Applicability of Structure-from-Motion Photogrammetry on Forest Measurement in the Northern Ethiopian Highlands
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Measurements
2.3. Structure from Motion (SfM)
2.4. ANOVA
3. Results and Discussion
3.1. Three-Dimensional Tree Structure
3.2. Characteristics of Tree Structure
3.3. Forest Management in the Highlands
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bishaw, B. Deforestation and land degredation in the Ethiopian highlands: A strategy for physical recovery. Northeast Afr. Stud. 2001, 8, 7–25. [Google Scholar] [CrossRef]
- Lemenih, M.; Karltun, E.; Olsson, M. Soil organic matter dynamics after deforestation along a farm field chronosequence in southern highlands of Ethiopia. Agric. Ecosyst. Environ. 2005, 109, 9–19. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Drivers of land use/land cover changes in Munessa-Shashemene landscape of the south-central highlands of Ethiopia. Environ. Monit. Assess. 2015, 187. [Google Scholar] [CrossRef] [PubMed]
- Solomon, N.; Hishe, H.; Annang, T.; Pabi, O.; Asante, I.K.; Birhane, E. Forest cover change, key drivers and community perception in Wujig Mahgo Waren forest of northern Ethiopia. Land 2018, 7, 32. [Google Scholar] [CrossRef]
- Gebreselassie, S.; Kirui, O.K.; Mirzabaev, A. Economics of land degradation and improvement in Ethiopia. In Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; Nkonya, E., Mirzabaev, A., von Braun, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 401–430. ISBN 978-3-319-19168-3. [Google Scholar]
- Hurni, H. Degradation and conservation of the resources in the Ethiopian highlands. Mt. Res. Dev. 1988, 8, 123–130. [Google Scholar] [CrossRef]
- FAO. Etiopian Highlands Reclamation Study; Ethiopia final report; Food and Agriculture Organization of the United Nations: Roma, Italy, 1986; Volume 2, Available online: http://www.fao.org/3/ar864e/ar864e.pdf (accessed on 1 April 2021).
- Wood, A. Natural resource management and rural development in Ethiopia. In Ethiopia: Rural Development Options; Pausewang, S., Cheru, F., Bruene, S., Chole, E., Eds.; Zed Books: London, UK, 2010; pp. 187–195. [Google Scholar]
- Teketay, D. Deforestation, wood famine, and environmental degradation in Ethiopia’s highland ecosystems: Urgent need for action. Northeast Afr. Stud. 2001, 8, 53–76. [Google Scholar] [CrossRef]
- Yami, M.; Gebrehiwot, K.; Stein, M.; Mekuria, W. Impact of area enclosures on density and diversity of large wild mammals: The case of May Ba’ti, Douga Tembien District, Central Tigray, Ethiopia. East Afr. J. Sci. 2007, 1, 55–68. [Google Scholar] [CrossRef]
- Woldu, G.; Solomon, N.; Hishe, H.; Gebrewahid, H.; Gebremedhin, M.A.; Birhane, E. Topographic variables to determine the diversity of woody species in the exclosure of Northern Ethiopia. Heliyon 2020, 6, e03121. [Google Scholar] [CrossRef]
- Takahashi, K.; Homma, K.; Vetrova, V.P.; Florenzev, S.; Hara, T. Stand structure and regeneration in a Kamchatka mixed boreal forest. J. Veg. Sci. 2001, 12, 627–634. [Google Scholar] [CrossRef]
- Hou, J.H.; Mi, X.C.; Liu, C.R.; Ma, K.P. Spatial patterns and associations in a Quercus-Betula forest in northern China. J. Veg. Sci. 2004, 15, 407–414. [Google Scholar] [CrossRef]
- Teketay, D. Seed and regeneration ecology in dry Afromontane forests of Ethiopia: I. seed production—Population structures. Trop. Ecol. 2005, 46, 29–44. [Google Scholar]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote sensing technologies for enhancing forest inventories: A review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef]
- Lausch, A.; Erasmi, S.; King, D.J.; Magdon, P.; Heurich, M. Understanding forest health with remote sensing-Part II-a review of approaches and data models. Remote Sens. 2017, 9, 129. [Google Scholar] [CrossRef]
- Mitchell, A.L.; Rosenqvist, A.; Mora, B. Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+. Carbon Balance Manag. 2017, 12. [Google Scholar] [CrossRef]
- Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can. J. Remote Sens. 2003, 29, 564–577. [Google Scholar] [CrossRef]
- Côté, J.F.; Widlowski, J.L.; Fournier, R.A.; Verstraete, M.M. The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar. Remote Sens. Environ. 2009, 113, 1067–1081. [Google Scholar] [CrossRef]
- Takahashi, T.; Awaya, Y.; Hirata, Y.; Furuya, N.; Sakai, T.; Sakai, A. Stand volume estimation by combining low laser-sampling density LiDAR data with QuickBird panchromatic imagery in closed-canopy Japanese cedar (Cryptomeria japonica) plantations. Int. J. Remote Sens. 2010, 31, 1281–1301. [Google Scholar] [CrossRef]
- Itakura, K.; Hosoi, F. Estimation of leaf inclination angle in three-dimensional plant images obtained from lidar. Remote Sens. 2019, 11, 344. [Google Scholar] [CrossRef]
- Guerra-Hernández, J.; González-Ferreiro, E.; Monleón, V.J.; Faias, S.P.; Tomé, M.; Díaz-Varela, R.A. Use of multi-temporal UAV-derived imagery for estimating individual tree growth in Pinus pinea stands. Forests 2017, 8, 300. [Google Scholar] [CrossRef]
- Mlambo, R.; Woodhouse, I.H.; Gerard, F.; Anderson, K. Structure from Motion (SfM) photogrammetry with drone data: A low cost method for monitoring greenhouse gas emissions from forests in developing countries. Forests 2017, 8, 68. [Google Scholar] [CrossRef]
- Bauwens, S.; Fayolle, A.; Gourlet-Fleury, S.; Ndjele, L.M.; Mengal, C.; Lejeune, P. Terrestrial photogrammetry: A non-destructive method for modelling irregularly shaped tropical tree trunks. Methods Ecol. Evol. 2017, 8, 460–471. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion photogrammetry in forestry: A review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef]
- Birhane, E.; Mengistu, T.; Seyoum, Y.; Hagazi, N.; Putzel, L.; Rannestad, M.M.; Kassa, H. Exclosures as forest and landscape restoration tools: Lessons from Tigray region, Ethiopia. Int. For. Rev. 2017, 19, 37–50. [Google Scholar] [CrossRef]
- Ubuy, M.H.; Eid, T.; Bollandsås, O.M.; Birhane, E. Aboveground biomass models for trees and shrubs of exclosures in the drylands of Tigray, northern Ethiopia. J. Arid Environ. 2018, 156, 9–18. [Google Scholar] [CrossRef]
- Larjavaara, M.; Muller-Landau, H.C. Measuring tree height: A quantitative comparison of two common field methods in a moist tropical forest. Methods Ecol. Evol. 2013, 4, 793–801. [Google Scholar] [CrossRef]
- Persson, A.; Holmgren, J.; Soderman, U. Detecting and measuring individual trees using an airborne laser scanner. Photogramm. Eng. Remote Sens. 2002, 68, 925–932. [Google Scholar]
- Sibona, E.; Vitali, A.; Meloni, F.; Caffo, L.; Dotta, A.; Lingua, E.; Motta, R.; Garbarino, M. Direct measurement of tree height provides different results on the assessment of LiDAR accuracy. Forests 2017, 8, 7. [Google Scholar] [CrossRef]
- Panagiotidis, D.; Abdollahnejad, A.; Surový, P.; Chiteculo, V. Determining tree height and crown diameter from high-resolution UAV imagery. Int. J. Remote Sens. 2017, 38, 2392–2410. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; de Castro, A.I.; Peña, J.M.; Jiménez-Brenes, F.M.; Arquero, O.; Lovera, M.; López-Granados, F. Mapping the 3D structure of almond trees using UAV acquired photogrammetric point clouds and object-based image analysis. Biosyst. Eng. 2018, 176, 172–184. [Google Scholar] [CrossRef]
- Ploton, P.; Mortier, F.; Barbier, N.; Cornu, G.; Réjou-Méchain, M.; Rossi, V.; Alonso, A.; Bastin, J.F.; Bayol, N.; Bénédet, F.; et al. A map of African humid tropical forest aboveground biomass derived from management inventories. Sci. Data 2020, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ganamé, M.; Bayen, P.; Ouédraogo, I.; Balima, L.H.; Thiombiano, A. Allometric models for improving aboveground biomass estimates in West African savanna ecosystems. Trees. For. People 2021, 4. [Google Scholar] [CrossRef]
- Kikuzawa, K.; Lechowicz, M.J. Toward synthesis of relationships among leaf longevity, instantaneous photosynthetic rate, lifetime leaf carbon gain, and the gross primary production of forests. Am. Nat. 2006, 168, 373–383. [Google Scholar] [CrossRef]
- Galia Selaya, N.; Anten, N.P.R. Leaves of pioneer and later-successional trees have similar lifetime carbon gain in tropical secondary forest. Ecology 2010, 91, 1102–1113. [Google Scholar] [CrossRef]
- Miller, J.; Morgenroth, J.; Gomez, C. 3D modelling of individual trees using a handheld camera: Accuracy of height, diameter and volume estimates. Urban For. Urban Green. 2015, 14, 932–940. [Google Scholar] [CrossRef]
- Mikita, T.; Janata, P.; Surovỳ, P. Forest stand inventory based on combined aerial and terrestrial close-range photogrammetry. Forests 2016, 7, 165. [Google Scholar] [CrossRef]
- Piermattei, L.; Karel, W.; Wang, D.; Wieser, M.; Mokroš, M.; Surový, P.; Koreň, M.; Tomaštík, J.; Pfeifer, N.; Hollaus, M. Terrestrial structure from motion photogrammetry for deriving forest inventory data. Remote Sens. 2019, 11, 950. [Google Scholar] [CrossRef]
- Marzulli, M.I.; Raumonen, P.; Greco, R.; Persia, M.; Tartarino, P. Estimating tree stem diameters and volume from smartphone photogrammetric point clouds. Forestry 2020, 93, 411–429. [Google Scholar] [CrossRef]
- Weaver, S.A.; Ucar, Z.; Bettinger, P.; Merry, K.; Faw, K.; Cieszewski, C.J. Assessing the accuracy of tree diameter measurements collected at a distance. Croat. J. For. Eng. 2015, 36, 73–84. [Google Scholar]
- Scher, C.L.; Griffoul, E.; Cannon, C.H. Drone-based photogrammetry for the construction of high-resolution models of individual trees. Trees Struct. Funct. 2019, 33, 1385–1397. [Google Scholar] [CrossRef]
- Rose, J.; Paulus, S.; Kuhlmann, H. Accuracy analysis of a multi-view stereo approach for phenotyping of tomato plants at the organ level. Sensors (Switzerland) 2015, 15, 9651–9665. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, R.; Hirata, M.; Gebremedhin, B.G.; Uchida, S.; Sakai, T.; Koda, K.; Takenaka, K. Impact of differences in land management on natural vegetation in semi-dry areas: The case study of the Adi Zaboy watershed in the Kilite Awlaelo district, eastern Tigray region, Ethiopia. Environments 2019, 6, 2. [Google Scholar] [CrossRef]
- Kassa, H.; Mezgebe, K.; Hagazi, N.; Cunningham, P.; Rinauldo, T.; Gebremeskel, G.; Darcha, G. Introduction and evaluation of Acacia saligna trees as backyard agroforestry system in eastern Tigray. In Proceedings of the International Conference of World Vision, Mekelle, Ethiopia, 7–8 March 2014; pp. 43–49. [Google Scholar]
- Melese, S.M.; Ayele, B. Woody plant diversity, structure and regeneration in the Ambo State forest, South Gondar zone, Northwest Ethiopia. J. For. Res. 2017, 28, 133–144. [Google Scholar] [CrossRef]
- Gelasso, M.; Li, J. Structure and regeneration status of woody species in the Munessa forest, Southern Ethiopia. J. For. Res. 2021, 32, 493–501. [Google Scholar] [CrossRef]
- Aubert, S.; Boucher, F.; Lavergne, S.; Renaud, J.; Choler, P. 1914-2014: A revised worldwide catalogue of cushion plants 100 years after Hauri and Schröter. Alp. Bot. 2014, 124, 59–70. [Google Scholar] [CrossRef]
- Bekele, T.; Berhan, G.; Ersado, M.; Taye, E. Regeneration status of moist Montane forests of Ethiopia: Part 11. Godere, Setema and Tiro-Boter becho forests. Walia 2003, 23, 19–32. [Google Scholar]
- Brown, S.; Gillespie, A.J.R.; Lugo, A.E. Biomass estimation methods for tropical forests with applications to forest inventory data. For. Sci. 1989, 35, 881–902. [Google Scholar] [CrossRef]
Plot # | Tree # | Tree Height (m) | Mean Canopy Width (m) | Basal Area (cm2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Max | Min | Mean | SD | Max | Min | Mean | SD | Max | Min | |||
Ridge | 1 | 9 | 1.45 | 0.45 | 2.20 | 0.70 | 2.41 | 1.18 | 4.95 | 0.70 | 59.5 | 57.3 | 159.3 | 5.3 |
2 | 9 | 1.54 | 0.35 | 2.11 | 1.12 | 2.54 | 0.78 | 3.45 | 1.00 | 80.6 | 47.8 | 148.5 | 16.6 | |
3 | 8 | 1.60 | 0.40 | 2.07 | 1.00 | 3.19 | 0.97 | 4.35 | 1.80 | 102.3 | 90.5 | 291.5 | 18.3 | |
4 | 11 | 1.79 | 0.16 | 2.02 | 1.57 | 3.31 | 0.77 | 4.20 | 2.15 | 123.9 | 53.3 | 189.8 | 48.7 | |
5 | 14 | 1.71 | 0.33 | 2.19 | 0.85 | 2.54 | 0.77 | 3.80 | 0.98 | 85.5 | 50.3 | 194.0 | 7.1 | |
Valley | 6 | 11 | 1.64 | 0.52 | 2.61 | 0.83 | 2.25 | 0.73 | 3.35 | 1.00 | 60.6 | 42.3 | 129.6 | 6.2 |
7 | 9 | 2.11 | 1.03 | 3.28 | 0.81 | 2.73 | 1.64 | 5.10 | 1.15 | 109.4 | 105.4 | 252.8 | 5.3 | |
8 | 13 | 2.14 | 0.71 | 3.24 | 0.74 | 2.95 | 1.01 | 4.55 | 1.60 | 125.8 | 87.4 | 273.2 | 8.0 | |
9 | 14 | 1.82 | 0.35 | 2.56 | 1.23 | 2.80 | 0.62 | 4.05 | 1.75 | 92.4 | 43.1 | 181.5 | 39.3 | |
10 | 12 | 1.53 | 0.29 | 1.93 | 1.01 | 2.57 | 0.77 | 3.70 | 1.35 | 64.4 | 51.6 | 144.3 | 10.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakai, T.; Birhane, E.; Abebe, B.; Gebremeskel, D. Applicability of Structure-from-Motion Photogrammetry on Forest Measurement in the Northern Ethiopian Highlands. Sustainability 2021, 13, 5282. https://doi.org/10.3390/su13095282
Sakai T, Birhane E, Abebe B, Gebremeskel D. Applicability of Structure-from-Motion Photogrammetry on Forest Measurement in the Northern Ethiopian Highlands. Sustainability. 2021; 13(9):5282. https://doi.org/10.3390/su13095282
Chicago/Turabian StyleSakai, Toru, Emiru Birhane, Buruh Abebe, and Destaalem Gebremeskel. 2021. "Applicability of Structure-from-Motion Photogrammetry on Forest Measurement in the Northern Ethiopian Highlands" Sustainability 13, no. 9: 5282. https://doi.org/10.3390/su13095282
APA StyleSakai, T., Birhane, E., Abebe, B., & Gebremeskel, D. (2021). Applicability of Structure-from-Motion Photogrammetry on Forest Measurement in the Northern Ethiopian Highlands. Sustainability, 13(9), 5282. https://doi.org/10.3390/su13095282