The Effect of Biogas Slurry Application on Biomass Production and Forage Quality of Lolium Multiflorum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Procedures
2.2. Biochemical Analysis
- V1 = volume (mL) of standard HCl required for sample;
- V2 = volume (mL) of standard HCl required for blank;
- C = molarity of standard HCl;
- 1.4007 = milliequivalent weight of N × 100;
- 6.25 = average coefficient of nitrogen conversion into proteins;
- M = sample weight in grams.
- M = sample weight;
- M1 = weight of flask with carborundum;
- M2 = weight of flask with carborundum and weight of dry residue after the ether extract.
- M = sample weight;
- M1 = bag tare weight;
- M2 = weight of organic matter after extraction by neutral detergent;
- M3 = weight of organic matter after extraction by acid detergent;
- C = loss in weight on ignition of bag/sample;
- C1 = ash-corrected blank bag factor (a running average of the loss of weight after extraction of the blank bag/original blank bag).
2.3. Statistical Analysis
3. Results
3.1. The Plant Height of Italian Ryegrass with the Biogas Slurry Applied
3.2. The Biomass Yield of Italian Ryegrass with the Biogas Slurry Applied Subsection
3.3. The Stem-to-Leaf Ratio of Italian Ryegrass with the Biogas Slurry Applied
3.4. Dry Matter Yield of Italian Ryegrass with the Biogas Slurry Applied
3.5. Nutritional Status of Italian Ryegrass with the Biogas Slurry Applied
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethical Approval
Abbreviations
CSF | Chemical synthetic fertilizer |
BS | Biogas slurry |
DM | Dry matter |
CP | Crude protein |
EE | Ether extract |
CF | Crude fiber |
NDF | Neutral detergent fiber |
ADF | Acid detergent fiber |
References
- Chowdhury, T.; Chowdhury, H.; Hossain, N.; Ahmed, A.; Hossen, M.S.; Chowdhury, P.; Thirugnanasambandam, M.; Saidur, R. Latest advancements on livestock waste management and biogas production: Bangladesh’s perspective. J. Clean. Prod. 2020, 272, 122818. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook 2018; China Statistics Press: Beijing, China, 2018.
- Zhang, C.; Su, H.; Baeyens, J.; Tan, T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. [Google Scholar] [CrossRef]
- Mulka, R.; Szulczewski, W.; Szlachta, J.; Prask, H. The influence of carbon content in the mixture of substrates on methane production. Clean Technol. Environ. Policy 2016, 18, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 2009, 100, 5478–5484. [Google Scholar] [CrossRef]
- Ebenezer Rajkumar, A.; Sethumadhavan, R.; Velraj, R. Biogas: Can it be an important source of energy? Environ. Sci. Pollut. Res. Int. 2007, 14, 67–71. [Google Scholar]
- Arthurson, V. Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land—Potential Benefits and Drawback. Energies 2009, 2, 226–242. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.B.; Luo, X.P.; Song, C.F.; Zhang, M.X.; Shan, S.D. Concentrated biogas slurry enhanced soil fertility and tomato quality. Acta Agric. Scand. 2010, 60, 262–268. [Google Scholar] [CrossRef]
- Abdeshahian, P.; Lim, J.S.; Ho, W.S.; Hashim, H.; Lee, C.T. Potential of biogas production from farm animal waste in Malaysia. Renew. Sustain. Energy Rev. 2016, 60, 714–723. [Google Scholar] [CrossRef]
- Prasertsan, S.; Sajjakulnukit, B. Biomass and biogas energy in Thailand: Potential, opportunity and barriers. Renew. Energy 2006, 31, 599–610. [Google Scholar] [CrossRef]
- Sadettanh, K. Renewable energy resources potential in Lao PDR. Energy Sour. 2004, 26, 9–18. [Google Scholar] [CrossRef]
- O’Shea, R.; Wall, D.; Murphy, J. Modelling a demand driven biogas system for production of electricity at peak demand and for production of biomethane at other times. Bioresour. Technol. 2016, 216, 238–249. [Google Scholar] [CrossRef] [PubMed]
- D’Imporzano, G.; Pilu, R.; Corno, L.; Adani, F. Arundo donax L. can substitute traditional energy crops for more efficient, environmentally-friendly production of biogas: A Life Cycle Assessment approach. Bioresour. Technol. 2018, 267, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Surendra, K.; Takara, D.; Hashimoto, A.G.; Khanal, S.K. Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renew. Sustain. Energy Rev. 2014, 31, 846–859. [Google Scholar] [CrossRef]
- Li, J.; Duan, N.; Guo, S.; Shao, L.; Lin, C.; Wang, J.; Hou, J.; Hou, Y.; Meng, J.; Han, M. Renewable resource for agricultural ecosystem in China: Ecological benefit for biogas by-product for planting. Ecol. Inform. 2012, 12, 101–110. [Google Scholar] [CrossRef]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Banik, S.; Nandi, R. Effect of supplementation of rice straw with biogas residual slurry manure on the yield, protein and mineral contents of oyster mushroom. Ind. Crop. Prod. 2004, 20, 311–319. [Google Scholar] [CrossRef]
- Insam, H.; Gómez-Brandón, M.; Ascher, J. Manure-based biogas fermentation residues–Friend or foe of soil fertility? Soil Biol. Biochem. 2015, 84, 1–14. [Google Scholar] [CrossRef]
- Dahiya, A.K.; Vasudevan, P. Biogas plant slurry as an alternative to chemical fertilizers. Biomass 1986, 9, 67–74. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, L.; Chen, D.; Toyota, K.; Strong, P.J.; Wang, H.; Hirasawa, T. Decontamination of anaerobically digested slurry in a paddy field ecosystem in Jiaxing region of China. Agric. Ecosyst. Environ. 2012, 146, 13–22. [Google Scholar] [CrossRef]
- Sheets, J.P.; Liangcheng, Y.; Xumeng, G.; Zhiwu, W.; Yebo, L. Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. Waste Manag. 2015, 44, 94–115. [Google Scholar] [CrossRef] [Green Version]
- Tan, F.; Wang, Z.; Zhouyang, S.; Li, H.; Xie, Y.; Wang, Y.; Zheng, Y.; Li, Q. Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry. Bioresour. Technol. 2016, 221, 385–393. [Google Scholar] [CrossRef]
- Terhoeven-Urselmans, T.; Scheller, E.; Raubuch, M.; Ludwig, B.; Joergensen, R.G. CO2 evolution and N mineralization after biogas slurry application in the field and its yield effects on spring barley. Appl. Soil Ecol. 2009, 42, 297–302. [Google Scholar] [CrossRef]
- Hansen, M.N.; Henriksen, K.; Sommer, S.G. Observations of production and emission of greenhouse gases and ammonia during storage of solids separated from pig slurry: Effects of covering. Atmos. Environ. 2006, 40, 4172–4181. [Google Scholar] [CrossRef] [Green Version]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Liu, W.K.; Yang, Q.C.; Du, L.F. Soilless cultivation for high-quality vegetables with biogas manure in China: Feasibility and benefit analysis. Renew. Agric. Food Syst. 2009, 24, 300–307. [Google Scholar] [CrossRef]
- Islam, M.R.; Rahman, S.M.E.; Rahman, M.M.; Deog Hwan, O.H.; Chang, S.R. The effects of biogas slurry on the production and quality of maize fodder. Turk. J. Agric. For. 2010, 34, 91–99. [Google Scholar]
- Garg, R.N.; Pathak, H.; Das, D.K.; Tomar, R.K. Use of Flyash and Biogas Slurry for Improving Wheat Yield and Physical Properties of Soil. Environ. Monit. Assess. 2005, 107, 1–9. [Google Scholar] [CrossRef]
- Hou, H.; Zhou, S.; Hosomi, M.; Toyota, K.; Yosimura, K.; Mutou, Y.; Nisimura, T.; Takayanagi, M.; Motobayashi, T. Ammonia Emissions from Anaerobically-digested Slurry and Chemical Fertilizer Applied to Flooded Forage Rice. Water Air Soil Pollut. 2007, 183, 37–48. [Google Scholar] [CrossRef]
- Elfstrand, S.; Båth, B.; Mårtensson, A. Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Appl. Soil Ecol. 2007, 36, 70–82. [Google Scholar] [CrossRef]
- Svoboda, N.; Taube, F.; Wienforth, B.; Kluß, C.; Kage, H.; Herrmann, A. Nitrogen leaching losses after biogas residue application to maize. Soil Tillage Res. 2013, 130, 69–80. [Google Scholar] [CrossRef]
- Zheng, X.; Fan, J.; Jian, C.; Yi, W.; Jing, Z.; Mao, Y.; Sun, M. Effects of biogas slurry application on peanut yield, soil nutrients, carbon storage, and microbial activity in an Ultisol soil in southern China. J. Soils Sediments 2016, 16, 449–460. [Google Scholar] [CrossRef]
- Zhu, K.; Choi, H.L.; Yao, H.Q.; Suresh, A.; Oh, D.I. Effects of anaerobically digested pig slurry application on runoff and leachate. Chem. Ecol. 2009, 25, 359–369. [Google Scholar] [CrossRef]
- Carámbula, M.; Carámbula, M. Producción y Manejo de Pasturas Sembradas; Editorial Agropecuaria Hemisferio Sur: Montevideo, Uruguay, 1977. [Google Scholar]
- Evers, G.; Smith, G.; Hoveland, C. Ecology and production of annual ryegrass. Ecol. Prod. Manag. Lolium Forage USA 1997, 24, 29–43. [Google Scholar]
- Maia, M. Secagem de Sementes de Azevém Anual (Lolium moltiflorum L.) com ar em Ambiente Controlado; Universidade Federal de Pelotas: Pelotas, Brazil, 1995. [Google Scholar]
- Ball, D.M.; Collins, M.; Lacefield, G.; Martin, N.; Mertens, D.; Olson, K.; Putnam, D.; Undersander, D.; Wolf, M. Understanding Forage Quality; American Farm Bureau Federation Publication: Park Ridge, IL, USA, 2001. [Google Scholar]
- Rahman, S.; Islam, M.; Rahman, M.; Oh, D.-H. Effect of cattle slurry on growth, biomass yield and chemical composition of maize fodder. Asian-Aust. J. Anim. Sci. 2008, 21, 1592–1598. [Google Scholar] [CrossRef]
- Yin, Y.; Xing, X.; Tang, H.; Li, Z.; Liu, M.; Xu, H.; Guo, Y. Nutrient assimilating capacity of lolium multiflorum pasture for dairy farm biogas slurry. Acta Pratac. Sin. 2013, 22, 333–338. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses: Apparatus, Reagents, Procedures, and Some Applications; Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1970. [Google Scholar]
- Van Soest, P.V.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Khan, E.U.; Martin, A.R. Review of biogas digester technology in rural Bangladesh. Renew. Sustain. Energy Rev. 2016, 62, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Zahir, Z.A.; Jamil, M.; Nazli, F.; Latif, M.; Akhtar, M. Integrated use of plant growth promoting rhizobacteria, biogas slurry and chemical nitrogen for sustainable production of maize under salt–affected conditions. Pak. J. Bot. 2014, 46, 375–382. [Google Scholar]
- Mengistu, M.G.; Simane, B.; Eshete, G.; Workneh, T.S. A review on biogas technology and its contributions to sustainable rural livelihood in Ethiopia. Renew. Sustain. Energy Rev. 2015, 48, 306–316. [Google Scholar] [CrossRef]
- Whitley, E.; Ball, J. Statistics review 5: Comparison of means. Crit. Care 2002, 6, 1–5. [Google Scholar]
- Meftahizadeh, H.; Ghorbanpour, M.; Asareh, M.H. Changes in phenological attributes, yield and phytochemical compositions of guar (Cyamopsis tetragonoloba L.) landaraces under various irrigation regimes and planting dates. Sci. Hortic. 2019, 256, 108577. [Google Scholar] [CrossRef]
- Garfí, M.; Gelman, P.; Comas, J.; Carrasco, W.; Ferrer, I. Agricultural reuse of the digestate from low-cost tubular digesters in rural Andean communities. Waste Manag. 2011, 31, 2584–2589. [Google Scholar] [CrossRef]
- Muhmood, A.; Javid, S.; Ahmad, Z.; Majeed, A.; Rafique, R. Integrated use of bioslurry and chemical fertilizers for vegetable production. Pak. J. Agric. Sci. 2014, 51, 563–568. [Google Scholar]
- Shahbaz, M.; Akhtar, M.J.; Ahmed, W.; Wakeel, A. Integrated effect of different N-fertilizer rates and bioslurry application on growth and N-use efficiency of okra (Hibiscus esculentus L.). Turk. J. Agric. For. 2014, 38, 311–319. [Google Scholar] [CrossRef]
- Wenke, L.; Lianfeng, D.; Qichang, Y. Biogas slurry added amino acids decreased nitrate concentrations of lettuce in sand culture. Acta Agric. Scand. Sect. B–Soil Plant Sci. 2009, 59, 260–264. [Google Scholar] [CrossRef]
- Ferdous, Z.; Ullah, H.; Datta, A.; Anwar, M.; Ali, A. Yield and Profitability of Tomato as Influenced by Integrated Application of Synthetic Fertilizer and Biogas Slurry. Int. J. Veg. Sci. 2018, 24, 445–455. [Google Scholar] [CrossRef]
- Marino, M.A.; Mazzanti, A.; Assuero, S.G.; Gastal, F.; Echeverría, H.E.; Andrade, F. Nitrogen dilution curves and nitrogen use efficiency during winter–spring growth of annual ryegrass. Agron. J. 2004, 96, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Wentzel, S.; Joergensen, R.G. Effects of biogas and raw slurries on grass growth and soil microbial indices. J. Plant Nutr. Soil Sci. 2016, 179, 215–222. [Google Scholar] [CrossRef]
- Shiratsuchi, H.; Yamagishi, T.; Ishii, R. Leaf nitrogen distribution to maximize the canopy photosynthesis in rice. Field Crops Res. 2006, 95, 291–304. [Google Scholar] [CrossRef]
- Khalid, M.; Bilal, M.; Hassani, D.; Iqbal, H.M.N.; Wang, H.; Huang, D. Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect. Bot. Stud. 2017, 58, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boussadia, O.; Steppe, K.; Zgallai, H.; Hadj, S.B.E.; Braham, M.; Lemeur, R.; Labeke, M.C.V. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Sci. Hortic. 2010, 123, 336–342. [Google Scholar] [CrossRef]
- Möller, K.; Stinner, W.; Deuker, A.; Leithold, G. Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutr. Cycl. Agroecosyst. 2008, 82, 209–232. [Google Scholar] [CrossRef]
- Akanbi, W.B.; Togun, A.O.; Adediran, J.A.; Ilupeju, E.A.O. Growth, dry matter and fruit yields components of okra under organic and inorganic sources of nutrients. Am. -Eurasian J. Sustain. Agric. 2010, 4, 1–13. [Google Scholar]
- Katuwal, H.; Bohara, A.K. Biogas: A promising renewable technology and its impact on rural households in Nepal. Renew. Sustain. Energy Rev. 2009, 13, 2668–2674. [Google Scholar] [CrossRef]
- Daudén, A.; QuíLez, D. Pig slurry versus mineral fertilization on corn yield and nitrate leaching in a Mediterranean irrigated environment. Eur. J. Agron. 2004, 21, 7–19. [Google Scholar] [CrossRef]
- Du, Z.; Chen, X.; Qi, X.; Li, Z.; Nan, J.; Deng, J. The effects of biochar and hoggery biogas slurry on fluvo-aquic soil physical and hydraulic properties: A field study of four consecutive wheat–maize rotations. J. Soils Sediments 2016, 16, 2050–2058. [Google Scholar] [CrossRef]
- Sarker, V. Effect of Different Doses of Nitrogen Fertilizer on Growth, Yield, Chemical Composition and Degradability of Zamboo Grass (Hybrid jowar). Master’s Thesis, Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh, 2000. [Google Scholar]
- Walsh, J.J.; Jones, D.L.; Chadwick, D.; Williams, A. Repeated application of anaerobic digestate, undigested cattle slurry and inorganic fertilizer N: Impacts on pasture yield and quality. Grass Forage Sci. 2018, 73, 758–763. [Google Scholar] [CrossRef]
- Głowacka, A.; Szostak, B.; Klebaniuk, R. Effect of biogas digestate and mineral fertilisation on the soil properties and yield and nutritional value of switchgrass forage. Agronomy 2020, 10, 490. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Soil | Chemical Fertilizer | Biogas Slurry |
---|---|---|---|
Soil type | yellow soil | - | - |
Organic matter (%) | 2.64 | - | 1.9 |
Moisture content (%) | - | - | 80 |
Total nitrogen (%) | 0.18 | 11.34 | 0.23 |
Total phosphorus (%) | 0.05 | 7.56 | 0.05 |
Total potassium (%) | 2.25 | 7.56 | 0.32 |
pH | 6.01 | - | 7.7 |
Season | Harvest Times | Plant Height(cm) | |||||
---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | T4 | T5 | ||
1st | 1 | 78.00 a | 77.67 a | 75.00 a | 75.33 a | 83.00 a | 73.33 a |
2 | 96.30 a | 82.69 c | 102.52 a | 92.53 b | 93.00 b | 94.67 b | |
3 | 92.67 ab | 77.00 d | 97.00 a | 84.00 c | 89.00 bc | 87.33 bc | |
2nd | 1 | 69.00 a | 63.50 a | 66.50 a | 73.50 a | 71.00 a | 71.00 a |
2 | 79.44 b | 82.44 ab | 94.11 a | 88.22 ab | 95.22 a | 91.78 ab | |
3 | 92.33 b | 110.00 a | 114.00 a | 111.33 a | 117.33 a | 111.67 a |
Season | Harvest Times | Biomass Yield (kg/ha) | |||||
---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | T4 | T5 | ||
1st | 1 | 34,045.42 ab | 34,728.15 ab | 36,647.54 a | 25,032.00 e | 30,775.73 bc | 29,357.74 cd |
2 | 50,618.73 b | 50,040.89 b | 54,663.61 a | 50,849.87 b | 51,081.00 b | 51,427.71 b | |
3 | 40,159.84 b | 40,714.56 b | 42,956.58 a | 39,119.73 b | 39,662.9 b | 39,605.11 b | |
2nd | 1 | 38,992.6 bc | 34,057.85 d | 40,830.13 ab | 31,411.35 e | 36,554.12 c | 41,650.66 a |
2 | 32,996.94 e | 38,234.48 d | 40,785.06 c | 37,194.37 d | 47,167.87 b | 51,709.69 a | |
3 | 35,208.91 c | 35,841.07 c | 41,442.64 b | 40,961.88 b | 44,981.33 a | 45,210.15 a |
Season | Harvest Times | Stem/Leaf | |||||
---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | T4 | T5 | ||
1st | 2 | 1.13 a | 1.08 ab | 0.99 d | 1.00 cd | 1.08 ab | 1.05 bc |
3 | 1.34 c | 1.36 bc | 1.35 bc | 1.47 a | 1.39 b | 1.44 a | |
2nd | 2 | 1.06 a | 0.90 b | 0.90 b | 1.06 a | 1.06 a | 1.03 a |
3 | 1.43 ab | 1.34 ab | 1.32 b | 1.55 a | 1.36 ab | 1.32 b |
Parameters | Treatment | |||||
---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | T4 | T5 | |
CP(%DM) | 22.71 c | 23.85 b | 25.06 a | 24.11 b | 23.68 b | 23.68 b |
EE(%DM) | 5.70 ab | 5.90 ab | 6.40 a | 6.10 ab | 5.80 ab | 5.60c |
CF(%DM) | 17.20 ab | 16.50 b | 15.50 c | 16.60 b | 16.90 ab | 17.70 a |
NDF(%DM) | 35.60 a | 35.70 a | 35.70 a | 35.90 a | 36.20 a | 36.90 a |
ADF(%DM) | 18.50 a | 18.40 a | 18.40 a | 18.70 a | 18.90 a | 19.50 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Zhu, Y.; Wang, X.; Ji, L.; Wang, H.; Yao, L.; Lin, C. The Effect of Biogas Slurry Application on Biomass Production and Forage Quality of Lolium Multiflorum. Sustainability 2021, 13, 3605. https://doi.org/10.3390/su13073605
Xu W, Zhu Y, Wang X, Ji L, Wang H, Yao L, Lin C. The Effect of Biogas Slurry Application on Biomass Production and Forage Quality of Lolium Multiflorum. Sustainability. 2021; 13(7):3605. https://doi.org/10.3390/su13073605
Chicago/Turabian StyleXu, Wenzhi, Yongqun Zhu, Xie Wang, Lei Ji, Hong Wang, Li Yao, and Chaowen Lin. 2021. "The Effect of Biogas Slurry Application on Biomass Production and Forage Quality of Lolium Multiflorum" Sustainability 13, no. 7: 3605. https://doi.org/10.3390/su13073605
APA StyleXu, W., Zhu, Y., Wang, X., Ji, L., Wang, H., Yao, L., & Lin, C. (2021). The Effect of Biogas Slurry Application on Biomass Production and Forage Quality of Lolium Multiflorum. Sustainability, 13(7), 3605. https://doi.org/10.3390/su13073605