Recent Advancements in MOF/Biomass and Bio-MOF Multifunctional Materials: A Review
Abstract
:1. Introduction
2. MOF/Biomass Composites
2.1. MOF/Biomass Extracts
2.2. MOF/Biomass
2.3. MOF/Biomass Derivatives
3. Bio-MOFs
3.1. Biomolecules for Bio-MOFs
3.2. Bio-MOF Derivatives
4. Conclusions and Prospects
- (1)
- The low loading ratio of MOFs in biomass. As the main phase of functional materials, the loading ratio of MOFs directly determines the properties of MOF/biomass composites. Therefore, in most experiments, the biomass needs to be pretreated to create more binding sites for the MOFs. However, the synthetic strategies, such as physical mixing, in- situ growth or layer-by-layer growth, cannot make MOFs nucleate quickly and efficiently on the surface of the biomass.
- (2)
- The interaction between the composite systems is relative. In the process of in- situ synthesis, the competition between the surface functional groups of the biomass and organic linkers affects the crystallinity and morphology of the MOFs.
- (3)
- The stability of the biomass. The premise of improving the stability of MOFs is to ensure the stability of the biomass. Biomass is easily affected by the environment, such as ultraviolet light and fungi, which will accelerate its degradation. Meanwhile, modifying the biomass with a chemical method makes the preparation process of MOF/biomass composites complicated.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular Synthesis and the Design of New Materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 6149. [Google Scholar] [CrossRef] [Green Version]
- Pétuya, R.; Durdy, S.; Antypov, D.; Gaultois, M.W.; Berry, N.G.; Darling, G.R.; Katsoulidis, A.P.; Dyer, M.S.; Rosseinsky, M.J. Machine-Learning Prediction of Metal–Organic Framework Guest Accessibility from Linker and Metal Chemistry. Angew. Chem. Int. Ed. 2022, 61, e202114573. [Google Scholar] [CrossRef]
- Saha, D.; Deng, S. Ammonia Adsorption and Its Effects on Framework Stability of MOF-5 and MOF-177. J. Colloid Interface Sci. 2010, 348, 615–620. [Google Scholar] [CrossRef]
- Kadioglu, O.; Keskin, S. Efficient Separation of Helium from Methane Using MOF Membranes. Sep. Purif. Technol. 2018, 191, 192–199. [Google Scholar] [CrossRef]
- Qiu, S.; Xue, M.; Zhu, G. Metal–Organic Framework Membranes: From Synthesis to Separation Application. Chem. Soc. Rev. 2014, 43, 6116–6140. [Google Scholar] [CrossRef]
- Hu, Z.; Deibert, B.J.; Li, J. Luminescent Metal–Organic Frameworks for Chemical Sensing and Explosive Detection. Chem. Soc. Rev. 2014, 43, 5815–5840. [Google Scholar] [CrossRef] [Green Version]
- Lustig, W.P.; Mukherjee, S.; Rudd, N.D.; Desai, A.V.; Li, J.; Ghosh, S.K. Metal–Organic Frameworks: Functional Luminescent and Photonic Materials for Sensing Applications. Chem. Soc. Rev. 2017, 46, 3242–3285. [Google Scholar] [CrossRef]
- Millward, A.R.; Yaghi, O.M. Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. J. Am. Chem. Soc. 2005, 127, 17998–17999. [Google Scholar] [CrossRef]
- Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295, 469–472. [Google Scholar] [CrossRef] [Green Version]
- Chae, H.K.; Siberio-Pérez, D.Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A.J.; O’Keeffe, M.; Yaghi, O.M. A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals. Nature 2004, 427, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.T.; Hupp, J.T. Metal–Organic Framework Materials as Catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.S.; Skorupskii, G.; Dincă, M. Electrically Conductive Metal–Organic Frameworks. Chem. Rev. 2020, 120, 8536–8580. [Google Scholar] [CrossRef] [Green Version]
- Dai, F.; Luo, J.; Zhou, S.; Qin, X.; Liu, D.; Qi, H. Porous Hafnium-Containing Acid/Base Bifunctional Catalysts for Efficient Upgrading of Bio-Derived Aldehydes. J. Bioresour. Bioprod. 2021, 6, 243–253. [Google Scholar] [CrossRef]
- Zhu, G.; Li, H.; Qiang, M.; Li, S.; Kang, K.; Xu, K.; Deng, S. Application and research progress of metal-organic framework materials in biomass and its derived chemicals. J. For. Eng. 2021, 6, 23–34. [Google Scholar] [CrossRef]
- Zhu, H.; Jiao, Q.; Fu, R.; Su, P.; Yang, C.; Feng, C.; Li, H.; Shi, D.; Zhao, Y. Cu/NC@Co/NC Composites Derived from Core-Shell Cu-MOF@Co-MOF and Their Electromagnetic Wave Absorption Properties. J. Colloid Interface Sci. 2022, 613, 182–193. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, W.; Han, X.; Zhou, L.; Zhen, H.; Wu, C.; Yu, Q.; Xiu, G. B,N-Decorated Carbocatalyst Based on Fe-MOF/BN as an Efficient Peroxymonosulfate Activator for Bisphenol A Degradation. J. Hazard. Mater. 2022, 430, 127832. [Google Scholar] [CrossRef]
- Jadhav, H.S.; Bandal, H.A.; Ramakrishna, S.; Kim, H. Critical Review, Recent Updates on Zeolitic Imidazolate Framework-67 (ZIF-67) and Its Derivatives for Electrochemical Water Splitting. Adv. Mater. 2022, 34, 2107072. [Google Scholar] [CrossRef]
- Zheng, S.; Zhou, H.; Xue, H.; Braunstein, P.; Pang, H. Pillared-Layer Ni-MOF Nanosheets Anchored on Ti3C2 MXene for Enhanced Electrochemical Energy Storage. J. Colloid Interface Sci. 2022, 614, 130–137. [Google Scholar] [CrossRef]
- Kumar, S.; Jain, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Kim, K.-H. Green Synthesis of Metal–Organic Frameworks: A State-of-the-Art Review of Potential Environmental and Medical Applications. Coord. Chem. Rev. 2020, 420, 213407. [Google Scholar] [CrossRef]
- Li, R.; Lou, Z.; Gu, S.; Wang, Q.; Liu, J.; Li, Y. Preparation of magnetic carbon with microwave absorption property using bamboo powder. J. For. Eng. 2021, 6, 112–120. [Google Scholar] [CrossRef]
- Zhou, X.; Han, H.; Wang, Y.; Zhang, C.; Lv, H.; Lou, Z. Silicon-Coated Fibrous Network of Carbon Nanotube/Iron towards Stable and Wideband Electromagnetic Wave Absorption. J. Mater. Sci. Technol. 2022, 121, 199–206. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, Q.; Zhou, X.; Kara, U.I.; Mamtani, R.S.; Lv, H.; Zhang, M.; Yang, Z.; Li, Y.; Wang, C.; et al. An Angle-Insensitive Electromagnetic Absorber Enabling a Wideband Absorption. J. Mater. Sci. Technol. 2022, 113, 33–39. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, Q.; Zhang, Y.; Zhou, X.; Li, R.; Liu, J.; Li, Y.; Lv, H. In-Situ Formation of Low-Dimensional, Magnetic Core-Shell Nanocrystal for Electromagnetic Dissipation. Compos. Part B 2021, 214, 108744. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, J.; Wang, X.; Li, W.; Wu, Y.; Jiang, Z. Biomass@MOF-Derived Carbon Aerogels with a Hierarchically Structured Surface for Treating Organic Pollutants. Ind. Eng. Chem. Res. 2020, 59, 17529–17536. [Google Scholar] [CrossRef]
- Bian, W.; Chen, J.; Chen, Y.; Xu, W.; Jia, J. A Novel Waste Paper Cellulose-Based Cu-MOF Hybrid Material Threaded by PSS for Lithium Extraction with High Adsorption Capacity and Selectivity. Cellulose 2021, 28, 3041–3054. [Google Scholar] [CrossRef]
- Sun, P.-P.; Li, Y.-M.; Zhang, Y.-H.; Shi, H.; Shi, F.-N. Preparation and Application of Ce-Cu Based Metal Organic Framework/Biomass Carbon Composites in Energy Storage. J. Alloys Compd. 2022, 896, 163081. [Google Scholar] [CrossRef]
- Imaz, I.; Rubio-Martínez, M.; An, J.; Solé-Font, I.; Rosi, N.L.; Maspoch, D. Metal–Biomolecule Frameworks (MBioFs). Chem. Commun. 2011, 47, 7287. [Google Scholar] [CrossRef]
- Zulys, A.; Yulia, F.; Muhadzib, N. Nasruddin Biological Metal–Organic Frameworks (Bio-MOFs) for CO2 Capture. Ind. Eng. Chem. Res. 2021, 60, 37–51. [Google Scholar] [CrossRef]
- Cai, H.; Huang, Y.-L.; Li, D. Biological Metal–Organic Frameworks: Structures, Host–Guest Chemistry and Bio-Applications. Coord. Chem. Rev. 2019, 378, 207–221. [Google Scholar] [CrossRef]
- Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; et al. Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Adv. Mater. 2018, 30, 1704303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishaq, S.; Tamime, R.; Bilad, M.R.; Khan, A.L. Mixed Matrix Membranes Comprising of Polysulfone and Microporous Bio-MOF-1: Preparation and Gas Separation Properties. Sep. Purif. Technol. 2019, 210, 442–451. [Google Scholar] [CrossRef]
- Zhang, R.; Lu, L.; Chang, Y.; Liu, M. Gas Sensing Based on Metal-Organic Frameworks: Concepts, Functions, and Developments. J. Hazard. Mater. 2022, 429, 128321. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Zhang, Q.; Pan, Z.; Li, L.; Li, C.; Ling, Y.; Wang, Z.; Chen, M.; Wang, Z.; Yao, Y.; et al. Freestanding Metal–Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion. Chem. Rev. 2022. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Zhang, H.; Mei, H.; Sun, D. Recent Progress in Metal-Organic Framework-Based Supercapacitor Electrode Materials. Coord. Chem. Rev. 2020, 420, 213438. [Google Scholar] [CrossRef]
- Zhao, G.; Fang, Y.; Dai, W.; Ma, N. Copper-Containing Porous Carbon Derived from MOF-199 for Dibenzothiophene Adsorption. RSC Adv. 2017, 7, 21649–21654. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Bai, X.; Liang, M.; Ma, J. Recent Progress on Metal-Organic Framework-Derived Porous Carbon and Its Composite for Pollutant Adsorption from Liquid Phase. Chem. Eng. J. 2021, 405, 126960. [Google Scholar] [CrossRef]
- Zhou, X.; Han, H.; Yan, H.; Wang, Y.; Zhang, C.; Lv, H.; Lou, Z. Multi-Interface Self-Assembling on MXenes Skeleton towards Wideband Electromagnetic Dissipation. Mater. Today Phys. 2022, 24, 100685. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, F.; Xiang, Z.; Shen, Z.; Yun, J.; Cao, D. ZIF-Derived in Situ Nitrogen-Doped Porous Carbons as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction. Energy Environ. Sci. 2013, 7, 442–450. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Liang, Y.; Zhou, J.; Liu, L.; Huang, S.; Cai, J. Nitrogen-Doped Carbons from in-Situ Glucose-Coated ZIF-8 as Efficient Adsorbents for Rhodamine B Removal from Wastewater. Microporous Mesoporous Mater. 2021, 310, 110662. [Google Scholar] [CrossRef]
- Tong, R.; Ning, L.; Li, H.; Zhang, Z.; Gu, W.; Liu, X. Snake-like ZnO Nanorods Encapsulated by Carbon Shell Self-Assembled on the Porous N-Doped Carbon Nanocages with Co3O4 and ZnO Nanoparticles Embedded for Superior Lithium Storage. Electrochim. Acta 2020, 359, 136924. [Google Scholar] [CrossRef]
- Revathi, T.; Thambidurai, S. Immobilization of ZnO on Chitosan-Neem Seed Composite for Enhanced Thermal and Antibacterial Activity. Adv. Powder Technol. 2018, 29, 1445–1454. [Google Scholar] [CrossRef]
- Jayaramulu, K.; Datta, K.K.R.; Shiva, K.; Bhattacharyya, A.J.; Eswaramoorthy, M.; Maji, T.K. Controlled Synthesis of Tunable Nanoporous Carbons for Gas Storage and Supercapacitor Application. Microporous Mesoporous Mater. 2015, 206, 127–135. [Google Scholar] [CrossRef]
- Musarurwa, H.; Tavengwa, N.T. Advances in the Application of Chitosan-Based Metal Organic Frameworks as Adsorbents for Environmental Remediation. Carbohydr. Polym. 2022, 283, 119153. [Google Scholar] [CrossRef]
- Nadar, S.S.; Vaidya, L.; Maurya, S.; Rathod, V.K. Polysaccharide Based Metal Organic Frameworks (Polysaccharide–MOF): A Review. Coord. Chem. Rev. 2019, 396, 1–21. [Google Scholar] [CrossRef]
- Saheed, I.O.; Oh, W.D.; Suah, F.B.M. Chitosan Modifications for Adsorption of Pollutants–A Review. J. Hazard. Mater. 2021, 408, 124889. [Google Scholar] [CrossRef]
- Zhuo, N.; Lan, Y.; Yang, W.; Yang, Z.; Li, X.; Zhou, X.; Liu, Y.; Shen, J.; Zhang, X. Adsorption of Three Selected Pharmaceuticals and Personal Care Products (PPCPs) onto MIL-101(Cr)/Natural Polymer Composite Beads. Sep. Purif. Technol. 2017, 177, 272–280. [Google Scholar] [CrossRef]
- Jamshidifard, S.; Koushkbaghi, S.; Hosseini, S.; Rezaei, S.; Karamipour, A.; Jafari rad, A.; Irani, M. Incorporation of UiO-66-NH2 MOF into the PAN/Chitosan Nanofibers for Adsorption and Membrane Filtration of Pb(II), Cd(II) and Cr(VI) Ions from Aqueous Solutions. J. Hazard. Mater. 2019, 368, 10–20. [Google Scholar] [CrossRef]
- Zhao, R.; Ma, T.; Zhao, S.; Rong, H.; Tian, Y.; Zhu, G. Uniform and Stable Immobilization of Metal-Organic Frameworks into Chitosan Matrix for Enhanced Tetracycline Removal from Water. Chem. Eng. J. 2020, 382, 122893. [Google Scholar] [CrossRef]
- Saeed, T.; Naeem, A.; Din, I.U.; Farooq, M.; Khan, I.W.; Hamayun, M.; Malik, T. Synthesis of Chitosan Composite of Metal-Organic Framework for the Adsorption of Dyes; Kinetic and Thermodynamic Approach. J. Hazard. Mater. 2022, 427, 127902. [Google Scholar] [CrossRef]
- Xiong, N.; Wan, P.; Zhu, G.; Xie, F.; Xu, S.; Zhu, C.; Hursthouse, A.S. Sb(III) Removal from Aqueous Solution by a Novel Nano-Modified Chitosan (NMCS). Sep. Purif. Technol. 2020, 236, 116266. [Google Scholar] [CrossRef]
- Ummartyotin, S.; Manuspiya, H. A Critical Review on Cellulose: From Fundamental to an Approach on Sensor Technology. Renew. Sustain. Energy Rev. 2015, 41, 402–412. [Google Scholar] [CrossRef]
- Joseph, B.; K, S.V.; Sabu, C.; Kalarikkal, N.; Thomas, S. Cellulose Nanocomposites: Fabrication and Biomedical Applications. J. Bioresour. Bioprod. 2020, 5, 223–237. [Google Scholar] [CrossRef]
- Tanpichai, S.; Boonmahitthisud, A.; Soykeabkaew, N.; Ongthip, L. Review of the Recent Developments in All-Cellulose Nanocomposites: Properties and Applications. Carbohydr. Polym. 2022, 286, 119192. [Google Scholar] [CrossRef]
- El Hankari, S.; Bousmina, M.; El Kadib, A. Biopolymer@Metal-Organic Framework Hybrid Materials: A Critical Survey. Prog. Mater. Sci. 2019, 106, 100579. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Abdel-Gawad, H.; Elshahat, M.; Emam, H.E. Cu–BTC@cotton Composite: Design and Removal of Ethion Insecticide from Water. RSC Adv. 2016, 6, 42324–42333. [Google Scholar] [CrossRef]
- Yuan, M.; Fei, Y.; Zhang, H.; Qiu, B.; Shen, L.; He, X.; Liang, M.; Zhou, S.; Chen, Y.; Zou, H. Electromagnetic Asymmetric Films Comprise Metal Organic Frameworks Derived Porous Carbon for Absorption-Dominated Electromagnetic Interference Shielding. Compos. Part B 2022, 233, 109622. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Rehan, M.; Emam, H.E. Figuration of Zr-Based MOF@cotton Fabric Composite for Potential Kidney Application. Carbohydr. Polym. 2018, 195, 460–467. [Google Scholar] [CrossRef]
- Neufeld, M.J.; Harding, J.L.; Reynolds, M.M. Immobilization of Metal–Organic Framework Copper(II) Benzene-1,3,5-Tricarboxylate (CuBTC) onto Cotton Fabric as a Nitric Oxide Release Catalyst. ACS Appl. Mater. Interfaces 2015, 7, 26742–26750. [Google Scholar] [CrossRef]
- Burgert, I.; Cabane, E.; Zollfrank, C.; Berglund, L. Bio-Inspired Functional Wood-Based Materials–Hybrids and Replicates. Int. Mater. Rev. 2015, 60, 431–450. [Google Scholar] [CrossRef]
- Zhu, H.; Luo, W.; Ciesielski, P.N.; Fang, Z.; Zhu, J.Y.; Henriksson, G.; Himmel, M.E.; Hu, L. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chem. Rev. 2016, 116, 9305–9374. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Yuan, T.; Wang, Q.; Wu, X.; Hu, S.; Hao, X.; Liu, X.; Li, Y. Fabrication of Crack-Free Flattened Bamboo and Its Macro-/MicroMorphological and Mechanical Properties. J. Renew. Mater. 2021, 9, 959. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, I.K.M.; Tsang, D.C.W.; Cao, X.; Lin, D.; Wang, L.; Graham, N.J.D.; Alessi, D.S.; Komárek, M.; Ok, Y.S.; et al. Multifunctional Iron-Biochar Composites for the Removal of Potentially Toxic Elements, Inherent Cations, and Hetero-Chloride from Hydraulic Fracturing Wastewater. Environ. Int. 2019, 124, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Seow, J.Z.Y.; Zhao, H.; Xu, Z.J.; Ji, G. A Flexible and Lightweight Biomass-Reinforced Microwave Absorber. Nano-Micro Lett. 2020, 12, 125. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Wang, Q.; Kara, U.I.; Mamtani, R.S.; Zhou, X.; Bian, H.; Yang, Z.; Li, Y.; Lv, H.; Adera, S.; et al. Biomass-Derived Carbon Heterostructures Enable Environmentally Adaptive Wideband Electromagnetic Wave Absorbers. Nano-Micro Lett. 2021, 14, 11. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, Q.; Sun, W.; Liu, J.; Yan, H.; Han, H.; Bian, H.; Li, Y. Regulating Lignin Content to Obtain Excellent Bamboo-Derived Electromagnetic Wave Absorber with Thermal Stability. Chem. Eng. J. 2022, 430, 133178. [Google Scholar] [CrossRef]
- Lou, Z.; Han, X.; Liu, J.; Ma, Q.; Yan, H.; Yuan, C.; Yang, L.; Han, H.; Weng, F.; Li, Y. Nano-Fe3O4/Bamboo Bundles/Phenolic Resin Oriented Recombination Ternary Composite with Enhanced Multiple Functions. Compos. Part B 2021, 226, 109335. [Google Scholar] [CrossRef]
- Tu, K.; Puértolas, B.; Adobes-Vidal, M.; Wang, Y.; Sun, J.; Traber, J.; Burgert, I.; Pérez-Ramírez, J.; Keplinger, T. Green Synthesis of Hierarchical Metal–Organic Framework/Wood Functional Composites with Superior Mechanical Properties. Adv. Sci. 2020, 7, 1902897. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Zhang, M.; Nie, J.; Tan, J.; Yang, B.; Song, S. Design of Double-Component Metal–Organic Framework Air Filters with PM2.5 Capture, Gas Adsorption and Antibacterial Capacities. Carbohydr. Polym. 2019, 203, 415–422. [Google Scholar] [CrossRef]
- Zhao, H.; Miao, Q.; Huang, L.; Zhou, X.; Chen, L. Preparation of long bamboo fiber and its reinforced polypropylene membrane composites. J. For. Eng. 2021, 6, 96–103. [Google Scholar] [CrossRef]
- Guo, R.; Cai, X.; Liu, H.; Yang, Z.; Meng, Y.; Chen, F.; Li, Y.; Wang, B. In Situ Growth of Metal–Organic Frameworks in Three-Dimensional Aligned Lumen Arrays of Wood for Rapid and Highly Efficient Organic Pollutant Removal. Environ. Sci. Technol. 2019, 53, 2705–2712. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lou, Z. Progress of bamboo flatten technology research. J. For. Eng. 2021, 6, 14–23. [Google Scholar] [CrossRef]
- Su, M.; Zhang, R.; Li, H.; Jin, X.; Li, J.; Yue, X.; Qin, D. In Situ Deposition of MOF199 onto Hierarchical Structures of Bamboo and Wood and Their Antibacterial Properties. RSC Adv. 2019, 9, 40277–40285. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, X.; Wang, L.; Wei, Y.; Zhao, Z.; Du, K.; Chen, D.; Li, X.; Zhou, C.; Liu, G.; et al. ZIF-67-Derived Co@N-PC Anchored on Tracheid Skeleton from Sawdust with Micro/Nano Composite Structures for Boosted Methylene Blue Degradation. Sep. Purif. Technol. 2021, 278, 119489. [Google Scholar] [CrossRef]
- Su, M.; Zhang, R.; Li, J.; Jin, X.; Zhang, X.; Qin, D. Tailoring Growth of MOF199 on Hierarchical Surface of Bamboo and Its Antibacterial Property. Cellulose 2021, 28, 11713–11727. [Google Scholar] [CrossRef]
- Sadiq, M.M.; Suzuki, K.; Hill, M.R. Towards Energy Efficient Separations with Metal Organic Frameworks. Chem. Commun. 2018, 54, 2825–2837. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Huang, G.; Li, H.; Hill, M.R. Magnetic Metal–Organic Framework Composites: Solvent-Free Synthesis and Regeneration Driven by Localized Magnetic Induction Heat. ACS Sustain. Chem. Eng. 2019, 7, 13627–13632. [Google Scholar] [CrossRef]
- Huang, G.; Huang, C.; Tao, Y.; Li, H. Localized Heating Driven Selective Growth of Metal-Organic Frameworks (MOFs) in Wood: A Novel Synthetic Strategy for Significantly Enhancing MOF Loadings in Wood. Appl. Surf. Sci. 2021, 564, 150325. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Guo, X.; Liu, Y.; Zheng, Y.; Zhang, M.; Li, R.; Peng, Z.; Xie, H.; Zhao, Y. Graphene-Carbon Nanotube @ Cobalt Derivatives from ZIF-67 for All-Solid-State Asymmetric Supercapacitor. Appl. Surf. Sci. 2021, 568, 150929. [Google Scholar] [CrossRef]
- Obey, G.; Adelaide, M.; Ramaraj, R. Derived from Non-Customized Matamba Fruit Shell as an Adsorbent for Wastewater Treatment. J. Bioresour. Bioprod. 2021, 7, 109–115. [Google Scholar] [CrossRef]
- Ren, S.; Yu, H.; Wang, L.; Huang, Z.; Lin, T.; Huang, Y.; Yang, J.; Hong, Y.; Liu, J. State of the Art and Prospects in Metal-Organic Framework-Derived Microwave Absorption Materials. Nano-Micro Lett. 2022, 14, 68. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.-C.; Yang, X.-Y.; Zhang, X.-R.; Huang, X.-Y.; Cao, M.-S.; Li, L.; Yang, H.-J.; Cao, W.-Q. Tailoring MOF-Based Materials to Tune Electromagnetic Property for Great Microwave Absorbers and Devices. Carbon 2020, 162, 157–171. [Google Scholar] [CrossRef]
- Zhao, H.; Cheng, Y.; Liu, W.; Yang, L.; Zhang, B.; Wang, L.P.; Ji, G.; Xu, Z.J. Biomass-Derived Porous Carbon-Based Nanostructures for Microwave Absorption. Nano-Micro Lett. 2019, 11, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, H.; Wang, Q.; Wu, X.; Pang, J.; Jiang, Z.; Chen, G.; Dong, C.; Wang, L.; Gong, C. Biomass Derived Porous Carbon (BPC) and Their Composites as Lightweight and Efficient Microwave Absorption Materials. Compos. Part B 2021, 207, 108562. [Google Scholar] [CrossRef]
- Di, X.; Wang, Y.; Lu, Z.; Cheng, R.; Yang, L.; Wu, X. Heterostructure Design of Ni/C/Porous Carbon Nanosheet Composite for Enhancing the Electromagnetic Wave Absorption. Carbon 2021, 179, 566–578. [Google Scholar] [CrossRef]
- Yang, M.; Yuan, Y.; Li, Y.; Sun, X.; Wang, S.; Liang, L.; Ning, Y.; Li, J.; Yin, W.; Che, R.; et al. Dramatically Enhanced Electromagnetic Wave Absorption of Hierarchical CNT/Co/C Fiber Derived from Cotton and Metal-Organic-Framework. Carbon 2020, 161, 517–527. [Google Scholar] [CrossRef]
- Anderson, S.L.; Stylianou, K.C. Biologically Derived Metal Organic Frameworks. Coord. Chem. Rev. 2017, 349, 102–128. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Yan, J.; Huang, Y.; Liu, X.; Ding, L.; Zong, M.; Liu, P.; Li, T. Magnetic Porous CoNi@C Derived from Bamboo Fiber Combined with Metal-Organic-Framework for Enhanced Electromagnetic Wave Absorption. J. Colloid Interface Sci. 2021, 595, 78–87. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, W.; Ni, C.; Yan, S.; Yu, L.; Li, X. “Tree Blossom” Ni/NC/C Composites as High-Efficiency Microwave Absorbents. Chem. Eng. J. 2022, 430, 132621. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, L.; Yang, C.; Sun, Q.; Xu, X. Implanting FeCo/C Nanocages with Tunable Electromagnetic Parameters in Anisotropic Wood Carbon Aerogels for Efficient icrowave Absorption. J. Mater. Chem. A 2020, 8, 18863–18871. [Google Scholar] [CrossRef]
- Xue, H.; Wang, X.; Xu, Q.; Dhaouadi, F.; Sellaoui, L.; Seliem, M.K.; Lamine, A.B.; Belmabrouk, H.; Bajahzar, A.; Bonilla-Petriciolet, A.; et al. Adsorption of Methylene Blue from Aqueous Solution on Activated Carbons and Composite Prepared from an Agricultural Waste Biomass: A Comparative Study by Experimental and Advanced Modeling Analysis. Chem. Eng. J. 2022, 430, 132801. [Google Scholar] [CrossRef]
- Chen, J.; Lv, H.; Bai, X.; Liu, Z.; He, L.; Wang, J.; Zhang, Y.; Sun, B.; Kan, K.; Shi, K. Synthesis of Hierarchically Porous Co3O4/Biomass Carbon Composites Derived from MOFs and Their Highly NO2 Gas Sensing Performance. Microporous Mesoporous Mater. 2021, 321, 111108. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, M.; Getachew, N.; Díaz, K.; Díaz-García, M.; Chebude, Y.; Díaz, I. Synthesis of Metal–Organic Frameworks in Water at Room Temperature: Salts as Linker Sources. Green Chem. 2015, 17, 1500–1509. [Google Scholar] [CrossRef]
- Xiao, X.; Zhu, W.; Tan, Z.; Tian, W.; Guo, Y.; Wang, H.; Fu, J.; Jian, X. Ultra-Small Co/CNTs Nanohybrid from Metal Organic Framework with Highly Efficient Microwave Absorption. Compos. Part B 2018, 152, 316–323. [Google Scholar] [CrossRef]
- Kathalikkattil, A.C.; Babu, R.; Roshan, R.K.; Lee, H.; Kim, H.; Tharun, J.; Suresh, E.; Park, D.-W. An Lcy-Topology Amino Acid MOF as Eco-Friendly Catalyst for Cyclic Carbonate Synthesis from CO2: Structure-DFT Corroborated Study. J. Mater. Chem. A 2015, 3, 22636–22647. [Google Scholar] [CrossRef]
- Stylianou, K.C.; Gómez, L.; Imaz, I.; Verdugo-Escamilla, C.; Ribas, X.; Maspoch, D. Engineering Homochiral Metal-Organic Frameworks by Spatially Separating 1D Chiral Metal-Peptide Ladders: Tuning the Pore Size for Enantioselective Adsorption. Chem. Eur. J. 2015, 21, 9964–9969. [Google Scholar] [CrossRef]
- Rabone, J.; Yue, Y.-F.; Chong, S.Y.; Stylianou, K.C.; Bacsa, J.; Bradshaw, D.; Darling, G.R.; Berry, N.G.; Khimyak, Y.Z.; Ganin, A.Y.; et al. An Adaptable Peptide-Based Porous Material. Science 2010, 329, 1053–1057. [Google Scholar] [CrossRef]
- Martí-Gastaldo, C.; Warren, J.E.; Stylianou, K.C.; Flack, N.L.O.; Rosseinsky, M.J. Enhanced Stability in Rigid Peptide-Based Porous Materials. Angew. Chem. Int. Ed. 2012, 51, 11044–11048. [Google Scholar] [CrossRef]
- An, J.; Geib, S.J.; Rosi, N.L. Cation-Triggered Drug Release from a Porous Zinc-Adeninate Metal-Organic Framework. J. Am. Chem. Soc. 2009, 131, 8376–8377. [Google Scholar] [CrossRef]
- An, J.; Farha, O.K.; Hupp, J.T.; Pohl, E.; Yeh, J.I.; Rosi, N.L. Metal-Adeninate Vertices for the Construction of an Exceptionally Porous Metal-Organic Framework. Nat. Commun. 2012, 3, 604. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Zou, C.; Da, C.; Cao, Y.; Peng, H. A Review on the Recent Development of Cyclodextrin-Based Materials Used in Oilfield Applications. Carbohydr. Polym. 2020, 240, 116321. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; You, C.; Xiong, R.; Wang, F. Research progress of natural polysaccharide in the application of biomedical materials. J. For. Eng. 2021, 6, 1–8. [Google Scholar] [CrossRef]
- Smaldone, R.A.; Forgan, R.S.; Furukawa, H.; Gassensmith, J.J.; Slawin, A.M.Z.; Yaghi, O.M.; Stoddart, J.F. Metal-Organic Frameworks from Edible Natural Products. Angew. Chem. Int. Ed. 2010, 49, 8630–8634. [Google Scholar] [CrossRef] [PubMed]
- Keykhaee, M.; Razaghi, M.; Dalvand, A.; Salehian, F.; Soleimani, H.; Samzadeh-Kermani, A.; Shamsollahi, H.R.; Foroumadi, A.; Ramazani, A.; Khoobi, M.; et al. Magnetic Carnosine-Based Metal-Organic Framework Nanoparticles: Fabrication, Characterization and Application as Arsenic Adsorbent. J. Environ. Health Sci. Eng. 2020, 18, 1163–1174. [Google Scholar] [CrossRef]
- Mugaka, B.P.; Zhang, S.; Li, R.-Q.; Ma, Y.; Wang, B.; Hong, J.; Hu, Y.-H.; Ding, Y.; Xia, X.-H. One-Pot Preparation of Peptide-Doped Metal–Amino Acid Framework for General Encapsulation and Targeted Delivery. ACS Appl. Mater. Interfaces 2021, 13, 11195–11204. [Google Scholar] [CrossRef]
- Gładysiak, A.; Nguyen, T.N.; Anderson, S.L.; Boyd, P.G.; Palgrave, R.G.; Bacsa, J.; Smit, B.; Rosseinsky, M.J.; Stylianou, K.C. Shedding Light on the Protonation States and Location of Protonated N Atoms of Adenine in Metal–Organic Frameworks. Inorg. Chem. 2018, 57, 1888–1900. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Liu, J.; Liu, J.; Dong, L.; Xin, Z.; Teng, Y.; Lan, Y. Adenine Components in Biomimetic Metal–Organic Frameworks for Efficient CO2 Photoconversion. Angew. Chem. Int. Ed. 2019, 58, 5226–5231. [Google Scholar] [CrossRef]
- He, Y.; Hou, X.; Guo, J.; He, Z.; Guo, T.; Liu, Y.; Zhang, Y.; Zhang, J.; Feng, N. Activation of a Gamma–Cyclodextrin–Based Metal–Organic Framework Using Supercritical Carbon Dioxide for High–Efficient Delivery of Honokiol. Carbohydr. Polym. 2020, 235, 115935. [Google Scholar] [CrossRef]
- Hajra, S.; Sahu, M.; Padhan, A.M.; Lee, I.S.; Yi, D.K.; Alagarsamy, P.; Nanda, S.S.; Kim, H.J. A Green Metal–Organic Framework-Cyclodextrin MOF: A Novel Multifunctional Material Based Triboelectric Nanogenerator for Highly Efficient Mechanical Energy Harvesting. Adv. Funct. Mater. 2021, 31, 2101829. [Google Scholar] [CrossRef]
- Son, H.-J.; Jin, S.; Patwardhan, S.; Wezenberg, S.J.; Jeong, N.C.; So, M.; Wilmer, C.E.; Sarjeant, A.A.; Schatz, G.C.; Snurr, R.Q.; et al. Light-Harvesting and Ultrafast Energy Migration in Porphyrin-Based Metal–Organic Frameworks. J. Am. Chem. Soc. 2013, 135, 862–869. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Mukherjee, S.; Warnan, J.; Li, W.; Wannapaiboon, S.; Hou, S.; Rodewald, K.; Rieger, B.; Weidler, P.G.; Wöll, C.; et al. Porphyrin Based Metal–Organic Framework Films: Nucleation and Growth. J. Mater. Chem. A 2020, 8, 25941–25950. [Google Scholar] [CrossRef]
- Jung, S.; Kim, Y.; Kim, S.-J.; Kwon, T.-H.; Huh, S.; Park, S. Bio-Functionalization of Metal–Organic Frameworks by Covalent Protein Conjugation. Chem. Commun. 2011, 47, 2904–2906. [Google Scholar] [CrossRef] [PubMed]
- Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J.V.; Hu, P.; Hsu, M.-H.; Wu, K.C.-W.; et al. Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. J. Am. Chem. Soc. 2015, 137, 4276–4279. [Google Scholar] [CrossRef] [PubMed]
- Ban, J.; Xu, G.; Zhang, L.; Xu, G.; Yang, L.; Sun, Z.; Jia, D. Efficient Co–N/PC@CNT Bifunctional Electrocatalytic Materials for Oxygen Reduction and Oxygen Evolution Reactions Based on Metal–Organic Frameworks. Nanoscale 2018, 10, 9077–9086. [Google Scholar] [CrossRef]
- Meng, J.; Niu, C.; Xu, L.; Li, J.; Liu, X.; Wang, X.; Wu, Y.; Xu, X.; Chen, W.; Li, Q.; et al. General Oriented Formation of Carbon Nanotubes from Metal–Organic Frameworks. J. Am. Chem. Soc. 2017, 139, 8212–8221. [Google Scholar] [CrossRef]
- Yan, J.; Huang, Y.; Han, X.; Gao, X.; Liu, P. Metal Organic Framework (ZIF-67)-Derived Hollow CoS2/N-Doped Carbon Nanotube Composites for Extraordinary Electromagnetic Wave Absorption. Compos. Part B 2019, 163, 67–76. [Google Scholar] [CrossRef]
- Liu, W.; Ning, L.-M.; Li, S.-Q.; Liu, W.-X.; Zhang, Q.; Shao, J.; Tian, J.-L. N-Rich MOFs Derived N-Doped Carbon Nanotubes Encapsulating Cobalt Nanoparticles as Efficient and Magnetic Recoverable Catalysts for Nitro Aromatics Reduction. J. Alloys Compd. 2021, 862, 158333. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Jhung, S.H. Adsorptive Removal of Wide Range of Pharmaceuticals and Personal Care Products from Water Using Bio-MOF-1 Derived Porous Carbon. Microporous Mesoporous Mater. 2018, 270, 102–108. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Lee, J.K.; Cho, C.-W.; Jhung, S.H. Remarkably Efficient Adsorbent for the Removal of Bisphenol A from Water: Bio-MOF-1-Derived Porous Carbon. Chem. Eng. J. 2018, 343, 225–234. [Google Scholar] [CrossRef]
- Yang, L.; Xu, G.; Ban, J.; Zhang, L.; Xu, G.; Lv, Y.; Jia, D. Metal-Organic Framework-Derived Metal-Free Highly Graphitized Nitrogen-Doped Porous Carbon with a Hierarchical Porous Structure as an Efficient and Stable Electrocatalyst for Oxygen Reduction Reaction. J. Colloid Interface Sci. 2019, 535, 415–424. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, Y.; Mu, S.; Wang, Y.; Jiang, C.; Liu, Q.; Fang, Q.; Xue, M.; Qiu, S. Cation Exchanged MOF-Derived Nitrogen-Doped Porous Carbons for CO2 Capture and Supercapacitor Electrode Materials. J. Mater. Chem. A 2017, 5, 9544–9552. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, H.; Cheng, Y.; Bai, X.; Wen, B.; Lin, Y. Constructing a Nitrogen-Doped Carbon and Nickel Composite Derived from a Mixed Ligand Nickel-Based a Metal–Organic Framework toward Adjustable Microwave Absorption. Nanoscale 2021, 13, 9204–9216. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wen, B.; Wang, L. Carbon Nanotubes Modified CoZn/C Composites with Rambutan-like Applied to Electromagnetic Wave Absorption. Appl. Surf. Sci. 2020, 509, 145336. [Google Scholar] [CrossRef]
- Pan, J.; Xia, W.; Sun, X.; Wang, T.; Li, J.; Sheng, L.; He, J. Improvement of Interfacial Polarization and Impedance Matching for Two-Dimensional Leaf-like Bimetallic (Co, Zn) Doped Porous Carbon Nanocomposites with Broadband Microwave Absorption. Appl. Surf. Sci. 2020, 512, 144894. [Google Scholar] [CrossRef]
Bioligands | Characteristics | Representative Molecules | Metal Ion | Case |
---|---|---|---|---|
Amino acids | ―Metal binding sites containing carboxylic (COO-) and amino (H3N+) groups ―Chains with hydrophobic (nonpolar) and hydrophilic (polar) ends ―Inherent chirality ―Low dimensionality (additional organic ligands or bridging anions usually required to increase dimensionality) | ―L-Glutamic acid ―1,3-Benzene dicarboxylate ―L-Aspartate acid ―L-Tryptophan | Zn2+ Co2+ | [96,97] |
Peptides | ―Short amino acid chains with reactive groups ―Inherent chirality ―React appropriately with metal ions, are flexible and exhibit dynamic responses for guest diffusion ―Can covalently bond with linkers through different coordination configurations ―Flexible | ―Carnosine ―Gly-L-Phe ―Fmoc-His-Asp-Gly-Arg | Zn2+ | [106,107] |
Nucleobases | ―Key constituents of nucleic acids ―Self-assembling capability including purines and pyrimidines ―Accessible lone electron pairs on nitrogen and oxygen atoms to act as multidentate ligands ―Sometimes coupled with auxiliary ligands, e.g., carboxylic acid ―Diverse interactions (π–π stacking, coordinate bonding and hydrogen bonding) | ―Adenine ―Guanine | Zn2+ Ni+ Cu2+ | [108,109] |
Saccharides | ―Include monosaccharides, disaccharides, oligosaccharides and polysaccharides ―Still rare; become the binding modes of bio-MOFs ―Present in many fruits, vegetables and mammals | ―α-Cyclodextrin ―β-Cyclodextrin ―γ-Cyclodextrin | K+ Na+ | [110,111] |
Porphyrins | ―Four modified subunits connected by α-carbons ―Some metal ions, such as Al (Ⅲ), Fe (Ⅱ), Zn (Ⅱ), Co (Ⅱ) and Cd (Ⅱ), have been constructed with this ligand | ―Dipyridyl porphyrin ―Tetrakis (4-carboxylphenyl) porphyrin | Fe3+ Zn2+ | [112,113] |
Proteins | ―Long amino acid sequences ―Complex, flexible, difficult to control ―Bind to metal ions at specific positions ―Chemically and structurally diverse | ―Fluorescent protein ―Catalase | In3+ Zn2+ | [114,115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Li, Y.; Lou, Z. Recent Advancements in MOF/Biomass and Bio-MOF Multifunctional Materials: A Review. Sustainability 2022, 14, 5768. https://doi.org/10.3390/su14105768
Liu J, Li Y, Lou Z. Recent Advancements in MOF/Biomass and Bio-MOF Multifunctional Materials: A Review. Sustainability. 2022; 14(10):5768. https://doi.org/10.3390/su14105768
Chicago/Turabian StyleLiu, Jie, Yanjun Li, and Zhichao Lou. 2022. "Recent Advancements in MOF/Biomass and Bio-MOF Multifunctional Materials: A Review" Sustainability 14, no. 10: 5768. https://doi.org/10.3390/su14105768
APA StyleLiu, J., Li, Y., & Lou, Z. (2022). Recent Advancements in MOF/Biomass and Bio-MOF Multifunctional Materials: A Review. Sustainability, 14(10), 5768. https://doi.org/10.3390/su14105768