Small-Scale Farmers’ Preference Heterogeneity for Green Agriculture Policy Incentives Identified by Choice Experiment
Abstract
:1. Introduction
2. Research Background
2.1. Green Agriculture and Ecological Fertilization and Deinsectization
2.2. Policy Incentives for Ecological Fertilization and Deinsectization
2.3. Farmers’ Choices of Fertilization and Deinsectization Techniques
2.4. Research Gap
3. Methodology
3.1. Overall Research Design
3.2. Variables Setting
3.3. Theoretical Analysis Model
3.3.1. Lancaster Stochastic Utility Model
3.3.2. Farmers’ Preference Heterogeneity
3.3.3. Constructing Willingness to Participate
3.4. Choice Experiment Process
3.5. Research Sample
4. Results
4.1. Estimation Results of Mixed Logit Model
4.2. Estimation Results of Latent Class Model
5. Discussion
5.1. Farmers’ Characteristics Influencing Their Policy Incentive Preferences
5.2. Alternating and Complementing Effects of Incentive Policies
5.3. A Typology of Green Agriculture Incentives
6. Implications
6.1. Theoretical Implications
6.2. Practical Implications
7. Conclusions, Limitations, and Future Directions
7.1. Conclusions
7.2. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Attributes | Solution A | Solution B | Solution C |
---|---|---|---|
Technical Support | None | None | Neither of the previous two solutions are selected |
Environmental Propaganda | Yes | None | |
Agricultural insurance | Yes | None | |
Green subsidy | None | CNY 10/mu | |
Change Rate of Chemical Usage | Down by 5% | Down by 15% | |
Your Choice (tick “√”) |
References
- Gupta, R.; Sayre, K. Conservation agriculture in south Asia. J. Agric. Sci. 2007, 145, 207. [Google Scholar] [CrossRef]
- Meena, R.S. Resources conservation agriculture—A Review. Ann. Biol. 2013, 29, 301–306. [Google Scholar]
- Burch, D.; Lyons, K.; Lawrence, G. What do we mean by ‘green’? Consumers, agriculture and the food industry. In Consuming Foods, Sustaining Environments; Lockie, S., Pritchard, B., Eds.; Australian Academic Press on behalf of Central Queensland University: Brisbane, Australia, 2001; pp. 33–46. [Google Scholar]
- Peattie, K. Green consumption: Behavior and norms. Ann. Rev. Environ. Resour. 2010, 35, 195–228. [Google Scholar] [CrossRef]
- Conway, G.R.; Barbier, E.B. After the Green Revolution: Sustainable Agriculture for Development; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Koohafkan, P.; Altieri, M.A.; Gimenez, E.H. Green agriculture: Foundations for biodiverse, resilient and productive agricultural systems. Int. J. Agric. Sustain. 2012, 10, 61–75. [Google Scholar] [CrossRef]
- Wei, D.; Liping, C.; Zhijun, M.; Guangwei, W.; Ruirui, Z. Review of non-chemical weed management for green agriculture. Int. J. Agric. Biol. Eng. 2010, 3, 52–60. [Google Scholar]
- Groot, R.S.D.; Alkemade, R.; Braat, L. Challenges in integrating the concept of ecosystem services and values in landscape planning. Management and Decision Making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Liberalesso, T.; Cruz, C.O.; Silva, C.M.; Manso, M. Green infrastructure and public policies: An international review of green roofs and green walls incentives. Land Use Policy 2020, 96, 104693. [Google Scholar] [CrossRef]
- Luo, L.; Wang, Y.; Qin, L. Incentives for promoting agricultural clean production technologies in China. J. Clean. Prod. 2014, 74, 54–61. [Google Scholar] [CrossRef]
- Matus, K.J. Policy incentives for a cleaner supply chain: The case of green chemistry. J. Int. Aff. 2010, 64, 121–136. [Google Scholar]
- Yang, Y.; Li, Z.; Zhang, Y. Incentives or restrictions: Policy choices in farmers’ chemical fertilizer reduction and substitution behaviors. Int. J. Low-Carbon Technol. 2021, 16, 351–360. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Yu, J.; Yao, X. Toward cleaner production: What drives farmers to adopt eco-friendly agricultural production. J. Clean. Prod. 2018, 184, 550–558. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Z.; Jiang, G.; Quan, Z. Addressing the differences in farmers’ willingness and behavior regarding developing green agriculture—A case study in Xichuan County, China. Land 2021, 10, 316. [Google Scholar] [CrossRef]
- Young, T.F.; Karkoski, J. Green evolution: Are economic incentives the next step in nonpoint source pollution control? Water Policy 2000, 2, 151–173. [Google Scholar] [CrossRef]
- Isik, M. Incentives for technology adoption under environmental policy uncertainty: Implications for green payment programs. Environ. Resour. Econ. 2004, 27, 247–263. [Google Scholar] [CrossRef]
- Javdani, M. Malawi’s agricultural input subsidy: Study of a Green Revolution-style strategy for food security. Int. J. Agric. Sustain. 2012, 10, 150–163. [Google Scholar] [CrossRef]
- United Nations Development Programme. What Are the Sustainable Development Goals? Available online: https://www.undp.org/sustainable-development-goals (accessed on 28 April 2022).
- Ladha, J.K.; Jat, M.L.; Stirling, C.M.; Chakraborty, D.; Pradhan, P.; Krupnik, T.J.; Sapkota, T.B.; Pathak, H.; Rana, D.S.; Tesfaye, K.; et al. Achieving the sustainable development goals in agriculture: The crucial role of nitrogen in cereal-based systems. Adv. Agron. 2020, 163, 39–116. [Google Scholar]
- Bangsund, D.A.; Hodur, N.M.; Leistritz, F.L. Agricultural and recreational impacts of the conservation reserve program in rural North Dakota, USA. J. Environ. Manag. 2004, 71, 293–303. [Google Scholar] [CrossRef]
- Donald, P.F.; Pisano, G.; Rayment, M.D.; Pain, D.J. The Common Agricultural Policy, EU enlargement and the conservation of Europe’s farmland birds. Agric. Ecosyst. Environ. 2002, 89, 167–182. [Google Scholar] [CrossRef]
- Hunt, J.R.; Kirkegaard, J.A. Re-evaluating the contribution of summer fallow rain to wheat yield in southern Australia. Crop Pasture Sci. 2011, 62, 915–929. [Google Scholar] [CrossRef]
- Peng, J.; Chen, J.; Su, C.; Wu, Z.; Yang, L.; Liu, W. Will land circulation sway “grain orientation”? The impact of rural land circulation on farmers’ agricultural planting structures. PLoS ONE 2021, 16, e0253158. [Google Scholar] [CrossRef]
- Barreiro-Hurlé, J.; Espinosa-Goded, M.; Dupraz, P. Does intensity of change matter? Factors affecting adoption of agri-environmental schemes in Spain. J. Environ. Plan. Manag. 2010, 53, 891–905. [Google Scholar] [CrossRef]
- Savci, S. An agricultural pollutant: Chemical fertilizer. Int. J. Environ. Sci. Dev. 2012, 3, 73. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.N.; Luo, L.G.; Pan, Y.R. Use of discrete choice experiments to facilitate design of effective environmentally friendly agricultural policies. Environ. Dev. Sustain. 2019, 21, 1543–1559. [Google Scholar] [CrossRef]
- Victor, P.A. Pollution: Economy and Environment; Routledge: Oxfordshire, UK, 2017. [Google Scholar]
- Aulakh, M.S.; Khurana, M.P.S.; Singh, D. Water pollution related to agricultural, industrial, and urban activities, and its effects on the food chain: Case studies from Punjab. J. New Seeds 2009, 10, 112–137. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Baskaran, S.; Kennedy, I.R. Ecological relative risk (EcoRR): Another approach for risk assessment of pesticides in agriculture. Agric. Ecosyst. Environ. 2002, 91, 37–57. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, L.; Yang, L.; Zhang, F.; Norse, D.; Zhu, Z. Agricultural non-point source pollution in China: Causes and mitigation measures. Ambio 2012, 41, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Balog, A.; Hartel, T.; Loxdale, H.; Wilson, K. Differences in the progress of the biopesticide revolution between the EU and other major crop-growing regions. Pest Manag. Sci. 2017, 73, 2203–2208. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Ge, Y. Excessive application of fertilizer, agricultural non-point source pollution, and farmers’ policy choice. Sustainability 2019, 11, 1165. [Google Scholar] [CrossRef] [Green Version]
- Cerutti, A.K.; Bagliani, M.; Beccaro, G.L.; Gioelli, F.; Balsari, P.; Bounous, G. Evaluation of the sustainability of swine manure fertilization in orchard through Ecological Footprint Analysis: Results from a case study in Italy. J. Clean. Prod. 2011, 19, 318–324. [Google Scholar] [CrossRef]
- Tur-Cardona, J.; Bonnichsen, O.; Speelman, S. Farmers’ reasons to accept bio-based fertilizers: A choice experiment in seven different European countries. J. Clean. Prod. 2018, 197, 406–416. [Google Scholar] [CrossRef]
- Wilson, C.; Tisdell, C. Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol. Econ. 2001, 39, 449–462. [Google Scholar] [CrossRef] [Green Version]
- Constantine, K.L.; Kansiime, M.K.; Mugambi, I.; Nunda, W.; Chacha, D.; Rware, H.; Makale, F.; Mulema, J.; Lamontagne-Godwin, J.; Williams, F.; et al. Why don’t smallholder farmers in Kenya use more biopesticides? Pest Manag. Sci. 2020, 76, 3615–3625. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Goded, M.; Barreiro-Hurlé, J.; Ruto, E. What do farmers want from agri-environmental scheme design? A choice experiment approach. J. Agric. Econ. 2010, 61, 259–273. [Google Scholar] [CrossRef]
- Grovermann, C.; Schreinemachers, P.; Riwthong, S.; Berger, T. ‘Smart’ policies to reduce pesticide use and avoid income trade-offs: An agent-based model applied to Thai agriculture. Ecol. Econ. 2017, 132, 91–103. [Google Scholar] [CrossRef]
- Tian, T.; Sun, B.; Li, H.; Li, Y.; Gao, T.; Li, Y.; Zeng, Q.; Wang, Q. Commercialization and regulatory requirements of biopesticides in China. In Agriculturally Important Microorganisms; Singh, H.B., Sarma, B.K., Keswani, C., Eds.; Springer: Singapore, 2016; pp. 237–254. [Google Scholar]
- Duke, J.M.; Borchers, A.M.; Johnston, R.J. Sustainable agricultural management contracts: Using choice experiments to estimate the benefits of land preservation and conservation practices. Ecol. Econ. 2012, 74, 95–103. [Google Scholar] [CrossRef]
- Mahul, O.; Stutley, C.J. Government Support to Agricultural Insurance: Challenges and Options for Developing Countries; World Bank Publications: Washington, DC, USA, 2010. [Google Scholar]
- Ajayi, O.C.; Akinnifesi, F.K.; Sileshi, G.; Chakeredza, S. Adoption of renewable soil fertility replenishment technologies in the southern African region: Lessons learnt and the way forward. Nat. Resour. Forum 2007, 31, 306–317. [Google Scholar] [CrossRef]
- Baker, B.P.; Green, T.A.; Loker, A.J. Biological control and integrated pest management in organic and conventional systems. Biol. Control 2020, 140, 104095. [Google Scholar] [CrossRef]
- Zeng, Y.; Tian, Y.; He, K.; Zhang, J. Environmental conscience, external incentives and social norms in rice farmers’ adoption of pro-environmental agricultural practices in rural Hubei province, China. Environ. Technol. 2019, 41, 2518–2532. [Google Scholar] [CrossRef]
- Marrone, P.G. Barriers to adoption of biological control agents and biological pesticides. In Integrated Pest Management: Concepts, Tactics, Strategies and Case Studies; Radcliffe, E.B., Hutchison, W.D., Cancelado, R.E., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 163–178. [Google Scholar]
- Hazell, P.B. The appropriate role of agricultural insurance in developing countries. J. Int. Dev. 1992, 4, 567–581. [Google Scholar] [CrossRef]
- Qiao, Y. Organic agriculture development in China. In The World of Organic Agriculture. Statistics and Emerging Trends 2011; Willer, H., Kilcher, L., Eds.; IFOAM: Bonn, Germany; FiBL: Frick, Switzerland, 2011; pp. 132–136. [Google Scholar]
- Nakajima, N. Green advertising and green public relations as integration propaganda. Bull. Sci. Technol. Soc. 2001, 21, 334–348. [Google Scholar] [CrossRef]
- Leblois, A.; Quirion, P. Agricultural Insurances Based on Meteorological Indices: Realizations, Methods and Research Agenda. FEEM Working Paper No. 71. 2010. Available online: https://deliverypdf.ssrn.com/delivery.php?ID=320069123112086113084102085087000009049040064078088068077091101101087092065002125011054057055004118051018071085123017021001020015048049051033113028087113030093100090065079074006008084114094096070112125083075081026080064088084119028066125008092113072&EXT=pdf&INDEX=TRUE (accessed on 1 October 2021). [CrossRef] [Green Version]
- Chang, H.J. Rethinking public policy in agriculture: Lessons from history, distant and recent. J. Peasant Stud. 2009, 36, 477–515. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, B.; Bai, Y.; Xu, X.; Alatalo, J. Quantifying ecosystem services supply and demand shortfalls and mismatches for management optimisation. Sci. Total Environ. 2019, 650, 1426–1439. [Google Scholar] [CrossRef] [PubMed]
- Sang, X.C.; Luo, X.F.; Hhuang, Y.Z.; Tang, L. Relationship between policy incentives, ecological cognition, and organic fertilizer application by farmers: Based on a moderated mediation model. Chin. J. Eco-Agric. 2021, 29, 1274–1284. [Google Scholar]
- Qin, M.; Fan, Y.; Wang, Z. Impact of social capital on farmers’ technology adoption for soil testing and formulated fertilization technology: A survey of 703 farmers in Jilin province. J. Hunan Agric. Univ. Soc. Sci. 2016, 17, 14–20. [Google Scholar]
- Jiang, L.L.; Zhang, J.B.; Yan, T.W.; He, K.; Tong, Q.M. Research on the agricultural input waste discarding behaviors of farmers: A case study of Hubei Province. Res. Agric. Mod. 2016, 37, 917–925. [Google Scholar]
- Zhang, S.; Chen, M.; Kuang, F. Research on ecological farming behavior of farmers with different management scales: Taking pesticides and fertilizers application as an example. Ecol. Econ. 2019, 35, 113–118. [Google Scholar]
- Xu, Z.; Ma, R.; Yu, X.; Jiang, L.; Wang, Y. Cost effectiveness, policy mechanism and sustainable development of ecological restoration—Evaluationon ecological protection & construction projects and policy in China from a holistic perspective. China Soft Sci. 2010, 37, 5–13. [Google Scholar]
- Wang, W.; Jin, J.; He, R.; Gong, H.; Tian, Y. Farmers’ willingness to pay for health risk reductions of pesticide use in China: A contingent valuation study. Int. J. Environ. Res. Public Health 2018, 15, 625. [Google Scholar] [CrossRef] [Green Version]
- Yao, K.; Liu, Z. Subsidy policy of mechanized straw returning based on payments for ecological services. J. Agric. 2018, 8, 92–95. [Google Scholar]
- La Rosa, D.; Barbarossa, L.; Privitera, R.; Martinico, F. Agriculture and the city: A method for sustainable planning of new forms of agriculture in urban contexts. Land Use Policy 2014, 41, 290–303. [Google Scholar] [CrossRef]
- Kurkalova, L.; Kling, C.; Zhao, J. Green subsidies in agriculture: Estimating the adoption costs of conservation tillage from observed behavior. Can. J. Agric. Econ. 2006, 54, 247–267. [Google Scholar] [CrossRef] [Green Version]
- Mansaray, B.; Jin, S.; Horlu, G.S.A. Do land ownership and agro-ecological location of farmland influence adoption of improved rice varieties? Evidence from Sierra Leone. Agriculture 2019, 9, 256. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Mu, Y. On the sustainable production behavior of vegetable farmers in northern protected region. China Popul. Resour. Environ. 2013, 23, 164–169. [Google Scholar]
- Wang, Z.H.; Li, M.M.; Wang, C.L. Impact of contract stability on farming household’s inter-temporal technology adoption: An analysis based on the data of 2271 plots. Resour. Sci. 2020, 42, 2237–2250. [Google Scholar]
- Wang, W.; Wang, J.; Liu, K.; Wu, Y.J. Overcoming barriers to agriculture green technology diffusion through stakeholders in China: A social network analysis. Int. J. Environ. Res. Public Health 2020, 17, 6976. [Google Scholar] [CrossRef]
- Altieri, M.A. Linking ecologists and traditional farmers in the search for sustainable agriculture. Front. Ecol. Environ. 2004, 2, 35–42. [Google Scholar] [CrossRef]
- Negi, V.S.; Pathak, R.; Sekar, K.C.; Rawal, R.S.; Bhatt, I.D.; Nandi, S.K.; Dhyani, P.P. Traditional knowledge and biodiversity conservation: A case study from Byans Valley in Kailash Sacred Landscape, India. J. Environ. Plan. Manag. 2018, 61, 1722–1743. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, Q.; Jiao, X.; Ying, H.; Wang, H.; Wen, X.; Xu, W.; Li, T.; Cong, W.; Liu, X.; et al. Agriculture green development: A model for China and the world. Front. Agric. Sci. Eng. 2020, 7, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Kerr, T.M.; Avendano, F. Green loans and multinational corporations. Nat. Resour. Environ. 2020, 35, 46–49. [Google Scholar]
- Kasem, S.; Thapa, G.B. Sustainable development policies and achievements in the context of the agriculture sector in Thailand. Sustain. Dev. 2012, 20, 98–114. [Google Scholar] [CrossRef]
- Alkon, A.H. From value to values: Sustainable consumption at farmers markets. Agric. Hum. Values 2008, 25, 487–498. [Google Scholar] [CrossRef]
- Friedmann, H. Scaling up: Bringing public institutions and food service corporations into the project for a local, sustainable food system in Ontario. Agric. Hum. Values 2007, 24, 389–398. [Google Scholar] [CrossRef]
- Croppenstedt, A.; Demeke, M.; Meschi, M.M. Technology adoption in the presence of constraints: The case of fertilizer demand in Ethiopia. Rev. Dev. Econ. 2003, 7, 58–70. [Google Scholar] [CrossRef]
- Travisi, C.M.; Nijkamp, P. Valuing environmental and health risk in agriculture: A choice experiment approach to pesticides in Italy. Ecol. Econ. 2008, 67, 598–607. [Google Scholar] [CrossRef]
- Ruto, E.; Garrod, G. Investigating farmers’ preferences for the design of agri-environment schemes: A choice experiment approach. J. Environ. Plan. Manag. 2009, 52, 631–647. [Google Scholar] [CrossRef] [Green Version]
- Hensher, D.A.; Greene, W.H. The mixed logit model: The state of practice. Transportation 2003, 30, 133–176. [Google Scholar] [CrossRef]
- Boxall, P.C.; Adamowicz, W.L. Understanding heterogeneous preferences in random utility models: A latent class approach. Environ. Resour. Econ. 2002, 23, 421–446. [Google Scholar] [CrossRef]
- Lancaster, K. Consumer Demand: A New Approach; Columbia University: New York, NY, USA, 1971. [Google Scholar]
- Carson, R.T.; Czajkowski, M. The discrete choice experiment approach to environmental contingent valuation. In Handbook of Choice Modelling; Edward Elgar Publishing: Cheltenham, UK, 2014. [Google Scholar]
- Ligon, E.; Schechter, L. Measuring vulnerability. Econ. J. 2003, 113, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Orbeta, A.C., Jr. Poverty, vulnerability and family size: Evidence from the Philippines. In Poverty Strategies in Asia; Asian Development Bank Institute: Tokyo, Japan, 2005; No. 171; Available online: http://hdl.handle.net/11540/4174 (accessed on 1 October 2021).
- Stock, P.V.; Forney, J. Farmer autonomy and the farming self. J. Rural Stud. 2014, 36, 160–171. [Google Scholar] [CrossRef]
- Husen, N.A.; Loos, T.K.; Siddig, K.H. Social capital and agricultural technology adoption among Ethiopian farmers. Am. J. Rural Dev. 2017, 5, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Munasib, A.; Jordan, J.L. The effect of social capital on the choice to use sustainable agricultural practices. J. Agric. Appl. Econ. 2011, 43, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Amekawa, Y. Rethinking sustainable agriculture in Thailand: A governance perspective. J. Sustain. Agric. 2010, 34, 389–416. [Google Scholar] [CrossRef]
- Larson, D.W.; Jones, E.; Pannu, R.S.; Sheokand, R.S. Instability in Indian agriculture—A challenge to the green revolution technology. Food Policy 2004, 29, 257–273. [Google Scholar] [CrossRef]
- Mariyono, J. Green revolution-and wetland-linked technological change of rice agriculture in Indonesia. Manag. Environ. Qual. 2015, 26, 683–700. [Google Scholar] [CrossRef]
- Stone, G.D.; Glover, D. Disembedding grain: Golden rice, the green revolution, and heirloom seeds in the Philippines. Agric. Hum. Values 2017, 34, 87–102. [Google Scholar] [CrossRef]
- Zhang, W.; Chintagunta, P.K.; Kalwani, M.U. Social media, influencers, and adoption of an eco-friendly product: Field experiment evidence from rural China. J. Mark. 2021, 85, 10–27. [Google Scholar] [CrossRef]
- Juan, W.; Yadong, T. Reverse integration and optimisation of agricultural products E-commerce omnichannel supply chain under Internet technology. Acta Agric. Scand. Sect. B Soil Plant Sci. 2021, 71, 604–612. [Google Scholar] [CrossRef]
Categories | Subcategories | Variables | Abbreviation | Levels/Measures |
---|---|---|---|---|
Farmers’ characteristics | Individual-level characteristics | Age (years) | AGE | <35; 35–45; 46–55; 55–65; >65 |
Education level | EDUC | Illiterate; Primary school; Middle school; High school; College or above | ||
Household-level characteristics | Family size (person) | FAMI | Measured by person counts | |
Agricultural labor (person) | LABO | Measured by person counts | ||
Planting area (hm2) | PLAN | Measured by hectometer square | ||
Grain-planting motivation | MOTI | Self-supply; Self-supply & income increase; Income increase | ||
Grain-based income proportion (%) | INCO | Measured by the proportion of grain-based income in the overall household income | ||
Environmental characteristics | Participation in agricultural organizations | ORGA | 0: does not participate in any agricultural organizations 1: participates in some agricultural organization | |
Green agriculture incentives | Economic incentives | Green subsidy | SUBS | 0: without biopesticide subsidy 1: with a medium level of subsidy such as CNY 5/mu 2: with a high level of subsidy such as CNY 10/mu |
Agricultural insurance | INSU | 0: without agricultural insurance 1: with agricultural insurance | ||
Voluntary incentives | Technical support | TECH | 0: without technical support 1: with technical support | |
Environmental propaganda | ENVI | 0: without environmental propaganda 1: with environmental propaganda | ||
Scale effect indicator | — | Scale of change | SCAL | 0: not changing chemical fertilizers and pesticides usage 1: changing chemical fertilizers and pesticides usage at a medium level of 5% 2: changing chemical fertilizers and pesticides usage at a high level of 15% |
Type | Option | Sample Size | Percentage (%) |
---|---|---|---|
Age (years) | <35 | 38 | 5.09 |
35~45 | 108 | 14.48 | |
45~55 | 234 | 31.37 | |
55–65 | 233 | 31.23 | |
≥65 | 133 | 17.83 | |
Education level | Illiterate | 26 | 3.49 |
Primary school | 205 | 27.48 | |
Middle school | 328 | 43.97 | |
High school | 164 | 21.98 | |
College or above | 23 | 3.08 | |
Family size (person) | 1–2 | 56 | 5.43 |
3–4 | 467 | 45.25 | |
5–6 | 413 | 40.02 | |
7–8 | 61 | 5.91 | |
9–10 | 35 | 3.40 | |
Agricultural labor (person) | 0 | 24 | 3.22 |
1–2 | 596 | 79.89 | |
3–4 | 118 | 15.82 | |
5–6 | 8 | 1.07 | |
Planting area (hm2) | <0.67 | 237 | 31.77 |
0.67–3.33 | 254 | 34.05 | |
3.33–6.67 | 110 | 14.75 | |
6.67–13.33 | 64 | 8.58 | |
≥13.33 | 81 | 10.86 | |
Grain-planting motivation | Self-supply | 97 | 13.00 |
Self-supply & income increase | 317 | 42.49 | |
Income increase | 332 | 44.50 | |
Grain-based income proportion (%) | <10% | 147 | 19.71 |
10–30% | 133 | 17.83 | |
30–50% | 127 | 17.02 | |
≥50 | 339 | 45.44 | |
Participation in agricultural organizations | Yes | 384 | 37.21 |
No | 648 | 62.79 |
Variables | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
Coefficient | S.E. | Coefficient | S.E. | Coefficient | S.E. | |
ASC | −0.419 ** | 0.168 | −5.677 *** | 2.202 | −0.631 ** | 0.248 |
SUBS | 0.115 *** | 0.014 | 1.933 *** | 0.614 | 0.011 | 0.066 |
INSU | 0.304 *** | 0.048 | 3.016 ** | 1.444 | 0.331*** | 0.125 |
TECH | 0.279 *** | 0.049 | 4.672 ** | 1.993 | 0.188 | 0.253 |
ENVI | 0.101 *** | 0.039 | 1.428 | 1.213 | 0.166 *** | 0.054 |
SCAL | 0.013 ** | 0.006 | 0.380 ** | 0.159 | 0.715 | 0.863 |
SUBS × INSU | — | — | 0.561 ** | 0.250 | — | — |
SUBS × TECH | — | — | −0.016 | 0.216 | — | — |
SUBS × ENVI | — | — | 0.113 | 0.191 | — | — |
INSU × TECH | — | — | 0.432 | 0.773 | — | — |
INSU × ENVI | — | — | 1.437 * | 0.873 | — | — |
TECH × ENVI | — | — | −1.722 * | 0.950 | — | — |
EDUC × ASC × TECH × ENVI | — | — | — | — | 0.218 ** | 0.216 |
FAMI × ASC × INSU × TECH | — | — | — | — | 0.112 ** | 0.152 |
AGE × SUBS × TECH | — | — | — | — | 0.063 ** | 0.083 |
ORGA × SUBS × INSU × TECH | — | — | — | — | −0.687 *** | 0.332 |
Log likelihood | −3295.837 | −3091.117 | −3089.734 | |||
0.095 | 0.101 | 0.102 |
Index | Category-2 | Category-3 | Category-4 |
---|---|---|---|
Log likelihood | −3100.911 | −3053.659 | −3042.494 |
Number | 13.000 | 20.000 | 27.000 |
McFadden Pseudo | 0.099 | 0.112 | 0.115 |
AIC | 6227.800 | 6147.300 | 6139.000 |
BIC | 6261.200 | 6207.200 | 6228.000 |
Variables | Group 1 | Group 2 | Group 3 | |||
---|---|---|---|---|---|---|
Economy-Orientated | Security-Orientated | Autonomy-Orientated | ||||
Coefficient | S.E. | Coefficient | S.E. | Coefficient | S.E. | |
ASC | −4.308 *** | 1.295 | −21.756 * | 11.589 | 2.876 ** | 0.523 |
Green subsidy | 0.623 *** | 0.161 | 0.492 * | 0.295 | 0.273 *** | 0.049 |
Agriculture insurance | −3.089 *** | 0.773 | 20.367 * | 10.960 | 0.470 *** | 0.163 |
Technology support | 0.121 ** | 0.159 | 10.935 | 6.173 | −0.395 ** | 0.165 |
Environmental propaganda | −1.951 *** | 0.476 | 8.456 ** | 4.238 | 0.885 *** | 0.185 |
Scale of change | −0.266 *** | 0.065 | 1.31 * | 0.733 | 0.056 ** | 0.022 |
Group proportion | 38.5% | 36.5% | 25.0% | |||
Characteristics | Mean | S.D. | Mean | S.D. | Mean | S.D. |
Age (years) | 47 | 26 | 62 | 12 | 58 | 17 |
Family size (person) | 5 | 6 | 6 | 5 | 5 | 6 |
Agricultural labor (person) | 4 | 4 | 5 | 4 | 3 | 5 |
Planting area (hm2) | 4.67 | 3.17 | 5.63 | 2.36 | 6.31 | 1.89 |
Log likelihood | −3053.659 | McFadden Pseudo | 0.112 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Chen, J. Small-Scale Farmers’ Preference Heterogeneity for Green Agriculture Policy Incentives Identified by Choice Experiment. Sustainability 2022, 14, 5770. https://doi.org/10.3390/su14105770
Zhu Y, Chen J. Small-Scale Farmers’ Preference Heterogeneity for Green Agriculture Policy Incentives Identified by Choice Experiment. Sustainability. 2022; 14(10):5770. https://doi.org/10.3390/su14105770
Chicago/Turabian StyleZhu, Yaying, and Juan Chen. 2022. "Small-Scale Farmers’ Preference Heterogeneity for Green Agriculture Policy Incentives Identified by Choice Experiment" Sustainability 14, no. 10: 5770. https://doi.org/10.3390/su14105770
APA StyleZhu, Y., & Chen, J. (2022). Small-Scale Farmers’ Preference Heterogeneity for Green Agriculture Policy Incentives Identified by Choice Experiment. Sustainability, 14(10), 5770. https://doi.org/10.3390/su14105770