Analysis of the Thermal–Technical Properties of Modern Log Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterisation of the First Variant
2.2. Characterisation of the Second Variant
3. Results
3.1. Analysis of the Results of Laboratory Measurements
3.2. Analysis of the Results from Calculation Models
3.3. Log External Wall Structure with Mineral Thermal Insulation
3.4. Log External Wall Structure with Cork Thermal Insulation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hall, M.R.; Lindsay, R.; Krayenhoff, M. (Eds.) Modern Earth Buildings: Materials, Engineering, Constructions and Applications; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Duggal, S.K. Building Materials; Routledge: London, UK, 2017. [Google Scholar]
- Asdrubali, F.; Ferracuti, B.; Lombardi, L.; Guattari, C.; Evangelisti, L.; Grazieschi, G. A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications. Build. Environ. 2017, 114, 307–332. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Cabeza, L.F.; Labrincha, J.; De Magalhaes, A.G. Eco-Efficient Construction and Building Materials: Life Cycle Assessment (LCA), Eco-Labelling and Case Studies; Woodhead Publishing: Cambridge, UK, 2014. [Google Scholar]
- Ross, R.J. Wood Handbook: Wood as an Engineering Material; General Technical Report FPL-GTR-190; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; p. 509. [Google Scholar]
- Menges, A.; Schwinn, T.; Krieg, O.D. (Eds.) Advancing Wood Architecture: A Computational Approach; Routledge: London, UK, 2016. [Google Scholar]
- Hemström, K.; Mahapatra, K.; Gustavsson, L. Perceptions, attitudes and interest of Swedish architects towards the use of wood frames in multi-storey buildings. Resour. Conserv. Recycl. 2011, 55, 1013–1021. [Google Scholar] [CrossRef]
- Wimmers, G. Wood: A construction material for tall buildings. Nat. Rev. Mater. 2017, 2, 1–2. [Google Scholar] [CrossRef]
- Allen, E.; Iano, J. Fundamentals of Building Construction: Materials and Methods; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Wacker, J.P. Use of wood in buildings and bridges. In Wood Handbook: Wood as an Engineering Material; Centennial, Ed.; General Technical Report FPL-GTR-190; US Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; Chapter 17; pp. 17.1–17.13. [Google Scholar]
- Nilsen, A. Vernacular Buildings and Urban Social Practice: Wood and People in Early Modern Swedish Society; Archaeopress Publishing Ltd.: Oxford, UK, 2021. [Google Scholar]
- Harte, A.M. Mass timber-the emergence of a modern construction material. J. Struct. Integr. Maint. 2017, 2, 121–132. [Google Scholar] [CrossRef]
- Schön, C.; Hartmann, H. Log wood combustion in stoves-Influence on Emissions and efficiency. In Proceedings of the 20th European Biomass Conference & Exhibition-From Research to Industry and Markets 2012, Milan, Italy, 18–22 June 2012; ETA Renewable Energies: Florence, Italy; pp. 1293–1298. [Google Scholar]
- Ellingwood, B.R.; Rosowsky, D.V.; Pang, W. Performance of light-frame wood residential construction subjected to earthquakes in regions of moderate seismicity. J. Struct. Eng. 2008, 134, 1353–1363. [Google Scholar] [CrossRef]
- Fridley, K.J. Wood and wood-based materials: Current status and future of a structural material. J. Mater. Civ. Eng. 2002, 14, 91–96. [Google Scholar] [CrossRef]
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Scherman, O. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Kalt, G. Carbon dynamics and GHG implications of increasing wood construction: Long-term scenarios for residential buildings in Austria. Carbon Manag. 2018, 9, 265–275. [Google Scholar] [CrossRef]
- Tonooka, Y.; Takaguchi, H.; Yasui, K.; Maeda, T. Life cycle assessment of a domestic natural materials wood house. Energy Procedia 2014, 61, 1634–1637. [Google Scholar] [CrossRef] [Green Version]
- Evangelisti, L.; Guattari, C.; Gori, P.; Asdrubali, F. Assessment of equivalent thermal properties of multilayer building walls coupling simulations and experimental measurements. Build. Environ. 2018, 127, 77–85. [Google Scholar] [CrossRef]
- Svatos, J.; Holub, J. Woodhouse Energy Consumption Measurement System for Diagnostics of Thermal and Technical Properties of Buildings Envelope. In Proceedings of the 23rd IMEKO TC4 International Symposium Electrical & Electronic Measurements Promote Industry 4.0, Xi’an, China, 17–20 September 2019. [Google Scholar]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Khoukhi, M. The combined effect of heat and moisture transfer dependent thermal conductivity of polystyrene insulation material: Impact on building energy performance. Energy Build. 2018, 169, 228–235. [Google Scholar] [CrossRef]
- Choe, G.; Kim, G.; Yoon, M.; Hwang, E.; Nam, J.; Guncunski, N. Effect of moisture migration and water vapor pressure build-up with the heating rate on concrete spalling type. Cem. Concr. Res. 2019, 116, 1–10. [Google Scholar] [CrossRef]
- STN 73 0540. Thermal Performance of Buildings and Components. Thermal Protection of Buildings. 2002. Available online: https://www.sutn.sk/eshop/public/standard_detail.aspx?id=128945 (accessed on 10 February 2021).
- Meng, X.; Yan, B.; Gao, Y.; Wang, J.; Zhang, W.; Long, E. Factors affecting the in situ measurement accuracy of the wall heat transfer coefficient using the heat flow meter method. Energy Build. 2015, 86, 754–765. [Google Scholar] [CrossRef]
- Kumar, A.; Suman, B.M. Experimental evaluation of insulation materials for walls and roofs and their impact on indoor thermal comfort under composite climate. Build. Environ. 2013, 59, 635–643. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Gori, P.; Vollaro, R.D.L. In situ thermal transmittance measurements for investigating differences between wall models and actual building performance. Sustainability 2015, 7, 10388–10398. [Google Scholar] [CrossRef] [Green Version]
- Bienvenido-Huertas, D.; Moyano, J.; Marín, D.; Fresco-Contreras, R. Review of in situ methods for assessing the thermal transmittance of walls. Renew. Sustain. Energy Rev. 2019, 102, 356–371. [Google Scholar] [CrossRef]
- Brandner, R.; Flatscher, G.; Ringhofer, A.; Schickhofer, G.; Thiel, A. Cross laminated timber (CLT): Overview and development. Eur. J. Wood Wood Prod. 2016, 74, 331–351. [Google Scholar] [CrossRef]
- Tapanainen, M.; Jalava, P.I.; Mäki-Paakkanen, J.; Hakulinen, P.; Lamberg, H.; Ruusunen, J.; Hirvonen, M.R. Efficiency of log wood combustion affects the toxicological and chemical properties of emission particles. Inhal. Toxicol. 2012, 24, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Falk, R.H. Wood as a sustainable building material. For. Prod. J. 2009, 59, 6–12. [Google Scholar]
- Eriksson, L.O.; Gustavsson, L.; Hänninen, R.; Kallio, M.; Lyhykäinen, H.; Pingoud, K.; Valsta, L. Climate change mitigation through increased wood use in the European construction sector—towards an integrated modelling framework. Eur. J. For. Res. 2012, 131, 131–144. [Google Scholar] [CrossRef]
- Börjesson, P.; Gustavsson, L. Greenhouse gas balances in building construction: Wood versus concrete from life-cycle and forest land-use perspectives. Energy Policy 2000, 28, 575–588. [Google Scholar] [CrossRef]
- Diyamandoglu, V.; Fortuna, L.M. Deconstruction of wood-framed houses: Material recovery and environmental impact. Resour. Conserv. Recycl. 2015, 100, 21–30. [Google Scholar] [CrossRef]
- Dodoo, A.; Gustavsson, L. Life cycle primary energy use and carbon footprint of wood-frame conventional and passive houses with biomass-based energy supply. Appl. Energy 2013, 112, 834–842. [Google Scholar] [CrossRef]
- Katunská, J.; Katunský, D. Alternative Solutions of Wooden External Walls–Case Study. ABCM Advanced Building Constructions and Materials At: Lednice, Czech Republic, 2017; pp. 1–8. Available online: https://www.researchgate.net/publication/321701063_Alternative_Solutions_of_Wooden_External_Walls-Case_Study (accessed on 10 February 2021).
- Liu, M.; Sun, Y.; Sun, C.; Yang, X. Study on thermal insulation and heat transfer properties of wood frame walls. Wood Res. 2018, 63, 249–260. [Google Scholar]
- Kacálek, P.; Smolka, R.; Petříček, T. Design Properties of Log Walls with Respect to Building Physics. Adv. Mater. Res. 2014, 1041, 288–292. [Google Scholar] [CrossRef]
- Kacálek, P.; Petříček, T. The Structural Design of Wooden Solid Log Wall. In Proceedings of the 10th International Scientific Conference Building Defects (Building Defects 2018), České Budějovice, Czech Republic, 29–30 November 2018; Volume 279, p. 02015. [Google Scholar]
Layer Name | Volumetric Weight ρ (kg·m3) | Layer Thickness d (mm) | Thermal Conductivity Coefficient λd (W/(m.K.)) | Diffusion Resistance Factor μ (-) |
---|---|---|---|---|
Coniferous wood | 400 | 19 | 0.13 | 157 |
Air cavity | - | 25 | 0.147 | 1 |
Vapour barrier | 140 | 0.2 | 0.21 | 160109 |
Thermal insulation | 26 | 200 | 0.034 | 1 |
Vapour-permeable foil | 1000 | 0.4 | 0.21 | 57 |
Coniferous wood | 400 | 92 | 0.13 | 157 |
Layer Name | Volumetric Weight ρ (kg·m3) | Layer Thickness d (mm) | Thermal Conductivity Coefficient λd (W/(m.K.)) | Diffusion Resistance Factor μ (-) |
---|---|---|---|---|
Coniferous wood | 400 | 19 | 0.13 | 157 |
Cork thermal insulation | 45 | 220 | 0.04 | 3 |
Coniferous wood | 400 | 92 | 0.13 | 157 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Švajlenka, J.; Kozlovská, M. Analysis of the Thermal–Technical Properties of Modern Log Structures. Sustainability 2021, 13, 2994. https://doi.org/10.3390/su13052994
Švajlenka J, Kozlovská M. Analysis of the Thermal–Technical Properties of Modern Log Structures. Sustainability. 2021; 13(5):2994. https://doi.org/10.3390/su13052994
Chicago/Turabian StyleŠvajlenka, Jozef, and Mária Kozlovská. 2021. "Analysis of the Thermal–Technical Properties of Modern Log Structures" Sustainability 13, no. 5: 2994. https://doi.org/10.3390/su13052994
APA StyleŠvajlenka, J., & Kozlovská, M. (2021). Analysis of the Thermal–Technical Properties of Modern Log Structures. Sustainability, 13(5), 2994. https://doi.org/10.3390/su13052994