9 (3.2%) | 47 (16.5%) | 119 (41.8%) | 110 (38.6%) |
Immersive Displays | Composite Mean | t value | Sig. | |
---|---|---|---|---|
Male | Female | |||
3D Video Projection | 4.41 | 4.19 | 2.678 | 0.008 * |
3D Stereoscopic | 4.19 | 4.03 | 1.824 | 0.069 |
Holographic Display | 4.30 | 4.22 | 0.949 | 0.344 |
Headphone | 4.25 | 3.98 | 3.257 | 0.001 * |
3D Sound Speaker | 4.25 | 4.06 | 2.174 | 0.031 * |
Haptic (Touch Screen) | 4.18 | 4.24 | −0.697 | 0.487 |
Sensor Tracking (Motion Play) | 4.25 | 4.18 | 0.793 | 0.430 |
HMD (VR) | 4.21 | 4.10 | 1.210 | 0.227 |
CAVE (VR) | 3.97 | 3.82 | 1.456 | 0.147 |
Mobile Application (AR) | 4.18 | 4.02 | 1.917 | 0.056 |
Immersive Displays | Composite Mean | F Value | Sig. | Post-hoc | |||||
---|---|---|---|---|---|---|---|---|---|
(1) (N = 8) | (2) (N = 41) | (3) (N = 98) | (4) (N = 106) | (5) (N = 19) | (6) (N = 13) | ||||
3D Video Projection | 4.48 | 3.99 | 4.29 | 4.51 | 4.26 | 4.55 | 5.109 | 0.000 * | 2 < 4, 6, 1, 2, 3 < 4 |
Holographic Display | 4.40 | 4.06 | 4.20 | 4.39 | 4.25 | 4.65 | 2.887 | 0.015 * | 2 < 6 |
Headphones | 3.90 | 4.04 | 4.16 | 4.32 | 3.92 | 3.97 | 2.654 | 0.023 * | N/A |
3D Sound Speaker | 4.00 | 4.03 | 4.16 | 4.33 | 4.08 | 4.09 | 1.672 | 0.141 | N/A |
Haptic (Touch Screen) | 4.10 | 3.85 | 4.17 | 4.33 | 4.18 | 4.35 | 3.917 | 0.002 * | 2 < 4 |
Sensor Tracking (Motion Play) | 3.98 | 4.03 | 4.18 | 4.43 | 4.04 | 4.08 | 3.769 | 0.003 * | 2 < 4 |
HMD (VR) | 4.00 | 3.96 | 4.14 | 4.30 | 4.22 | 4.18 | 1.821 | 0.109 | N/A |
CAVE (VR) | 3.55 | 3.65 | 3.88 | 4.15 | 3.69 | 3.89 | 3.689 | 0.003 * | 2 < 4 |
Mobile Applications (AR) | 3.83 | 3.85 | 4.14 | 4.30 | 3.93 | 4.05 | 3.994 | 0.002 * | 2 < 4 |
Immersive Displays | Composite Mean | F Value | Sig. | Post-hoc | ||||
---|---|---|---|---|---|---|---|---|
(1) (N = 37) | (2) (N = 21) | (3) (N = 82) | (4) (N = 115) | (5) (N = 30) | ||||
3D Video Projection | 4.14 | 4.29 | 4.28 | 4.42 | 4.54 | 2.468 | 0.045 * | N/A |
3D Stereoscopic | 3.83 | 4.05 | 4.11 | 4.25 | 4.29 | 3.625 | 0.007 * | 1 < 4, 5 |
Holographic Display | 4.09 | 4.30 | 4.29 | 4.27 | 4.52 | 1.833 | 0.123 | N/A |
Headphone | 3.99 | 4.14 | 4.11 | 4.24 | 4.32 | 1.679 | 0.155 | N/A |
3D Sound Speaker | 4.01 | 4.17 | 4.10 | 4.30 | 4.31 | 2.098 | 0.081 | N/A |
Haptic (Touch Screen) | 4.04 | 4.19 | 4.21 | 4.21 | 4.29 | 0.748 | 0.560 | N/A |
Sensor Tracking (Motion Play) | 4.03 | 4.11 | 4.25 | 4.28 | 4.32 | 1.367 | 0.246 | N/A |
HMD (VR) | 3.86 | 4.26 | 4.08 | 4.29 | 4.37 | 4.250 | 0.002 * | 1 < 4, 5 |
CAVE (VR) | 3.74 | 3.70 | 3.85 | 4.06 | 4.01 | 2.094 | 0.082 | N/A |
Mobile Application (AR) | 3.89 | 4.07 | 4.07 | 4.21 | 4.31 | 2.643 | 0.034 * | N/A |
Immersive Displays | B | SE | Beta (β) | t | Sig. | VIF |
---|---|---|---|---|---|---|
3D Video Projection | 0.281 | 0.068 | 0.292 | 4.157 | 0.000 * | 2.735 |
3D Stereoscopic | 0.138 | 0.061 | 0.150 | 2.265 | 0.024 * | 2.424 |
Holographic Display | 0.177 | 0.054 | 0.190 | 3.305 | 0.001 * | 1.829 |
Headphones | 0.056 | 0.061 | 0.060 | 0.917 | 0.360 | 2.383 |
3D Sound Speaker | −0.027 | 0.063 | −0.030 | −0.427 | 0.670 | 2.755 |
Haptic (Touch Screen) | 0.120 | 0.055 | 0.123 | 2.178 | 0.030 * | 1.782 |
Sensor Tracking (Motion Play) | 0.006 | 0.054 | 0.006 | 0.110 | 0.913 | 1.880 |
HMD (VR) | 0.104 | 0.058 | 0.112 | 1.771 | 0.078 | 2.241 |
CAVE (VR) | 0.015 | 0.045 | 0.020 | 0.346 | 0.730 | 1.827 |
Mobile Applications (AR) | −0.047 | 0.055 | −0.049 | −0.846 | 0.398 | 1.885 |
Immersive Displays | Sum | Preference Ranking |
---|---|---|
3D Video Projection | 814 | 1 |
Holographic Display | 1116 | 2 |
HMD (VR) | 1370 | 3 |
3D Stereoscopic Display | 1477 | 4 |
CAVE (VR) | 1733 | 5 |
3D Sound Speaker | 1776 | 6 |
Headphone | 1805 | 7 |
Sensor Tracking (Motion Play) | 1836 | 8 |
Mobile Application (AR) | 1850 | 9 |
Haptic (Touch Screen) | 1890 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Kang, H.; Huh, C.; Lee, M.J. Do Immersive Displays Influence Exhibition Attendees’ Satisfaction?: A Stimulus-Organism-Response Approach. Sustainability 2022, 14, 6344. https://doi.org/10.3390/su14106344
Park J, Kang H, Huh C, Lee MJ. Do Immersive Displays Influence Exhibition Attendees’ Satisfaction?: A Stimulus-Organism-Response Approach. Sustainability. 2022; 14(10):6344. https://doi.org/10.3390/su14106344
Chicago/Turabian StylePark, Jihye, Haesang Kang, Chang Huh, and Myong Jae (MJ) Lee. 2022. "Do Immersive Displays Influence Exhibition Attendees’ Satisfaction?: A Stimulus-Organism-Response Approach" Sustainability 14, no. 10: 6344. https://doi.org/10.3390/su14106344