A Multivariate VAR Model for Evaluating Sustainable Finance and Natural Resource Curse in West Africa: Evidence from Nigeria and Ghana
Abstract
1. Introduction
2. Literature Review
2.1. Conceptual Framework
2.2. Related Studies
2.3. Hypotheses Tested
3. Data and Methodology
3.1. Data
3.2. Methodology
3.2.1. Motivation
3.2.2. Model
3.2.3. Time Series Modelling
Short-Run Relationship
Long-Run Relationship
4. Results
4.1. Summary Statistics
4.2. Testing for Stationarity
4.3. VAR Optimal Lag Selection
4.4. Testing for Cointegration
4.5. VAR/VEC Granger Causality Tests
4.6. Discussion of Findings
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeanne, O.; Korinek, A. Excessive volatility in capital flows: A Pigouvian taxation approach. Am. Econ. Rev. 2010, 100, 403–407. [Google Scholar] [CrossRef]
- Van der Ploeg, F. Natural resources: Curse or blessing? J. Econ. Lit. 2011, 49, 366–420. [Google Scholar] [CrossRef]
- Brunnschweiler, C.N. Cursing the blessings? Natural resource abundance, institutions, and economic growth. World Dev. 2008, 36, 399–419. [Google Scholar] [CrossRef]
- Durusu-Ciftci, D.; Ispir, M.S.; Yetkiner, H. Financial development and economic growth: Some theory and more evidence. J. Policy Model. 2017, 39, 290–306. [Google Scholar] [CrossRef]
- Sadik-Zada, E.R. Distributional Bargaining and the Speed of Structural Change in the Petroleum Exporting Labor Surplus Economies. Eur. J. Dev. Res. 2020, 32, 51–98. [Google Scholar] [CrossRef]
- Botev, J.; Égert, B.; Jawadi, F. The nonlinear relationship between economic growth and financial development: Evidence from developing, emerging and advanced economies. Int. Econ. 2019, 160, 3–13. [Google Scholar] [CrossRef]
- Bucci, A.; Marsiglio, S. Financial development and economic growth: Long-run equilibrium and transitional dynamics. Scott. J. Political Econ. 2019, 66, 331–359. [Google Scholar] [CrossRef]
- Redmond, T.; Nasir, M.A. Role of natural resource abundance, international trade and financial development in the economic development of selected countries. Resour. Policy 2020, 66, 101591. [Google Scholar] [CrossRef]
- Asiedu, E.; Lien, D. Democracy, foreign direct investment and natural resources. J. Int. Econ. 2011, 84, 99–111. [Google Scholar] [CrossRef]
- Shahbaz, M.; Naeem, M.; Ahad, M.; Tahir, I. Is natural resource abundance a stimulus for financial development in the USA? Resour. Policy 2018, 55, 223–232. [Google Scholar] [CrossRef]
- Asongu, S.A. Comparative sustainable development in sub-Saharan Africa. Sustain. Dev. 2018, 26, 638–651. [Google Scholar] [CrossRef]
- Wang, L.; Chang, H.L.; Sari, A.; Sowah, J.K., Jr.; Cai, X.Y. Resources or development first: An interesting question for a developing country. Resour. Policy 2020, 68, 101714. [Google Scholar] [CrossRef]
- Di John, J. Is There Really a Resource Curse? A Critical Survey of Theory and Evidence. Glob. Gov. 2011, 17, 167–184. [Google Scholar] [CrossRef]
- Dwumfour, R.A.; Ntow-Gyamfi, M. Natural resources, financial development and institutional quality in Africa: Is there a resource curse? Resour. Policy 2018, 59, 411–426. [Google Scholar] [CrossRef]
- Zhang, Q.; Brouwer, R. Is China Affected by the Resource Curse? A Critical Review of the Chinese Literature. J. Policy Model. 2020, 42, 133–152. [Google Scholar] [CrossRef]
- Benigno, G.; Fornaro, L. The Financial Resource Curse. Scand. J. Econ. 2014, 116, 58–86. [Google Scholar] [CrossRef]
- Adetutu, M.O.; Odusanya, K.A.; Ebireri, J.E.; Murinde, V. Oil booms, bank productivity and natural resource curse in finance. Econ. Lett. 2020, 186, 108517. [Google Scholar] [CrossRef]
- Fijorek, K.; Jurkowska, A.; Jonek-Kowalska, I. Financial contagion between the financial and the mining industries—Empirical evidence based on the symmetric and asymmetric CoVaR approach. Resour. Policy 2021, 70, 101965. [Google Scholar] [CrossRef]
- Olayungbo, D. Effects of oil export revenue on economic growth in Nigeria: A time varying analysis of resource curse. Resour. Policy 2019, 64, 101469. [Google Scholar] [CrossRef]
- Porter, D.; Watts, M. Righting the Resource Curse: Institutional Politics and State Capabilities in Edo State, Nigeria. J. Dev. Stud. 2017, 53, 249–263. [Google Scholar] [CrossRef]
- Okpanachi, E.; Andrews, N. Preventing the oil “resource curse” in Ghana: Lessons from Nigeria. World Futures 2012, 68, 430–450. [Google Scholar] [CrossRef]
- Sala-I-Martin, X.; Subramanian, A. Addressing the Natural Resource Curse: An Illustration from Nigeria. J. Afr. Econ. 2013, 22, 570–615. [Google Scholar] [CrossRef]
- Li, Y.; Naqvi, B.; Caglar, E.; Chu, C.-C. N-11 countries: Are the new victims of resource-curse? Resour. Policy 2020, 67, 101697. [Google Scholar] [CrossRef]
- Kumah-Abiwu, F. Democratic Institutions, Natural Resource Governance, and Ghana’s Oil Wealth. Soc. Sci. 2017, 6, 21. [Google Scholar] [CrossRef]
- Andrews, N.; Siakwah, P. Oil and Development in Ghana: Beyond the Resource Curse; Routledge: Abingdon, UK, 2020. [Google Scholar]
- Ofosu-Mensah, E.A. Historical and Modern Artisanal Small-Scale Mining in Akyem Abuakwa, Ghana. Afr. Today 2017, 64, 69. [Google Scholar] [CrossRef]
- Kopiński, D.; Polus, A.; Tycholiz, W. Resource curse or resource disease? Oil in Ghana. Afr. Aff. 2013, 112, 583–601. [Google Scholar] [CrossRef]
- Shobande, O.A. Effect of Economic Integration on Agricultural Export Performance in Selected West African Countries. Economies 2019, 7, 79. [Google Scholar] [CrossRef]
- Joseph, E.; Shobande, O.A. Revalidating Saving-Investment Comovement in Nigeria: Surprises, Stylized Facts and Explanations. Theor. Econ. Lett. 2018, 8, 3594–3610. [Google Scholar] [CrossRef]
- Zaidi, S.A.H.; Wei, Z.; Gedikli, A.; Zafar, M.W.; Hou, F.; Iftikhar, Y. The impact of globalization, natural resources abundance, and human capital on financial development: Evidence from thirty-one OECD countries. Resour. Policy 2019, 64, 101476. [Google Scholar] [CrossRef]
- Asif, M.; Khan, K.B.; Anser, M.K.; Nassani, A.A.; Abro, M.M.Q.; Zaman, K. Dynamic interaction between financial development and natural resources: Evaluating the “Resource curse” hypothesis. Resour. Policy 2020, 65, 101566. [Google Scholar] [CrossRef]
- Khan, Z.; Hussain, M.; Shahbaz, M.; Yang, S.; Jiao, Z. Natural resource abundance, technological innovation, and human capital nexus with financial development: A case study of China. Resour. Policy 2020, 65, 101585. [Google Scholar] [CrossRef]
- Bayer, C.; Hanck, C. Combining non-cointegration tests. J. Time Ser. Anal. 2013, 34, 83–95. [Google Scholar] [CrossRef]
- Weber, O.; Banks, Y. Corporate sustainability assessment in financing the extractive sector. J. Sustain. Financ. Invest. 2012, 2, 64–81. [Google Scholar]
- Schoenmaker, D.; Schramade, W. Principles of Sustainable Finance; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Nabeeh, N.A.; Abdel-Basset, M.; Soliman, G. A model for evaluating green credit rating and its impact on sustainability performance. J. Clean. Prod. 2021, 280, 124299. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, A.M.; Fooladi, I.J. Sustainable finance: A new paradigm. Glob. Finance J. 2013, 24, 101–113. [Google Scholar] [CrossRef]
- Jeucken, M. Sustainable Finance and Banking: The Financial Sector and the Future of the Planet; Earthscan: London, UK, 2010. [Google Scholar]
- Canto-Cuevas, F.-J.; Palacín-Sánchez, M.-J.; Di Pietro, F. Trade credit as a sustainable resource during an SME’s life cycle. Sustainability 2019, 11, 670. [Google Scholar] [CrossRef]
- Quatrini, S. Challenges and opportunities to scale up sustainable finance after the COVID-19 crisis: Lessons and promising innovations from science and practice. Ecosyst. Serv. 2021, 101240, 101240. [Google Scholar] [CrossRef]
- Sharma, G.D.; Talan, G.; Bansal, S.; Jain, M. Is there a cost for sustainable investments: Evidence from dynamic conditional correlation. J. Sustain. Financ. Invest. 2021, 1–21. [Google Scholar] [CrossRef]
- Migliorelli, M. What Do We Mean by Sustainable Finance? Assessing Existing Frameworks and Policy Risks. Sustainability 2021, 13, 975. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Elmagrhi, M.H.; Ntim, C.G.; Wu, Y. Environmental performance, sustainability, governance and financial performance: Evidence from heavily polluting industries in China. Bus. Strat. Environ. 2021. [Google Scholar] [CrossRef]
- Shobande, O.A. The effects of energy use on infant mortality rates in Africa. Environ. Sustain. Indic. 2020, 5, 100015. [Google Scholar] [CrossRef]
- Shobande, O.A. Effects of Energy Use on Socioeconomic Predictors in Africa: Synthesizing Evidence. Studia Univ. Vasile Goldiş Arad Seria Ştiinţe Econ. 2019, 29, 21–40. [Google Scholar] [CrossRef]
- Ziolo, M.; Bak, I.; Cheba, K. The role of sustainable finance in achieving sustainable development goals: Does it work? Technol. Econ. Dev. Econ. 2020, 27, 45–70. [Google Scholar] [CrossRef]
- Yoshino, N.; Taghizadeh-Hesary, F.; Otsuka, M. Covid-19 and Optimal Portfolio Selection for Investment in Sustainable Development Goals. Finance Res. Lett. 2021, 38, 101695. [Google Scholar] [CrossRef]
- Bernardini, E.; Di Giampaolo, J.; Faiella, I.; Poli, R. The impact of carbon risk on stock returns: Evidence from the European electric utilities. J. Sustain. Financ. Invest. 2021, 11, 1–26. [Google Scholar] [CrossRef]
- Akomea-Frimpong, I.; Adeabah, D.; Ofosu, D.; Tenakwah, E.J. A review of studies on green finance of banks, research gaps and future directions. J. Sustain. Financ. Invest. 2021, 1–24. [Google Scholar] [CrossRef]
- Piñeiro-Chousa, J.; López-Cabarcos, M.Á.; Caby, J.; Šević, A. The influence of investor sentiment on the green bond market. Technol. Forecast. Soc. Chang. 2021, 162, 120351. [Google Scholar] [CrossRef]
- Okonjo, J. International Financial Regulation and Sustainable Finance. In Encyclopedia of Law and Development; Edward Elgar Publishing: Cheltenham, UK, 2021. [Google Scholar]
- Hegeman, P.D.; Sørheim, R. Why do they do it? Corporate venture capital investments in cleantech start-ups. J. Clean. Prod. 2021, 294, 126315. [Google Scholar] [CrossRef]
- Shobande, O.A.; Shodipe, O.T. Monetary Policy Interdependency in Fisher Effect: A Comparative Evidence. J. Cent. Bank. Theory Pract. 2021, 10, 203–226. [Google Scholar] [CrossRef]
- Weber, O. Environmental Credit Risk Management in Banks and Financial Service Institutions. Bus. Strat. Environ. 2012, 21, 248–263. [Google Scholar] [CrossRef]
- Sanchez-Roger, M.; Oliver-Alfonso, M.D.; Sanchís-Pedregosa, C. Bail-in a sustainable mechanism for rescuing banks. Sustainability 2018, 10, 3789. [Google Scholar] [CrossRef]
- Anagnostopoulos, T.; Skouloudis, A.; Khan, N.; Evangelinos, K. Incorporating Sustainability Considerations into Lending Decisions and the Management of Bad Loans: Evidence from Greece. Sustainability 2018, 10, 4728. [Google Scholar] [CrossRef]
- Escrig-Olmedo, E.; Fernández-Izquierdo, M.Á.; Ferrero-Ferrero, I.; Rivera-Lirio, J.M.; Muñoz-Torres, M.J. Rating the Raters: Evaluating how ESG Rating Agencies Integrate Sustainability Principles. Sustainability 2019, 11, 915. [Google Scholar] [CrossRef]
- Korzeb, Z.; Samaniego-Medina, R. Sustainability Performance: A Comparative Analysis in the Polish Banking Sector. Sustainability 2019, 11, 653. [Google Scholar] [CrossRef]
- Gianfrate, G.; Lorenzato, G. Stimulating Non-Bank Financial Institutions’ Participation in Green Investments; ADBI Working Paper No. 860; ADBI: Tokyo, Japan, 2018. [Google Scholar]
- Busch, T.; Bauer, R.; Orlitzky, M. Sustainable development and financial markets: Old paths and new avenues. Bus. Soc. 2016, 55, 303–329. [Google Scholar] [CrossRef]
- Zhu, B.; Zhai, S.; He, J. Is the Development of China’s Financial Inclusion Sustainable? Evidence from a Perspective of Balance. Sustainability 2018, 10, 1200. [Google Scholar] [CrossRef]
- Tolliver, C.; Fujii, H.; Keeley, A.R.; Managi, S. Green Innovation and Finance in Asia. Asian Econ. Policy Rev. 2021, 16, 67–87. [Google Scholar] [CrossRef]
- Flammer, C. Corporate green bonds. J. Financ. Econ. 2021. [Google Scholar] [CrossRef]
- Galbreath, J. ESG in Focus: The Australian Evidence. J. Bus. Ethics 2013, 118, 529–541. [Google Scholar] [CrossRef]
- Razak, L.A.; Ibrahim, M.H.; Ng, A. Which Sustainability Dimensions Affect Credit Risk? Evidence from Corporate and Country-Level Measures. J. Risk Financ. Manag. 2020, 13, 316. [Google Scholar] [CrossRef]
- Capasso, G.; Gianfrate, G.; Spinelli, M. Climate Change and Credit Risk. Available online: https://www.longfinance.net/media/documents/eri_wp_climatechange_creditrisk_2020_1.pdf (accessed on 2 February 2021).
- Bauer, R.; Hann, D. Corporate Environmental Management and Credit Risk. SSRN Electron. J. 2010. [Google Scholar] [CrossRef]
- Chava, S. Environmental externalities and cost of capital. Manag. Sci. 2014, 60, 2223–2247. [Google Scholar] [CrossRef]
- Faisal, F.; Sulaiman, Y.; Tursoy, T. Does an asymmetric nexus exist between financial deepening and natural resources for emerging economy? Evidence from multiple break cointegration test. Resour. Policy 2019, 64, 101512. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Hodler, R. Do Natural Resource Revenues Hinder Financial Development? The Role of Political Institutions. World Dev. 2014, 57, 101–113. [Google Scholar] [CrossRef]
- Kurronen, S. Financial sector in resource-dependent economies. Emerg. Mark. Rev. 2015, 23, 208–229. [Google Scholar] [CrossRef]
- Benigno, G.; Fornaro, L.; Wolf, M. The Global Financial Resource Curse; Staff Report No. 915; Federal Reserve Bank of New York: New York, NY, USA, 2020. [Google Scholar]
- Canh, N.P.; Thong, N.T. Nexus between financialisation and natural resources rents: Empirical evidence in a global sample. Resour. Policy 2020, 66, 101590. [Google Scholar] [CrossRef]
- Khan, H.U.R.; Islam, T.; Yousaf, S.U.; Zaman, K.; Shoukry, A.M.; Sharkawy, M.A.; Gani, S.; Aamir, A.; Hishan, S.S. The impact of financial development indicators on natural resource markets: Evidence from two-step GMM estimator. Resour. Policy 2019, 62, 240–255. [Google Scholar] [CrossRef]
- Guan, J.; Kirikkaleli, D.; Bibi, A.; Zhang, W. Natural resources rent nexus with financial development in the presence of globalisation: Is the “resource curse” exist or myth? Resour. Policy 2020, 66, 101641. [Google Scholar] [CrossRef]
- Yıldırım, S.; Gedikli, A.; Erdoğan, S.; Yıldırım, D.Ç. Natural resources rents-financial development nexus: Evidence from sixteen developing countries. Resour. Policy 2020, 68, 101705. [Google Scholar] [CrossRef]
- Gokmenoglu, K.K.; Rustamov, B. Examining the World Bank Group lending and natural resource abundance induced financial development in KART countries. Resour. Policy 2019, 63, 101433. [Google Scholar] [CrossRef]
- Yuxiang, K.; Chen, Z. Resource abundance and financial development: Evidence from China. Resour. Policy 2011, 36, 72–79. [Google Scholar] [CrossRef]
- Asiedu, E.; Kalonda-Kanyama, I.; Ndikumana, L.; Nti-Addae, A. Access to Credit by Firms in Sub-Saharan Africa: How Relevant is Gender? Am. Econ. Rev. 2013, 103, 293–297. [Google Scholar] [CrossRef]
- Asiedu, E.; Kalonda-Kanyama, I.; Ndikumana, L.; Nti-Addae, A. Replication data for: Access to Credit by Firms in Sub-Saharan Africa: How Relevant Is Gender? American Economic Association: Nashville, TN, USA, 2019. [Google Scholar]
- Shahbaz, M. Does financial instability increase environmental degradation? Fresh evidence from Pakistan. Econ. Model. 2013, 33, 537–544. [Google Scholar] [CrossRef]
- Beck, T.; Poelhekke, S. Follow the Money: Does the Financial Sector Intermediate Natural Resource Windfalls? Tinbergen Institute Discussion Paper 2017-027/VIII; Tinbergen Institute: Amsterdam, The Netherlands, 2017; 48p. [Google Scholar]
- Shobande, O.A.; Shodipe, O.T. Carbon policy for the United States, China and Nigeria: An estimated dynamic stochastic general equilibrium model. Sci. Total. Environ. 2019, 697, 134130. [Google Scholar] [CrossRef]
- Alvarado, R.; Tillaguango, B.; López-Sánchez, M.; Ponce, P.; Işık, C. Heterogeneous impact of natural resources on income inequality: The role of the shadow economy and human capital index. Econ. Anal. Policy 2021, 69, 690–704. [Google Scholar] [CrossRef]
- Granger, C.W.J.; Elliott, C.M. A Fresh Look at Wheat Prices and Markets in the Eighteenth Century. Econ. Hist. Rev. 1967, 20, 257. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Akaike, H. Likelihood of a model and information criteria. J. Econ. 1981, 16, 3–14. [Google Scholar] [CrossRef]
- Akaike, H. Prediction and Entropy. In A Celebration of Statistics; Atkinson, A.C., Fienberg, S.E., Eds.; Springer International Publishing: New York, NY, USA, 1985; pp. 387–410. [Google Scholar]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Hannan, E.J.; Quinn, B.G. The Determination of the Order of an Autoregression. J. R. Stat. Soc. Ser. B Stat. Methodol. 1979, 41, 190–195. [Google Scholar] [CrossRef]
- Perron, P. The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis. Econometrica 1989, 57, 1361. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Seshadri, U.; Kumar, P.; Aqdas, R.; Patwary, A.K.; Riaz, M. Nexus between green finance and climate change mitigation in N-11 and BRICS countries: Empirical estimation through difference in differences (DID) approach. Environ. Sci. Pollut. Res. 2020, 28, 6504–6519. [Google Scholar] [CrossRef]
- Chishti, M.Z.; Ahmad, M.; Rehman, A.; Khan, M.K. Mitigations pathways towards sustainable development: Assessing the influence of fiscal and monetary policies on carbon emissions in BRICS economies. J. Clean. Prod. 2021, 292, 126035. [Google Scholar] [CrossRef]
- Baltagi, B.H. Econometric Analysis of Data Panel; John Wiley & Sons Ltd.: Chichester, UK, 2005. [Google Scholar]
- Stock, J.H.; Watson, M.W. Why Has U.S. Inflation Become Harder to Forecast? J. Money, Crédit. Bank. 2007, 39, 3–33. [Google Scholar] [CrossRef]
- Brooks, C. Introductory Econometrics for Finance; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Engle, R.F.; Granger, C.W.J. Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrica 1987, 55, 251. [Google Scholar] [CrossRef]
- Johansen, S. Statistical analysis of cointegration vectors. J. Econ. Dyn. Control. 1988, 12, 231–254. [Google Scholar] [CrossRef]
- Carrion-I-Silvestre, J.L.; Sansó, A. Testing the Null of Cointegration with Structural Breaks. Oxf. Bull. Econ. Stat. 2006, 68, 623–646. [Google Scholar] [CrossRef]
- Johansen, S. Identifying restrictions of linear equations with applications to simultaneous equations and cointegration. J. Econ. 1995, 69, 111–132. [Google Scholar] [CrossRef]
- Boswijk, H.P. Testing for an unstable root in conditional and structural error correction models. J. Econ. 1994, 63, 37–60. [Google Scholar] [CrossRef]
- Banerjee, A.; Dolado, J.J.; Mestre, R. Error-correction Mechanism Tests for Cointegration in a Single-equation Framework. J. Time Ser. Anal. 1998, 19, 267–283. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical Methods for Research Workers, 4th ed.; Oliver & Boyd: Edinburgh, UK, 1932. [Google Scholar]
- Götz, T.B.; Hecq, A.; Smeekes, S. Testing for Granger causality in large mixed-frequency VARs. J. Econ. 2016, 193, 418–432. [Google Scholar] [CrossRef]
- Liu, H.; Song, H. New Evidence of Dynamic Links between Tourism and Economic Growth Based on Mixed-Frequency Granger Causality Tests. J. Travel Res. 2018, 57, 899–907. [Google Scholar] [CrossRef]
- Ghysels, E.; Hill, J.B.; Motegi, K. Testing a large set of zero restrictions in regression models, with an application to mixed frequency Granger causality. J. Econ. 2020, 218, 633–654. [Google Scholar] [CrossRef]
- Hill, J.B.; Motegi, K. A max-correlation white noise test for weakly dependent time series. Econom. Theory 2020, 36, 907–960. [Google Scholar] [CrossRef]
- Inoue, A.; Kilian, L. The uniform validity of impulse response inference in autoregressions. J. Econom. 2020, 215, 450–472. [Google Scholar] [CrossRef]
Variables | Nigeria | Ghana | Observation | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
nat | 14.96 | 8.19 | 9.5 | 4.33 | 50 |
finc | 8.9 | 3.40 | 8.74 | 4.97 | 50 |
env | 0.63 | 0.21 | 0.32 | 0.10 | 50 |
HDI | 1.36 | 0.23 | 1.84 | 0.37 | 50 |
Variable | Nigeria | Ghana | ||
---|---|---|---|---|
I(0) | I(1) | I(0) | I(1) | |
nat | −2.05 | −3.74 ** | −1.82 | −8.07 ** |
finc | −2.13 | −7.86 ** | −1.77 | −10.15 ** |
envv | −0.25 | −7.35 ** | −0.19 | −9.44 ** |
HDI | −1.91 | −5.1 ** | −0.89 | −6.51 ** |
Lag | LogL | LR | FPE | SC | HQ | |
---|---|---|---|---|---|---|
0 | −166.8485 | NA | 0.019776 | 7.428194 | 7.587206 | 7.487761 |
1 | 102.1234 | 479.4716 | 3.32 × 10−7 | −3.570583 | −2.775521 * | −3.272748 |
2 | 132.2036 | 48.38991 * | 1.83 × 10−7 * | −4.182766 * | −2.751655 | −3.646663 * |
Lag | LogL | LR | FPE | AIC | SC | HQ |
---|---|---|---|---|---|---|
0 | −274.1889 | NA | 2.103685 | 12.09517 | 12.25418 | 12.15474 |
1 | −55.54414 | 389.7581 | 0.000315 | 3.284528 | 4.079589 | 3.582363 |
2 | −9.435637 | 74.17455 * | 8.65 × 10−5 * | 1.975462 * | 3.406573 * | 2.511565 * |
Nigeria | |||
Fitted Model | EG-JOH | EG–JOH–BO-BDM | Cointegration Remarks |
nat = f (finc) | 45.20 *** | 67.78 *** | Yes |
nat = f (finc, env) | 45.95 *** | 74.3 *** | Yes |
nat = f (finc, env, HDI) | 47.40 *** | 86.2 *** | Yes |
Ghana | |||
Fitted Model | EG-JOH | EG–JOH–BO-BDM | Cointegration Remarks |
nat = f (finc) | 61.25 *** | 88.46 *** | Yes |
nat = f (finc, env) | 63.51 *** | 101.7 *** | Yes |
nat = f (finc, env, HDI) | 71.20 *** | 114.18 *** | Yes |
1% critical values | 15.70 | 29.8 | |
5% critical values | 10.4 | 19.8 |
Nigeria | |||||
Independent Variable | Dependent Variable | Long-Run | |||
- | 5.91 ** | 10.77 ** | 0.72 | −0.27 ** | |
[0.04] | [0.01] | [0.69] | (0.13) | ||
11.72 ** | - | 7.52 ** | 0.96 | −0.0006 ** | |
[0.00] | [0.00] | [0.61] | (0.00) | ||
5.45 ** | 18.13 *** | - | 7.44 ** | 0.11 ** | |
[0.04] | [0.00] | [0.00] | (0.01) | ||
2.26 | 14.07 *** | 3.09 | - | −0.0006 ** | |
[0.31] | [0.00] | [0.21] | (0.00) | ||
Ghana | |||||
Independent Variable | Dependent Variable | Long-Run | |||
- | 2.65 | 7.19 ** | 4.89 ** | −0.0025 ** | |
[0.26] | [0.02] | [0.03] | (0.00) | ||
8.66 *** | - | 8.56 ** | - | −0.0001 *** | |
[0.00] | [0.01] | (0.00) | |||
3.98 ** | 2.44 | - | 0.27 | −0.00008 * | |
[0.00] | [0.29] | [0.89] | (0.00) | ||
5.05 ** | 12.20 *** | 6.17 ** | - | 0.005 *** | |
[0.00] | [0.00] | [0.04] | (0.00) |
Forecast Period | F-Statistics | p-Value of F-Statistics | Log-Likelihood ratio | p-Value of Log of Likelihood |
---|---|---|---|---|
1985–2015 | 78.22 | 0.601 | 121.93 | 0.201 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shobande, O.A.; Enemona, J.O. A Multivariate VAR Model for Evaluating Sustainable Finance and Natural Resource Curse in West Africa: Evidence from Nigeria and Ghana. Sustainability 2021, 13, 2847. https://doi.org/10.3390/su13052847
Shobande OA, Enemona JO. A Multivariate VAR Model for Evaluating Sustainable Finance and Natural Resource Curse in West Africa: Evidence from Nigeria and Ghana. Sustainability. 2021; 13(5):2847. https://doi.org/10.3390/su13052847
Chicago/Turabian StyleShobande, Olatunji Abdul, and Joseph Onuche Enemona. 2021. "A Multivariate VAR Model for Evaluating Sustainable Finance and Natural Resource Curse in West Africa: Evidence from Nigeria and Ghana" Sustainability 13, no. 5: 2847. https://doi.org/10.3390/su13052847
APA StyleShobande, O. A., & Enemona, J. O. (2021). A Multivariate VAR Model for Evaluating Sustainable Finance and Natural Resource Curse in West Africa: Evidence from Nigeria and Ghana. Sustainability, 13(5), 2847. https://doi.org/10.3390/su13052847