The County-Scale Economic Spatial Pattern and Influencing Factors of Seven Urban Agglomerations in the Yellow River Basin—A Study Based on the Integrated Nighttime Light Data
Abstract
1. Introduction
2. Literature Review
3. Methodology and Data Sources
3.1. Study Area
3.2. Data Sources
3.3. Night Light Datasets
3.4. Research Methods
3.4.1. Spatial Autocorrelation Analysis
- (1)
- Global spatial autocorrelation
- (2)
- Local Getis-Ord G
3.4.2. Standard Deviation and Coefficient of Variation
3.4.3. MGWR
4. Results and Analysis
4.1. Spatio-Temporal Evolution Analysis
4.2. Spatial Autocorrelation Analysis
4.2.1. Global Autocorrelation Analysis
4.2.2. Local Cold and Hot Spots Analysis
- (1)
- Hot spots
- (2)
- Cold spots
4.2.3. Analysis of Influencing Factors
- (1)
- Model selection
- (2)
- Spatial Heterogeneity Regression Analysis
5. Discussion
6. Conclusions and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, P.; Pang, B.; Li, Y.; He, J.; Hong, X.; Qin, C.; Zheng, H. Analyzing spatial disparities of economic development in Yellow River Basin, China. Geo J. 2018, 84, 303–320. [Google Scholar] [CrossRef]
- Liu, K.; Qiao, Y.; Shi, T.; Zhou, Q. Study on coupling coordination and spatiotemporal heterogeneity between economic development and ecological environment of cities along the Yellow River Basin. Environ. Sci. Pollut. Res. 2021, 28, 6898–6912. [Google Scholar] [CrossRef]
- Wohlfart, C.; Liu, G.; Huang, C.; Kuenzer, C. A River Basin over the Course of Time: Multi-Temporal Analyses of Land Surface Dynamics in the Yellow River Basin (China) Based on Medium Resolution Remote Sensing Data. Remote Sens. 2016, 8, 186. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, M.; Lu, J.; Zhou, Q.; Ma, W. Evaluation of ecological city and analysis of obstacle factors under the background of high-quality development: Taking cities in the Yellow River Basin as examples. Ecol. Indic. 2020, 118, 106771. [Google Scholar] [CrossRef]
- Lan, F.; Da, H.; Wen, H.; Wang, Y. Spatial Structure Evolution of Urban Agglomerations and Its Driving Factors in Mainland China: From the Monocentric to the Polycentric Dimension. Sustainability 2019, 11, 610. [Google Scholar] [CrossRef]
- He, Y.; Zhou, G.; Tang, C.; Fan, S.; Guo, X. The spatial organization pattern of urban-rural integration in urban agglomerations in China: An agglomeration-diffusion analysis of the population and firms. Habitat Int. 2019, 87, 54–65. [Google Scholar] [CrossRef]
- Gottmann, J. Megalopolis or the urbanization of the northeastern seaboard. Econ. Geogr. 1957, 33, 189–200. [Google Scholar] [CrossRef]
- Fang, C.; Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Yuan, W.; Li, J.; Meng, L.; Qin, X.; Qi, X. Measuring the area green efficiency and the influencing factors in urban agglomeration. J. Clean. Prod. 2019, 241, 118092. [Google Scholar] [CrossRef]
- Gu, C. Study on urban agglomeration: Progress and prospects. Geogr. Res. 2011, 30, 771–784. [Google Scholar] [CrossRef]
- Xu, C.; Wang, S.; Zhou, Y.; Wang, L.; Liu, W. A Comprehensive Quantitative Evaluation of New Sustainable Urbanization Level in 20 Chinese Urban Agglomerations. Sustainability 2016, 8, 91. [Google Scholar] [CrossRef]
- Costanza, R.; Kubiszewski, I.; Giovannini, E.; Lovins, H.; McGlade, J.; Pickett, K.E.; Ragnarsdóttir, K.V.; Roberts, D.; De Vogli, R.; Wilkinson, R.G. Development: Time to leave GDP behind. Nat. Cell Biol. 2014, 505, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Henderson, J.V.; Storeygard, A.; Weil, D.N. Measuring economic growth from outer space: The National Bureau of Economic Research. Am. Econ. Rev. 2012, 102, 994–1028. [Google Scholar] [CrossRef] [PubMed]
- Rawski, T.G. What is happening to China’s GDP statistics? China Econ. Rev. 2001, 12, 347–354. [Google Scholar] [CrossRef]
- Dai, Z.; Hu, Y.; Zhao, G. The Suitability of Different Nighttime Light Data for GDP Estimation at Different Spatial Scales and Regional Levels. Sustainability 2017, 9, 305. [Google Scholar] [CrossRef]
- Hu, Y.; Peng, J.; Liu, Y.; Du, Y.; Li, H.; Wu, J. Mapping Development Pattern in Beijing-Tianjin-Hebei Urban Agglomeration Using DMSP/OLS Nighttime Light Data. Remote Sens. 2017, 9, 760. [Google Scholar] [CrossRef]
- Shi, K.F.; Yu, B.L.; Huang, Y.X.; Hu, Y.J.; Yin, B.; Chen, Z.Q.; Chen, L.J.; Wu, J.P. Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef]
- Jing, X.; Shao, X.; Cao, C.; Fu, X.; Yan, L. Comparison between the Suomi-NPP Day-Night Band and DMSP-OLS for Correlating Socio-Economic Variables at the Provincial Level in China. Remote Sens. 2015, 8, 17. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Liu, H.; Huang, H. Spatiotemporal evolution of multiscale urbanization level in the Beijing-Tianjin-Hebei Region using the integration of DMSP/OLS and NPP/VIIRS night light datasets. Sustainability 2021, 13, 2000. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, Y.; Li, Y.; Gao, B. A Simulation Study on the Urban Population of China Based on Nighttime Light Data Acquired from DMSP/OLS. Sustainability 2016, 8, 521. [Google Scholar] [CrossRef]
- Goodchild, M.F. Models of Scale and Scales of Modelling. In Modelling Scale in Geographical Information Science; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001; pp. 3–10. [Google Scholar]
- Shen, T.; Yu, H.; Zhou, L.; Gu, H.; He, H. On Hedonic Price of Second-Hand Houses in Beijing Based on Multi-Scale Geograph-ically Weighted Regression: Scale Law of Spatial Heterogeneity. Econ. Geogr. 2020, 40, 75–83. [Google Scholar] [CrossRef]
- Meng, D.Y.; Li, X.J.; Lu, Y.Q. Evolvement of Spatial Pattern of Urban Economic Development in Yangtze River Delta. Econ. Geogr. 2014, 34, 50–57. [Google Scholar] [CrossRef]
- Xu, J.H.; Lu, F.; Su, F.L.; Lu, Y. Spatial and temporal scale analysis on the regional economic disparities in China. Geogr. Res. 2005, 24, 57–68. [Google Scholar] [CrossRef]
- Chen, Z. Regional development difference from the south to the north ineast and middle China. Geogr. Res. 1999, 80–87. [Google Scholar] [CrossRef]
- Rozelle, S. Rural Industrialization and Increasing Inequality: Emerging Patterns in China’s Reforming Economy. J. Comp. Econ. 1994, 19, 362–391. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, F. Research on Regional Economic Disparity in Yellow River Basin. J. Xi’an Univ. Financ. Econ. 2008, 2, 23–26. [Google Scholar] [CrossRef]
- Sang, Q.; Zhang, P.Y.; Gao, X.N.; Xin, X. Spatio-temperal Characteristics of sparity of Counties Comprehensive Development Level in Central Liaoning Urban Agglomeration. Sci. Geogr. Sin. 2008, 2, 150–155. [Google Scholar] [CrossRef]
- Ma, J.; Wang, J.; Szmedra, P. Economic efficiency and its influencing factors on urban agglomeration—An analysis based on China’s top 10 urban agglomerations. Sustainability 2019, 11, 5380. [Google Scholar] [CrossRef]
- Xue, B. Analysis of Spatial Pattern Evolution of Economy in Central Plains Economic Region. Econ. Geogr. 2013, 33, 15–20. [Google Scholar] [CrossRef]
- Hu, Z.; Ou, X. Analysis of Regional Inequality in Jiangsu Province by Multi-target Measure Based on Theil Index. Econ. Geogr. 2013, 27, 719–724. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, M. Spatial Analysis of County Economic Differences and Temporal-Spatial Evolution of Guan-Zhong-TianShui Economic Zone. Econ. Geogr. 2011, 24, 889–906. [Google Scholar] [CrossRef]
- Zhou, G.; Xia, X. The Convergence and the Impact Factors of Regional Economic Growth in China—An Empirical Analysis of The Yellow River Basin. Stat. Res. 2008, 11. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Q. Research on the spatial polarization and its influencing factors in Shandong Peninsula urban agglomerations regions. Resour. Environ. Yangtze Basin 2011, 20, 790–795. [Google Scholar] [CrossRef]
- Qin, C.; Zhou, E. The Patterns of Spatial Differentiation of Economies in Yellow River Basin. J. Henan Univ. (Nat. Sci.) 2010, 40, 40–44. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Zhuo, L.; Ichinose, T.; Zheng, J.; Chen, J.; Shi, P.J.; Li, X. Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images. Int. J. Remote Sens. 2009, 30, 1003–1018. [Google Scholar] [CrossRef]
- Yi, K.; Tani, H.; Li, Q.; Zhang, J.; Guo, M.; Bao, Y.; Wang, X.; Li, J. Mapping and evaluating the urbanization process in northeast China using DMSP/OLS nighttime light data. Sensors 2014, 14, 3207–3226. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Hubacek, K.; Roberts, M. Analysis of spatial patterns of urban growth across South Asia using DMSP-OLS nighttime lights data. Appl. Geogr. 2015, 63, 292–303. [Google Scholar] [CrossRef]
- Sutton, P.; Roberts, D.; Elvidge, C.; Meij, H. A comparison of nighttime satellite imagery and population density for the continental United States. Photogramm. Eng. Remote Sens. 1997, 63, 1303–1313. [Google Scholar]
- Lo, C. Modeling the population of China using DMSP operational linescan system nighttime data. Photogramm. Eng. Remote Sens. 2001, 67, 1037–1047. [Google Scholar]
- Tan, M.; Li, X.; Li, S.; Xin, L.; Wang, X.; Li, Q.; Li, W.; Li, Y.; Xiang, W. Modeling population density based on nighttime light images and land use data in China. Appl. Geogr. 2018, 90, 239–247. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Amaral, S.; Câmara, G.; Monteiro, A.M.V.; Quintanilha, J.A.; Elvidge, C.D. Estimating population and energy consumption in Brazilian Amazonia using DMSP night-time satellite data. Comput. Environ. Urban Syst. 2005, 29, 179–195. [Google Scholar] [CrossRef]
- Chand, T.R.K.; Badarinath, K.V.S.; Elvidge, C.D.; Tuttle, B.T. Spatial characterization of electrical power consumption patterns over India using temporal DMSP-OLS night-time satellite data. Int. J. Remote Sens. 2009, 30, 647–661. [Google Scholar] [CrossRef]
- Jiansheng, W.; Yan, N.; Jian, P.; Zheng, W.A.N.G.; Xiulan, H.U.A.N.G. Research on energy consumption dynamic among prefecture-level cities in China based on DMSP/OLS nighttime light. Geogr. Res. 2014, 33, 625–634. [Google Scholar] [CrossRef]
- Fang-dao, Q.I.U.; Lian-jun, T.O.N.G.; Chuan-geng, Z.H.U.; Ru-shu, Y.A.N.G. Spatio-temporal pattern and driving mechanism of economic development discrepancy in provincial border-regions: A case study of Huaihai economic zone. Geogr. Res. 2009, 28, 451–463. [Google Scholar] [CrossRef]
- Lazar, M. Shedding light on the global distribution of economic activity. Open Geogr. J. 2010, 3, 147–160. [Google Scholar] [CrossRef]
- Fu, H.; Shao, Z.; Fu, P.; Cheng, Q. The Dynamic Analysis between Urban Nighttime Economy and Urbanization Using the DMSP/OLS Nighttime Light Data in China from 1992 to 2012. Remote Sens. 2017, 9, 416. [Google Scholar] [CrossRef]
- Xu, K.; Chen, F.; Liu, X. The truth of China economic growth: Evidence from global night-time light data. Econ. Res. J. 2015, 9, 17–29. [Google Scholar]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale geographically weighted regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Yu, H.; Fotheringham, A.S.; Li, Z.; Oshan, T.; Kang, W.; Wolf, L.J. Inference in Multiscale Geographically Weighted Regression. Geogr. Anal. 2020, 52, 87–106. [Google Scholar] [CrossRef]
- Lv, Q.; Liu, H.; Wang, J.; Liu, H.; Shang, Y. Multiscale analysis on spatiotemporal dynamics of energy consumption CO2 emissions in China: Utilizing the integrated of DMSP-OLS and NPP-VIIRS nighttime light datasets. Sci. Total. Environ. 2020, 703, 134394. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Tian, L.; Yue, Q.; Wang, Z. Spatiotemporal Variations in Energy Consumption and Their Influencing Factors in China Based on the Integration of the DMSP-OLS and NPP-VIIRS Nighttime Light Datasets. Remote Sens. 2020, 12, 1151. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. ISPRS Int. J. Geo-Inf. 2019, 8, 269. [Google Scholar] [CrossRef]
Data | Data Description | Year | Source |
---|---|---|---|
DMSP-OLS | Annual stable night light data | 1992–2013 | https://eogdata.mines.edu/dmsp/downloadV4composites.html (accessed on 8 April 2021) |
NPP/VIIRS | Monthly night light data | 2013, 2014, 2017, 2018 | https://eogdata.mines.edu/download_dnb_composites.html (accessed on 8 April 2021) |
NPP/VIIRS | Annual night light data | 2015, 2016 | |
Boundaries | Shapefile of province, city, county | 2015 | National Geomatics Center of China |
Labor input | The number of employees at the end of the year | 2018 | China City Statistical Yearbook Statistical Communiqué of the People’s Republic of China on the National Economic and Social Development |
Capital input | The fixed asset investment per capita | 2018 | |
Government force | The percentage of fiscal expenditure to GDP | 2018 | |
Traffic level | The road mileage at the end of the year | 2018 | |
Education development | The number of students in school | 2018 | |
Medical level | Medical beds in health institutions | 2018 | |
Import and export | Total export–import volume | 2018 |
Type of Data | Index | 1992 | 2005 | 2018 |
---|---|---|---|---|
Night light mean value | Moran’s I Index | 0.2731 | 0.3147 | 0.3212 |
Z-value | 16.8982 | 19.2903 | 19.6694 |
Z-Value | >1.96 | [1.65~1.96] | [−1.65~1.65] | [−1.96~−1.65] | <−1.96 |
---|---|---|---|---|---|
area | hot spots | sub-hot spots | random distribution area | sub-cold spots | cold spots |
Type of Parameter | MGWR | GWR |
---|---|---|
R2 | 0.856 | 0.819 |
Adjusted R2 | 0.806 | 0.768 |
AIC values | 106.029 | 111.495 |
Residual sum of squares | 9.216 | 11.593 |
Bandwidth Comparison | MGWR | GWR |
---|---|---|
X1 | 63 | 59 |
X2 | 57 | 59 |
X3 | 46 | 59 |
X4 | 53 | 59 |
X5 | 43 | 59 |
X6 | 43 | 59 |
X7 | 43 | 59 |
Variable | Mean | Standard Deviation | Minimum | Median | Maximum |
---|---|---|---|---|---|
X1 | 0.133 | 0.005 | 0.127 | 0.131 | 0.145 |
X2 | 0.023 | 0.054 | −0.112 | 0.044 | 0.099 |
X3 | −0.850 | 0.398 | −0.1301 | −1.032 | −0.155 |
X4 | −0.042 | 0.071 | −0.112 | −0.091 | 0.112 |
X5 | −0.769 | 0.636 | −1.433 | −1.125 | 0.098 |
X6 | −0.009 | 0.060 | −0.102 | −0.041 | 0.103 |
X7 | 0.444 | 0.115 | 0.226 | 0.447 | 0.699 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Liu, H.; Peng, D.; Lv, Q.; Sun, Y.; Huang, H.; Liu, H. The County-Scale Economic Spatial Pattern and Influencing Factors of Seven Urban Agglomerations in the Yellow River Basin—A Study Based on the Integrated Nighttime Light Data. Sustainability 2021, 13, 4220. https://doi.org/10.3390/su13084220
Wang J, Liu H, Peng D, Lv Q, Sun Y, Huang H, Liu H. The County-Scale Economic Spatial Pattern and Influencing Factors of Seven Urban Agglomerations in the Yellow River Basin—A Study Based on the Integrated Nighttime Light Data. Sustainability. 2021; 13(8):4220. https://doi.org/10.3390/su13084220
Chicago/Turabian StyleWang, Jingtao, Haibin Liu, Di Peng, Qian Lv, Yu Sun, Hui Huang, and Hao Liu. 2021. "The County-Scale Economic Spatial Pattern and Influencing Factors of Seven Urban Agglomerations in the Yellow River Basin—A Study Based on the Integrated Nighttime Light Data" Sustainability 13, no. 8: 4220. https://doi.org/10.3390/su13084220
APA StyleWang, J., Liu, H., Peng, D., Lv, Q., Sun, Y., Huang, H., & Liu, H. (2021). The County-Scale Economic Spatial Pattern and Influencing Factors of Seven Urban Agglomerations in the Yellow River Basin—A Study Based on the Integrated Nighttime Light Data. Sustainability, 13(8), 4220. https://doi.org/10.3390/su13084220