Comprehensive Geophysical Measurement in Seismic Safety Evaluation: A Case Study of East Lake High-Tech Development Zone, China
Abstract
:1. Introduction
2. Geological Background of the Region
2.1. Geological Structure Zonation
2.2. Main Faults and Features in the Region
- (1)
- Xiangfan-Guangji Fault
- (2)
- Macheng-Tuanfeng Fault
2.3. Urgent Geological Problems to Be Solved in the Region
3. Geophysical Field Measurement of the Target Area
3.1. Seismic Reflection
3.2. Microtremor Survey
4. Analysis of Field Measurement Results
4.1. Characteristics of Buried Faults Revealed by Seismic Reflection Profiles
4.2. Stratigraphic Structure Characteristics Revealed by Microtremor Velocity Structure Profiles and Boreholes
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, Y. Earthquake Safety Estimation Study for the Urban Rail Transportation Engineering Field; Central South University: Changsha, China, 2009. [Google Scholar]
- Ding, Z.J. Urban Seismic Microzonation and Engineering Seismic Exploration; Seismological Press: Beijing, China, 1991. [Google Scholar]
- You, J.M. The Application of Geophysical Methods in Nuclear Power Plant Seismic Safety Evaluation; Chengdu University of Technology: Chengdu, China, 2014. [Google Scholar]
- Luo, Y.X.; Wang, X.C.; Li, D.X. Importance of Seismic Safety Evaluation in City Construction. J. Coll. Disaster Prev. Tech. 2005, 7, 2. [Google Scholar]
- Lin, S.; Cai, Y.J.; Lei, D.N.; Wang, Q.L.; Yang, G. Seismic Reflection Profile Reveal Overburden Thickness and Buried Faults of Seismic Zoning—Take the Planning Area of JiuJiang Fanglan as an Example. J. Geod. Geodyn. 2018, 38, 881–890. [Google Scholar]
- Cai, L.L.; Yang, Q.Y.; Guo, Q.N.; Wen, C.; Li, H.; Liu, G.J.; Peng, Y.Q. Synthesis Geophysical Method in Earthquake Safety Evaluation. N. China Earthq. Sci. 2016, 34, 21–29. [Google Scholar]
- Deng, Q.D.; Lu, Z.X.; Yang, Z.E. Evaluation of Active Fault Detection and Fault Activity in city. Seismol. Geol. 2007, 29, 189. [Google Scholar]
- Lin, S.; Li, Y.; Luo, D.G.; Fu, Y.L. Research on the fracture structure and activity of the Qinling Mountains thrust nappe system in western Hubei. Can. J. Earth Sci. 2020, 57, 1–15. [Google Scholar] [CrossRef]
- Lin, S.; Tang, Q.J.; Li, Y.; Luo, D.G.; Liao, W.L.; Wang, Q.L. Analysis and Characteristics of Faults Around Danjiang Reservoir, Western Hubei Provience. Earth Sci. 2017, 42, 1830–1841. [Google Scholar]
- Lin, S.; Wang, W.; Li, Y.; Zhou, X.; Liao, W.L. Shallow Seismic Profiles Reveal the Buried Fault Feature of Southern Qinling:A Case of Danjiang Fracture. J. Geod. Geodyn. 2019, 39, 221–225. [Google Scholar]
- Liu, B.J.; Zhang, X.K.; Feng, S.Y.; Zhao, C.B.; Ji, J.F.; Shi, J.H.; Yuan, H.K. High-Resolution Seismic Reflection Profile Across Pengzhou Buried Fault in the Frontal Areas of Longmen Shan. Geophysics 2009, 52, 538–546. [Google Scholar]
- Buday-Bódi, E.; Irfan, A.; McIntosh, R.W.; Fehér, Z.Z.; Csajbók, J.; Juhász, C.; Radócz, L.; Szilágyi, A.; Buday, T.J.S. Subregion-Scale Geothermal Delineation Based on Image Analysis Using Reflection Seismology and Well Data with an Outlook for Land Use. Sustainability 2022, 14, 3529. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Gaki-Papanastassiou, K.; Skilodimou, H.D.; Papanastassiou, D.; Chousianitis, K.G. Potential suitability for urban planning and industry development using natural hazard maps and geological–geomorphological parameters. Environ. Earth Sci. 2012, 66, 537–548. [Google Scholar] [CrossRef]
- Su, M.; Cheng, K.; Li, H.; Xue, Y.; Wang, P.; Ma, X.; Li, C. Comprehensive investigation of water-conducting channels in near-sea limestone mines using microtremor survey, electrical resistivity tomography, and tracer tests: A case study in Beihai City, China. Bull. Eng. Geol. Environ. 2022, 81, 1–14. [Google Scholar] [CrossRef]
- Thein, P.; Kyaw, K.; Kiyono, J.; Pramumijoyo, S.; Nu, T.; Khaing, K.; Than, W.; Win, T.; Thant, M. Estimation of the subsurface sedimentary structure of Amarapura township (Mandalay Region) based on microtremor survey. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Yogyakarta, Indonesia, 16–18 March 2021; p. 012019. [Google Scholar]
- Tian, R.; Wang, L.; Zhou, X.; Xu, H.; Lin, J.; Zhang, L.J.S. An integrated energy-efficient wireless sensor node for the microtremor survey method. Sensors 2019, 19, 544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, B.; Ding, Z.; Yang, L.; Fan, Y.; Zhang, B. Microtremor survey method: A new approach for geothermal exploration. Front. Earth Sci. 2022, 10, 4. [Google Scholar] [CrossRef]
- Xu, P.F.; Li, S.H.; Du, J.G.; Ling, S.Q.; Guo, H.L.; Tian, B.Q. Microtremor survey method: A new geophysical method for dividing strata and detecting the buried fault structures. Acta Petrol. Sin. 2013, 29, 1841–1845. [Google Scholar]
- Zhang, W.; Gan, F.P.; Liang, D.H.; Han, K.; Liu, W. Revelation of Fushougou Ditch’s Conception for the Construction of Modern Sponge City. Yangtze River 2016, 47, 51–54. [Google Scholar]
- Jin, C.; Lin, S.; Cheng, M.; Zha, Y.H. Application and Discussion of Microtremor Survey for Frozen Soil Roadbed. J. Geod. Geodyn. 2021, 41, 212–216. [Google Scholar]
- Lin, S.; Cai, Y.J.; Lei, D.N.; Qiao, Y.Q. Seismic Safety Evaluation Report of East Lake High Tech Zone; Wuhan Institute of Earthquake Engineering Co., Ltd.: Wuhan, China, 2021; Volume 3, p. 18. [Google Scholar]
- Lin, S.; Wang, W.; Deng, X.H.; Zha, Y.H.; Zhou, H.W.; Cheng, M. Geophysical Observation of Typical Landslides in Three Gorges Reservoir Area and Its Significance: A Case Study of Sifangbei Landslide in Wanzhou District. Earth Sci. 2019, 44, 3135–3146. [Google Scholar]
- Lei, D.N.; Cai, Y.J.; Yu, S. Discussion on Characteristics Activity of Xiangfan-Guangji Fault Since the Quaternary, Hubei. Geol. Sci. Technol. Inf. 2011, 30, 38–43. [Google Scholar]
- Lei, D.N.; Cai, Y.J.; Zhen, S.M.; Li, H. A Preliminary Study on the Quaternary Activities and the New Tectonic Deformation Modes of Shangcheng-Macheng-Tuanfeng Fault in Northeast Hubei. J. Geod. Geodyn. 2012, 32, 21–25. [Google Scholar]
- Xu, M.C.; Gao, J.H.; Liu, J.X.; Rong, L.X. Eismological Methods and Techniques Applied to Active Fault Investigation in Cities. Seismol. China 2005, 21, 17–23. [Google Scholar]
- Brouwer, J.H. Improved NMO correction with a specific application to shallow-seismic data. Geophys. Prospect. 2002, 50, 225–237. [Google Scholar] [CrossRef]
- Dong, X.Y.; Li, W.H.; Lu, Z.W.; Huang, X.F.; Gao, R. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone. Tectonophysics 2020, 780, 228395. [Google Scholar] [CrossRef]
- Gao, W.W.; Gao, W.; Hu, R.L.; Xu, P.F.; Xia, J.G. Microtremor survey and stability analysis of a soil-rock mixture landslide: A case study in Baidian town, China. Landslides 2018, 15, 1951–1961. [Google Scholar] [CrossRef]
- Futalan, K.M.; Biscaro, J.R.D.; Saturay, R.M.; Catane, S.G.; Amora, M.S.; Villaflor, E.L. Assessment of potential slope failure sites at Mt. Can-abag, Guinsaugon, Philippines, based on stratigraphy and rock strength. Bull. Eng. Geol. Environ. 2010, 69, 517–521. [Google Scholar] [CrossRef]
- Loew, S.; Gischig, V.; Willenberg, H.; Alpiger, A.; Moore, J.R. Randa: Kinematics and driving mechanisms of a large complex rockslide. Landslides Types Mech. Modeling 2012, 297, 24. [Google Scholar]
- Zhang, S.; Tang, H.; Zhan, H.; Lei, G.; Cheng, H. Investigation of scale effect of numerical unconfined compression strengths of virtual colluvial–deluvial soil–rock mixture. Int. J. Rock Mech. Min. Sci. 2015, 77, 208–219. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Guo, C.B.; Lan, H.X.; Zhou, N.J.; Yao, X. Reactivation mechanism of ancient giant landslides in the tectonically active zone: A case study in Southwest China. Environ. Earth Sci. 2015, 74, 1719–1729. [Google Scholar] [CrossRef]
- Tian, B.Q.; Xu, P.F.; Ling, S.Q.; Du, J.G.; Xu, X.Q.; Pang, Z.H. Application effectiveness of the microtremor survey method in the exploration of geothermal resources. J. Geophys. Eng. 2017, 14, 1283–1289. [Google Scholar] [CrossRef] [Green Version]
Group Interval | Offset Distance | Coverage Number | Receiver Trace Number | Sampling Rate | Recording Time | Detector Frequency |
---|---|---|---|---|---|---|
2 m | 0 m | 35 times | 280 tracks | 0.5 ms | 650 ms | 60 Hz |
Survey Line Name | Coordinates of Starting Point of Survey Lines | Coordinates of End Point of Survey Lines | Survey Line Length (m) | ||
---|---|---|---|---|---|
Latitude (°) | Longitude (°) | Latitude (°) | Longitude (°) | ||
Survey line XG4 | 30.52863697 | 114.60763647 | 30.54714475 | 114.61094402 | 2145 |
Survey line XG9 | 30.44664009 | 114.82138098 | 30.42700462 | 114.83110079 | 2421 |
Survey line MT4 | 30.48921904 | 114.78350940 | 30.48933117 | 114.75234116 | 2974 |
Array Spacing | Spread Length | Type of Array | Observation Way | Sampling Rate | Observation Time | Frequency |
---|---|---|---|---|---|---|
10 m | 70 m | Linear | Rolling observation | 4 ms | 45 min | 5 Hz |
Survey Line Name | Coordinates of Starting Point of Survey Lines | Coordinates of End Point of Survey Lines | Survey Line Length (m) | ||
---|---|---|---|---|---|
Latitude (°) | Longitude (°) | Latitude (°) | Longitude (°) | ||
ZB1 | 30.44757559 | 114.49781781 | 30.43863681 | 114.49775205 | 990 |
ZB2 | 30.44778654 | 114.50568385 | 30.43950138 | 114.50651028 | 925 |
ZB3 | 30.44975387 | 114.51294323 | 30.44273353 | 114.51601027 | 830 |
ZB4 | 30.44347793 | 114.49452001 | 30.44699354 | 114.51369854 | 1920 |
ZB5 | 30.43993319 | 114.49454617 | 30.44415822 | 114.51418593 | 1995 |
ZB6 | 30.44766732 | 114.49369645 | 30.44978537 | 114.51281113 | 2130 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Jin, C.; Luo, D.; Cai, Y.; Lin, S. Comprehensive Geophysical Measurement in Seismic Safety Evaluation: A Case Study of East Lake High-Tech Development Zone, China. Sustainability 2022, 14, 6307. https://doi.org/10.3390/su14106307
Wang W, Jin C, Luo D, Cai Y, Lin S. Comprehensive Geophysical Measurement in Seismic Safety Evaluation: A Case Study of East Lake High-Tech Development Zone, China. Sustainability. 2022; 14(10):6307. https://doi.org/10.3390/su14106307
Chicago/Turabian StyleWang, Wei, Cong Jin, Denggui Luo, Yongjian Cai, and Song Lin. 2022. "Comprehensive Geophysical Measurement in Seismic Safety Evaluation: A Case Study of East Lake High-Tech Development Zone, China" Sustainability 14, no. 10: 6307. https://doi.org/10.3390/su14106307