Climate Change along the Silk Road and Its Influence on Scythian Cultural Expansion and Rise of the Mongol Empire
Abstract
:1. Introduction
2. Study Region
3. Materials and Methods
No. | Name | Lat. (°N) | Long. (°E) | Alt. (Meter) | Proxies | Proxy Indication | Climate Conditions | References |
---|---|---|---|---|---|---|---|---|
1 | Caspian Sea | 41.62 | 50.95 | −27 | Shorelines/beach ridges | Lake level | 750–250 BC, and since 1280 AD: high level | Kroonenberg et al., 2007 [28]; Kakroodi et al., 2012 [29] |
Pollen | Lake level | 1350, 1352, and 1408 AD: high lake level | Haghani et al., 2016 [30] | |||||
Pollen | Lake level | 650BC–50 AD: high lake level | Ramezani et al., 2016 [31] | |||||
2 | Aral Sea | 45.02 | 59.50 | 29 | Diatom | Lake level, salinity, and conductivity | LIA: high lake level and low salinity | Sorrel et al., 2006 [32]; Austin et al., 2007 [33] |
3 | Lake Kyrtyma | 56.99 | 65.83 | 54 | Plant macrofossils and geochemical indices | Moisture and temperature | 850–50 BC: wetting and cold | Ryabogina et al., 2019 [34] |
4 | Oshukovsko Peat bog | 57.05 | 65.86 | 55 | Plant macrofossils | Moisture and temperature | 850–50 BC: wet and cold | Ryabogina et al., 2019 [34] |
5 | Lake Balkhash | 46.54 | 74.86 | 340 | XRF, pollen, diatom, and ostracod | Lake level | 1200–1400 AD: high lake level | Endo et al., 2012 [35] |
Pollen | Precipitation and temperature | Since 550 BC: increased precipitation and cold | Feng et al., 2013 [36] | |||||
Shorelines and pollen | Lake level | 750–1150 AD: low lake levelSince 1250 AD: high lake level | Sala et al., 2017 [37] | |||||
6 | Lake Son Kol | 41.85 | 75.14 | 3014 | Alkane δDn-C29 | Moisture | LIA: wet | Lauterbach et al., 2014 [38] |
7 | West Tianshan tree ring | 41.67 | 76.43 | 2700–3900 | Ring width | Temperature | LIA: cold | Esper et al., 2002 [39] |
8 | Lake Issyk-kul | 42.50 | 77.10 | 1603 | Shorelines and historical document | Lake level | 13–19th AD: high lake level | Romanovsky, 2002 [40] |
Historical document and archeological data | Lake level | 11th BC–1st AD: 12–13 m high than model lake level | Romanovsky, 2002 [40] | |||||
Historical map | Lake level | 15–19th AD: high lake level | Narama et al., 2010 [41] | |||||
9 | Lake Sasikul | 37.70 | 73.18 | 3816 | TIC and its δ18O | Moisture | LIA: wet | Lei et al., 2014 [42] |
10 | Lake Karakul | 38.48 | 75.01 | 3645 | leaf wax δD | Moisture | LIA: wet | Aichner et al., 2015 [43] |
XRF and grain size | Temperature and glacier fluctuation | 1000–350 BC and LIA: decreased temperature and glacier advance | Liu et al., 2014 [44] | |||||
11 | Kongur Mt. | 38.64 | 75.04 | 4178 | Moraine | Temperature and glacier fluctuation | LIA: decreased temperature and glacier advance | Seong et al., 2009 [45] |
12 | Muztag Ata | 38.35 | 75.17 | 4228 | Moraine | Temperature and glacier fluctuation | LIA: decreased temperature and glacier advance | Seong et al., 2009 [45] |
13 | Guliya ice core | 35.28 | 81.48 | 6710 | Net accumulation rate | Precipitation | LIA: increased precipitation | Thomspon et al., 1995 [46]; Yao et al., 1996 [47] |
14 | Keriya River | 37.86 | 81.51 | 1350 | Terrace | Precipitation | LIA: increased precipitation | Yang et al., 2002 [48] |
15 | Niya section | 37.13 | 82.78 | 1371 | Carbonate δ13C and grain size | Moisture | Since 1000 BC: wet | Zhong et al., 2004 [49] |
16 | Lake Sayram | 44.61 | 81.16 | 2074 | TOC, C/N, grain size, carbonate content and its δ18O-δ13C | Moisture and precipitation | 850–210 BC and 1060–1670 AD: wet and increased precipitation | Lan et al., 2019 [17]; Lan et al., 2020a [15] |
17 | Lake Ebinur | 44.88 | 82.97 | 195 | Pollen and carbonate δ18O | Moisture/lake level | LIA: wet and high lake level | Ma et al., 2011 [50]; Wang et al., 2013 [51] |
18 | Lake Harnur | 43.11 | 83.97 | 2941 | Grain size | Precipitation and temperature | 1300–1870 AD: increased precipitation and cold | Lan et al., 2018 [22] |
19 | Lake Manas | 45.83 | 85.97 | 244 | Alkenone %C37:4 | Salinity/lake level | LIA: low salinity and high lake level | Song et al., 2015 [52] |
Alkenone UK’37 | Temperature | LIA: cold | Song et al., 2015 [52] | |||||
20 | Lake Bosten | 41.99 | 86.98 | 1051 | Grain size, TOC, pollen, carbonate content and its δ18O-δ13C | Moisture | 1050–220 BC and LIA: wet | Chen et al., 2006 [53]; Zhang et al., 2010 [54]; Zhou et al., 2020 [55] |
21 | Eastern Tarim Basin | 39.77 | 88.38 | 814 | Plant δ13C | Moisture | LIA: wet | Liu et al., 2011 [56] |
22 | Lop Nur | 39.71 | 89.92 | 791 | Shorelines | Lake level | 1180 AD: high level | Putnam et al., 2016 [57] |
23 | Lake Gahai | 37.13 | 97.55 | 2852 | Alkenone UK’37 | Temperature | LIA: cold | He et al., 2013 [58] |
24 | Big Black peat | 48.67 | 87.18 | 2167 | Cellulose δ18O | Moisture | LIA: wet | Xu et al., 2019 [16] |
25 | Lake Uzunkol | 50.48 | 87.11 | 1985 | Pollen | Temperature | 850–250 BC: cold | Blyakharchuk et al., 2004 [59] |
26 | LakeKendegelukol | 50.49 | 87.65 | 2050 | Pollen | Moisture | 850–150 BC: wet | Blyakharchuk et al., 2004 [59] |
27 | Kuray Basin | 50.13 | 88.85 | 2330 | Pollen | Moisture | 950–210 BC: wet | Schlütz and Lehmkuhl, 2007 [60] |
28 | Lake Teletskoye | 51.70 | 87.65 | 430 | Pollen | Temperature | Since 1250 AD: cold | Rudaya et al., 2016 [61] |
29 | Lake Shira | 54.51 | 90.19 | 349 | Pollen | Moisture | Since 1200 AD: wet | Hildebrandt et al., 2015 [62] |
30 | Lake Kutuzhekovo | 53.59 | 91.94 | 320 | Pollen | Moisture | 850–50 BC: wet | Dirksen and van Geel, 2004 [63]; van Geel et al., 2004 [25] |
31 | Lake Shushenskoe | 53.31 | 92.05 | 272 | Pollen | Moisture | 880–150 BC: wet | Dirksen et al., 2007 [64] |
32 | Lake Big Kyzykul | 53.73 | 92.11 | 342 | Pollen | Moisture | 930 BC–400 AD: wet | Dirksen et al., 2007 [64] |
33 | Lugovoe peat | 52.86 | 93.36 | 1299 | Pollen | Moisture | 900–400 BC: wet | Blyakharchuk et al., 2019 [65] |
34 | Lake White | 52.07 | 93.71 | 830 | Pollen | Moisture | 850–50 BC: wet | Dirksen and van Geel, 2004 [63]; van Geel et al., 2004 [25] |
35 | Uvs Nuur | 50.32 | 92.72 | 760 | Shoreline | Lake level | 850 BC: high lake level | Grunert et al., 2000 [66] |
36 | Bayan Nuur | 48.46 | 95.11 | 1505 | Pollen | Moisture | 1150–1850 AD: wet | Yang et al., 2020 [67] |
37 | Lake Telmen | 48.83 | 97.29 | 1789 | Pollen, CaCO3, X-ray mineralogy, diatom, ostracod, TOC, δ13C | Moisture | Since 760 BC: wet | Peck et al., 2002 [68] |
38 | Lake Khuisiin | 46.61 | 101.76 | 2280 | Pollen | Moisture | 1380–1830 AD: wet | Tian et al., 2013 [69] |
39 | Ugii Nuur | 47.76 | 102.77 | 1332 | Pollen | Moisture | 850–250 BC: wet | Wang et al., 2009 [70]; Wang et al., 2011 [71] |
40 | Badain Jaran Desert | 39.77 | 102.40 | 1398 | Chloride concentration | Recharge rate of groundwater/Moisture | LIA: wet | Ma and Edmunds, 2006 [72]; Gates et al., 2008 [73] |
4. Synthesis
4.1. Climate Variations during Key Intervals of the Past 3000 Years
4.1.1. Temperature and Glacier Fluctuations
4.1.2. Hydroclimatic Variations
4.2. Scythian Culture Blooming and Expansion
4.3. The Rise of the Mongol Empire and Its Expansion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, F.H.; An, C.B.; Dong, G.H.; Zhang, D.J. The Silk Road and the Pan-Third Pole area, human activities, environmental changes and the rise and fall of the Silk Road civilization. Proc. Chin. Acad. Sci. 2017, 32, 967–975. [Google Scholar]
- Chen, X. Physical Geography of Arid Land in China; Science Press: Beijing, China, 2010. [Google Scholar]
- Chen, F.H.; Chen, J.H.; Holmes, J.; Boomer, I.; Austin, P.; Gates, J.B.; Wang, N.L.; Brooks, S.J.; Zhang, J.W. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat. Sci. Rev. 2010, 29, 1055–1068. [Google Scholar] [CrossRef]
- Ascensão, F.; Fahrig, L.; Clevenger, A.; Corlett, R.; Jaeger, J.; Laurance, W.; Pereira, H. Environmental challenges for the Belt and Road Initiative. Nat. Sustain. 2018, 1, 206–209. [Google Scholar] [CrossRef]
- An, C.B.; Zhang, M.; Wang, W.; Liu, Y.; Duan, F.T.; Dong, W.M. The characterisisc of geographical environment and the F ormation of the Pattern of agriculture and animal husbandry in Xinjiang. Sci. China Earth Sci. 2020, 50, 295–304. [Google Scholar]
- Zhou, X.; Yu, J.; Spengler, R.N.; Shen, H.; Zhao, K.; Ge, J.; Bao, Y.; Liu, J.; Yang, Q.; Chen, G.; et al. 5,200-year-old cereal grains from the eastern Altai Mountains redate the trans-Eurasian crop exchange. Nat. Plants 2020, 6, 78–87. [Google Scholar] [CrossRef]
- Spengler, R. Fruit from the Sands: The Silk Road Origins of the Foods We Eat; University of California Press: Berkeley, CA, USA, 2019. [Google Scholar]
- Tan, L.C.; Dong, G.H.; An, Z.S.; Edwards, R.L.; Li, H.M.; Li, D.; Spengler, R.; Cai, Y.J.; Cheng, H.; Lan, J.H.; et al. Megadrought and cultural exchange along the proto-silk road. Sci. Bull. 2021, 66, 603–611. [Google Scholar] [CrossRef]
- Pagel, M.; Atkinson, Q.D.; SCalude, A.; Meade, A. Ultraconserved words point to deep language ancestry across Eurasia. Proc. Natl. Acad. Sci. USA 2013, 110, 8471–8476. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Yan, S.; Pan, W.; Jin, L. Phylogenetic evidence for Sino-Tibetan origin in northern China in the Late Neolithic. Nature 2019, 569, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Lioubimtseva, E. Climate change in arid environments: Revisiting the past to understand the future. Prog. Phys. Geogr. 2004, 28, 502–530. [Google Scholar] [CrossRef]
- Neukom, R.; Steiger, N.; Gomez-Navarro, J.J.; Wang, J.H.; Werner, J.P. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 2019, 571, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Aizen, E.M.; Aizen, V.B.; Melack, J.M.; Nakamura, T.; Ohta, T. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int. J. Climatol. 2001, 21, 535–556. [Google Scholar] [CrossRef]
- Lan, J.H.; Xu, H.; Lang, Y.C.; Yu, K.K.; Zhou, P.; Kang, S.G.; Wang, X.L.; Wang, T.L.; Cheng, P.; Yan, D.N.; et al. Dramatic weakening of the East Asian summer monsoon in northern China during the transition from the Medieval Warm Period to the Little Ice Age. Geology 2020, 48, 307–312. [Google Scholar] [CrossRef]
- Lan, J.H.; Zhang, J.; Cheng, P.; Ma, X.L.; Ai, L.; Chawchai, S.; Zhou, K.E.; Wang, T.L.; Yu, K.K.; Sheng, E.G.; et al. Late Holocene hydroclimatic variation in central Asia and its response to mid-latitude Westerlies and solar irradiance. Quat. Sci. Rev. 2020, 238, 106330. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, K.E.; Lan, J.H.; Zhang, G.L.; Zhou, X.Y. Arid Central Asia saw mid-Holocene drought. Geology 2019, 47, 255–258. [Google Scholar] [CrossRef]
- Lan, J.H.; Xu, H.; Yu, K.K.; Sheng, E.G.; Zhou, K.E.; Wang, T.L.; Ye, Y.D.; Yan, D.N.; Wu, H.X.; Cheng, P.; et al. Late Holocene hydroclimatic variations and possible forcing mechanisms over the eastern Central Asia. Sci. China Earth Sci. 2019, 62, 1288–1301. [Google Scholar] [CrossRef]
- Lan, J.H.; Wang, T.L.; Dong, J.B.; Kang, S.G.; Cheng, P.; Zhou, K.E.; Liu, X.X.; Wang, Y.Q.; Ma, L. The influence of ice sheet and solar insolation on Holocene moisture evolution in northern Central Asia. Earth Sci. Rev. 2021. Under Review. [Google Scholar]
- Zakh, V.A.; Ryabogina, N.E.; Chlachula, J. Climate and environmental dynamics of the mid- to late Holocene settlement in the Tobol–Ishim forest-steppe region, West Siberia. Quat. Int. 2010, 220, 95–101. [Google Scholar] [CrossRef]
- Zhilich, S.; Rudaya, N.; Krivonogov, S.; Nazarova, L.; Pozdnyakov, D. Environmental dynamics of the Baraba forest-steppe (Siberia) over the last 8000 years and their impact on the types of economic life of the population. Quat. Sci. Rev. 2017, 163, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Chen, X.; Li, Y.; Wang, W.; Sun, A.; Yang, Y.; Ran, M.; Feng, Z. Response of vegetation to Holocene evolution of westerlies in the Asian Central Arid Zone. Quat. Sci. Rev. 2020, 229, 106138. [Google Scholar] [CrossRef]
- Lan, J.H.; Xu, H.; Sheng, E.G.; Yu, K.K.; Wu, H.X.; Zhou, K.E.; Yan, D.N.; Ye, Y.D.; Wang, T.L. Climate changes reconstructed from a glacial lake in High Central Asia over the past two millennia. Quat. Int. 2018, 487, 43–53. [Google Scholar] [CrossRef]
- Stuiver, M.; Reimer, P.J. Extend 14C data base and revised calib 3.0 14C age calibration program. Radiocarbon 1993, 35, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Bronk Ramsey, C.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Van Geel, B.; Bokovenko, N.A.; Burova, N.D.; Chugunov, K.V.; Dergachev, V.A.; Dirksen, V.G.; Kulkova, M.; Nagler, A.; Parzinger, H.; van der Plicht, J.; et al. Climate change and the expansion of the Scythian culture after 850 BC: A hypothesis. J. Archaeol. Sci. 2004, 31, 1735–1742. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T. Scythians and Xiongnu Nomadic Civilization; Xinbei Eight Banners Cult./Hik. Cult. Enterp. Co. LTD.: Taipei, Taiwan, 2019. [Google Scholar]
- Sugiyama, M. The Long Legacy of the Mongol Empire; Xinbei Eight Banners Cult./Hik. Cult. Enterp. Co. LTD.: Taipei, Taiwan, 2019. [Google Scholar]
- Kroonenberg, S.B.; Abdurakhmanov, G.M.; Badyukova, E.N.; Van der Borg, K.; Kalashnikov, A.; Kasirnov, N.S.; Rychagov, G.I.; Svitoch, A.A.; Vonhof, H.B.; Wesselingh, F.P. Solar-forced 2600 BP and little ice age highstands of the Caspian sea. Quat. Int. 2007, 173, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Kakroodi, A.A.; Kroonenberg, S.B.; Hoogendoorn, R.M.; Mohammd Khani, H.; Yamani, M.; Ghassemi, M.R.; Lahijani, H.A.K. Rapid Holocene sea-level changes along the Iranian Caspian coast. Quat. Int. 2012, 263, 93–103. [Google Scholar] [CrossRef]
- Haghani, S.; Leroy, S.A.G.; Khdir, S.; Kabiri, K.; Beni, A.N.; Lahijani, H.A.K. An early “Little Ice Age” brackish water invasion along the south coast of the Caspian Sea (sediment of Langarud wetland) and its wider impacts on environment and people. Holocene 2016, 26, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Ramezani, E.; Mrotzek, A.; Mohadjer, M.R.M.; Kakroodi, A.A.; Kroonenberg, S.B.; Joosten, H. Between the mountains and the sea: Late Holocene Caspian Sea level fluctuations and vegetation history of the lowland forests of northern Iran. Quat. Int. 2016, 408, 52–64. [Google Scholar] [CrossRef]
- Sorrel, P.; Popescu, S.M.; Head, M.J.; Suc, J.P.; Klotz, S.; Oberhansli, H. Hydrographic development of the Aral Sea during the last 2000 years based on a quantitative analysis of dinoflagellate cysts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 234, 304–327. [Google Scholar] [CrossRef]
- Austin, P.; Mackay, A.; Palagushkina, O.; Leng, M. A high-resolution diatom-inferred palaeoconductivity and lake level record of the Aral Sea for the last 1600 yr. Quat. Res. 2007, 67, 383–393. [Google Scholar] [CrossRef]
- Ryabogina, N.E.; Afonin, A.S.; Ivanov, S.N.; Li, H.-C.; Kalinin, P.A.; Udaltsov, S.N.; Nikolaenko, S.A. Holocene paleoenvironmental changes reflected in peat and lake sediment records of Western Siberia: Geochemical and plant macrofossil proxies. Quat. Int. 2019, 528, 73–87. [Google Scholar] [CrossRef]
- Endo, K.; Sugai, T.; HaragucIli, T.; CIliba, T.; Kondo, R.; Nakao, Y.; Nakayama, Y.; Suzuki, S.; SIlimizu, I.; Sato, A.; et al. Lake level changes and environmental evolution during the last 8000 years based on Balkhash lake cores in Kazakhstan, Central Eurasia. In Toward A Sustainable Society in Central Asia: An Historical Perspective on the Future; Kubota, J., Watanabe, M., Eds.; Ili Project: Kyoto, Japan, 2012; pp. 2007–2012. [Google Scholar]
- Feng, Z.D.; Wu, H.N.; Zhang, C.J.; Ran, M.; Sun, A.Z. Bioclimatic change of the past 2500 years within the Balkhash Basin, eastern Kazakhstan, Central Asia. Quat. Int. 2013, 311, 63–70. [Google Scholar] [CrossRef]
- Sala, R.; Deom, J.M.; Nigmatova, S.; Endo, K.; Kubota, J. Soviet, recent and planned studies of the behavior of the Balkhash Lake. Natl. Acad. Sci. Kazakhstan Ser. Geol. Techn. Sci. 2017, 2, 76–86. [Google Scholar]
- Lauterbach, S.; Witt, R.; Plessen, B.; Dulski, P.; Prasad, S.; Mingram, J.; Gleixner, G.; Hettler-Riedel, S.; Stebich, M.; Schnetger, B.; et al. Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years. Holocene 2014, 24, 970–984. [Google Scholar] [CrossRef] [Green Version]
- Esper, J.; Schweingruber, F.H.; Winiger, M. 1300 years of climatic history for Western Central Asia inferred from tree-rings. Holocene 2002, 12, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Romanovsky, V.V. Water level variations and water balance of Lake Issyk-Kul. In Lake Issyk-Kul: Its Natural Environment; Klerkx, J., Imanackunov, B., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 45–57. [Google Scholar]
- Narama, C.; Kicengge; Kubota, J.; Shatravin, V.I.; Duishonakunov, M.; Moholdt, G.; Abdrakhmatov, K. The lake-level changes in Central Asia during the last 1000 years based on historical map. In Proceedings of International Workshop on “Reconceptualizing Cultural and Environmental Change in Central Asia: An. Historical Perspective on the Future”; Research Institute for Humanity and Nature: Kyoto, Japan, 2010; pp. 11–27. [Google Scholar]
- Lei, Y.B.; Tian, L.D.; Bird, B.W.; Hou, J.Z.; Ding, L.; Oimahmadov, I.; Gadoev, M. A 2540-year record of moisture variations derived from lacustrine sediment (Sasikul Lake) on the Pamir Plateau. Holocene 2014, 24, 761–770. [Google Scholar] [CrossRef]
- Aichner, B.; Feakins, S.J.; Lee, J.E.; Herzschuh, U.; Liu, X. High-resolution leaf wax carbon and hydrogen isotopic record of the late Holocene paleoclimate in arid Central Asia. Clim. Past 2015, 11, 619–633. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Herzschuh, U.; Wang, Y.; Kuhn, G.; Yu, Z. Glacier fluctuations of Muztagh Ata and temperature changes during the late Holocene in westernmost Tibetan Plateau, based on glaciolacustrine sediment records. Geophys. Res. Lett. 2014, 41, 6265–6273. [Google Scholar] [CrossRef]
- Seong, Y.B.; Owen, L.A.; Yi, C.L.; Finkel, R.C. Quaternary glaciation of Muztag Ata and Kongur Shan: Evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet. Geol. Soc. Am. Bull. 2009, 121, 348–365. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.G.; Mosleythompson, E.; Davis, M.E.; Lin, P.N.; Dai, J.; Bolzan, J.F.; Yao, T. A 1000 year climate ice-core record from the Guliya ice cap, China: Its relationship to global climate variability. Ann. Glaciol. 1995, 21, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.D.; Qin, D.H.; Tian, L.D.; Jiao, K.Q.; Yang, Z.H.; Thompson, L.G. Changes in temperature and precipitation in the Qinghai-Tibet Plateau over the past two thousand years: Guliya Ice Core Record. Sci. China Earth Sci. 1996, 26, 348–353. [Google Scholar]
- Yang, X.P.; Zhu, Z.D.; Jaekel, D.; Owen, L.A.; Han, J.M. Late Quaternary palaeoenvironment change and landscape evolution along the Keriya River, Xinjiang, China: The relationship between high mountain glaciation and landscape evolution in foreland desert regions. Quat. Int. 2002, 97, 155–166. [Google Scholar] [CrossRef]
- Zhong, W.; Tashpolat, T.; Wang, L.; Li, C. Process and characteristics of historical climate and environment changes in southern margin of Tarim Basin. J. Desert Res. 2004, 24, 261–267. [Google Scholar]
- Ma, L.; Wu, J.; Yu, H.; Haiao, Z.; Abuduwaili, J. The Medieval Warm Period and the Little Ice Age from a sediment record of Lake Ebinur, northwest China. Boreas 2011, 40, 518–524. [Google Scholar]
- Wang, W.; Feng, Z.D.; Ran, M.; Zhang, C.J. Holocene climate and vegetation changes inferred from pollen records of Lake Aibi, northern Xinjiang, China: A potential contribution to understanding of Holocene climate pattern in East-central Asia. Quat. Int. 2013, 311, 54–62. [Google Scholar] [CrossRef]
- Song, M.; Zhou, A.F.; Zhang, X.N.; Zhao, C.; He, Y.X.; Yang, W.Q.; Liu, W.G.; Li, S.H.; Liu, Z.H. Solar imprints on Asian inland moisture fluctuations over the last millennium. Holocene 2015, 25, 1935–1943. [Google Scholar] [CrossRef]
- Chen, F.; Huang, X.; Zhang, J.; Holmes, J.A.; Chen, J. Humid Little Ice Age in arid central Asia documented by Bosten Lake, Xinjiang, China. Sci. China Earth Sci. 2006, 49, 1280–1290. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, Z.; Yang, Q.; Gou, X.; Sun, F. Holocene environmental variations recorded by organic-related and carbonate-related proxies of the lacustrine sediments from Bosten Lake, northwestern China. Holocene 2010, 20, 363–373. [Google Scholar] [CrossRef]
- Zhou, K.E.; Xu, H.; Lan, J.H.; Yan, D.N.; Sheng, E.G.; Yu, K.K.; Song, Y.P.; Zhang, J.; Fu, P.Q.; Xu, S. Variable late Holocene 14C reservoir ages in Lake Bosten, northwestern China. Front. Earth Sci. 2020, 7, 328. [Google Scholar] [CrossRef]
- Liu, W.G.; Liu, Z.H.; An, Z.S.; Wang, X.L.; Chang, H. Wet climate during the Little ‘Ice Age’ in the arid Tarim Basin, northwestern China. Holocene 2011, 21, 409–416. [Google Scholar]
- Putnam, A.E.; Putnam, D.E.; Andreu-Hayles, L.; Cook, E.R.; Palmer, J.G.; Clark, E.H.; Wang, C.Z.; Chen, F.; Denton, G.H.; Boyle, D.P.; et al. Little Ice Age wetting of interior Asian deserts and the rise of the Mongol Empire. Quat. Sci. Rev. 2016, 131, 33–50. [Google Scholar] [CrossRef]
- He, Y.X.; Zhao, C.; Wang, Z.; Wang, H.Y.; Song, M.; Liu, W.G.; Liu, Z.H. Late Holocene coupled moisture and temperature changes on the northern Tibetan Plateau. Quat. Sci. Rev. 2013, 80, 47–57. [Google Scholar] [CrossRef]
- Blyakharchuk, T.A.; Wright, H.E.; Borodavko, P.S.; van der Knaap, W.O.; Ammann, B. Late Glacial and Holocene vegetational changes on the Ulagan high-mountain plateau, Altai Mountains, southern Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 209, 259–279. [Google Scholar] [CrossRef]
- Schlütz, F.; Lehmkuhl, F. Climatic change in the Russian Altai, southern Siberia, based on palynological and geomorphological results, with implications for climatic teleconnections and human history since the middle Holocene. Veget. His. Archaeob. 2007, 16, 101–118. [Google Scholar] [CrossRef]
- Rudaya, N.; Nazarova, L.; Novenko, E.; Andreev, A.; Kalugin, I.A.; Daryin, A.; Babich, V.; Li, H.; Shilov, P. Quantitative reconstructions of Mid- to Late Holocene climate and vegetation in the North-Eastern Altai mountains recorded in Lake Teletskoye. Glob. Planet. Chang. 2016, 141, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Hildebrandt, S.; Müller, S.; Kalugin, I.; Darin, A.; Wagner, M.; Rogozin, D.; Tarasov, P. Tracing the North Atlantic decadal-scale climate variability in a late Holocene pollen record from southern Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 426, 75–84. [Google Scholar] [CrossRef]
- Dirksen, V.G.; van Geel, B. Mid to late Holocene climate change and its influence on cultural development in south central Siberia. In Impact of the Environment on Human Migration in Eurasia; Scott, E.M., Yu, A., Zaitseva, A.G., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 291–307. [Google Scholar]
- Dirksen, V.; van Geel, B.; Kulkova, M.; Zaitseva, G.; Sementsov, A.A.; Scott, E.M.; Cook, G.T.; Plicht, J.; Lebedeva, L.M.; Bourova, N.D.; et al. Chronology of Holocene Climate and Vegetation Changes and Their Connection to Cultural Dynamics in Southern Siberia. Radiocarbon 2007, 49, 1103–1121. [Google Scholar] [CrossRef] [Green Version]
- Blyakharchuk, T.; Prikhodko, V.; Kilunovskaya, M.; Li, H.-C. Vegetation and climate reconstruction based on pollen and microbial records derived from burial mounds soil in Tuva Republic, Central Asia. Quat. Int. 2019, 507, 108–123. [Google Scholar] [CrossRef]
- Grunert, J.; Lehmkuhl, F.; Walther, M. Paleoclimatic evolution of the Uvs Nuur basin and adjacent areas (Western Mongolia). Quat. Int. 2000, 65–66, 171–192. [Google Scholar] [CrossRef]
- Yang, Y.; Min, R.; Sun, A.Z. Pollen-recorded bioclimatic variations of the last ~2000 years retrieved from Bayan Nuur in the western Mongolian Plateau. Boreas 2020, 49, 350–362. [Google Scholar] [CrossRef]
- Peck, J.A.; Khosbayar, P.; Fowell, S.J.; Pearce, R.B.; Ariunbileg, S.; Hansen, B.C.S.; Soninkhishig, N. Mid to Late Holocene climate change in north central Mongolia as recorded in the sediments of Lake Telmen. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 183, 135–153. [Google Scholar] [CrossRef]
- Tian, F.; Herzschuh, U.; Dallmeyer, A.; Xu, Q.; Mischke, S.; Biskaborn, B.K. Environmental variability in the monsoon–westerlies transition zone during the last 1200 years: Lake sediment analyses from central Mongolia and supra–regional synthesis. Quat. Sci. Rev. 2013, 73, 31–47. [Google Scholar] [CrossRef]
- Wang, W.; Ma, Y.; Feng, Z.; Meng, H.; Sang, Y.; Zhai, X. Vegetation and climate changes during the last 8660 cal. a BP in central Mongolia, based on a high-resolution pollen record from Lake Ugii Nuur. Chin. Sci. Bull. 2009, 54, 1579–1589. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Ma, Y.; Feng, Z.; Narantsetseg, T.; Liu, K.-B.; Zhai, X. A prolonged dry mid-Holocene climate revealed by pollen and diatom records from Lake Ugii Nuur in central Mongolia. Quat. Int. 2011, 229, 74–83. [Google Scholar] [CrossRef]
- Ma, J.Z.; Edmunds, W.M. Groundwater and lake evolution in the Badain Jaran desert ecosystem, Inner Mongolia. Hydroge. J. 2006, 14, 1231–1243. [Google Scholar] [CrossRef]
- Gates, J.B.; Edmunds, W.M.; Ma, J.Z.; Sheppard, P.R. A 700-year history of groundwater recharge in the drylands of NW China. Holocene 2008, 18, 1045–1054. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Lan, J.H.; Sheng, E.G.; Liu, B.; Yu, K.K.; Ye, Y.D.; Shi, Z.G.; Cheng, P.; Wang, X.L.; Zhou, X.Y.; et al. Hydroclimatic contrasts over Asian monsoon areas and linkages to tropical Pacific SSTs. Sci. Rep. 2016, 6, 33177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorren, K.-D.; Jensen, C.E.; Nilssen, E. Climate changes during the last c. 7500 years as recorded by the degree of peat humification in the Lofoten region, Norway. Boreas 2012, 41, 13–30. [Google Scholar] [CrossRef]
- Kobashi, T.; Goto-Azuma, K.; Box, J.E.; Gao, C.C.; Nakaegawa, T. Causes of Greenland temperature variability over the past 4000 yr: Implications for northern hemispheric temperature changes. Clim. Past. 2013, 9, 2299–2317. [Google Scholar] [CrossRef] [Green Version]
- Salzer, M.W.; Bunn, A.G.; Graham, N.E.; Hughes, M.K. Five millennia of paleotemperature from tree-rings in the Great Basin, USA. Clim. Dynam. 2014, 42, 1517–1526. [Google Scholar] [CrossRef] [Green Version]
- Holzhauser, H.; Magny, M.; Zumbühl, H.J. Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene 2005, 15, 789–801. [Google Scholar] [CrossRef]
- Moberg, A.; Sonechkin, D.M.; Holmgren, K.; Datsenko, N.M.; Karlen, W. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 2005, 433, 613–617. [Google Scholar] [CrossRef]
- Mann, M.E.; Zhang, Z.H.; Hughes, M.K.; Bradley, R.S.; Miller, S.K.; Rutherford, S.; Ni, F.B. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl. Acad Sci. USA 2008, 105, 13252–13257. [Google Scholar] [CrossRef] [Green Version]
- Ljungqvist, F.C. A new reconstruction of temperature variability in the extra-Tropical Northern Hemisphere during the last two millennia. Geogr. Ann. Ser. A Phyl. Geog. 2010, 92, 339–351. [Google Scholar] [CrossRef]
- Esper, J.; Frank, D.C.; Timonen, M.; Zorita, E.; Wilson, R.J.S.; Luterbacher, J.; Holzkamper, S.; Fischer, N.; Wagner, S.; Nievergelt, D.; et al. Orbital forcing of tree-ring data. Nat. Clim. Chang. 2012, 2, 862–866. [Google Scholar] [CrossRef]
- Consortium, P.k. Continental-scale temperature variability during the past two millennia. Nat. Geosci. 2013, 6, 339–346. [Google Scholar] [CrossRef]
- Blyakharchuk, T.A.; Chernova, N.A. Vegetation and climate in the Western Sayan Mts according to pollen data from Lugovoe Mire as a background for prehistoric cultural change in southern Middle Siberia. Quat. Sci. Rev. 2013, 75, 22–42. [Google Scholar] [CrossRef]
- Ganyushkin, D.; Chistyakov, K.; Volkov, I.; Bantcev, D.; Kunaeva, E.; Brandová, D.; Raab, G.; Christl, M.; Egli, M. Palaeoclimate, glacier and treeline reconstruction based on geomorphic evidences in the Mongun-Taiga massif (south-eastern Russian Altai) during the Late Pleistocene and Holocene. Quat. Int. 2018, 470, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Chernykh, D.V.; Galakhov, V.P.; Zolotov, D.V. Synchronous fluctuations of glaciers in the Alps and Altai in the second half of the Holocene. Holocene 2013, 23, 1074–1079. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.Y. A Preliminary Study on Holocene Glacial Changes, Lichen Chronology and Other Issues at the Headwaters of Urumqi River, Tianshan Mountains. Sci. China Ser. B 1988, 18, 95–104. [Google Scholar]
- Chen, Y.X.; Li, Y.K.; Wang, Y.Y.; Zhang, M.; Cui, Z.J.; Yi, C.L.; Liu, G.N. Late Quaternary glacial history of the Karlik Range, easternmost Tian Shan, derived from 10Be surface exposure and optically stimulated luminescence datings. Quat. Sci. Rev. 2015, 115, 17–27. [Google Scholar] [CrossRef]
- He, Y.X.; Liu, W.G.; Zhao, C.; Wang, Z.; Wang, H.Y.; Liu, Y.; Qin, X.Y.; Hu, Q.H.; An, Z.S.; Liu, Z.H. Solar influenced late Holocene temperature changes on the northern Tibetan Plateau. Chin. Sci. Bull. 2013, 58, 1053–1059. [Google Scholar] [CrossRef] [Green Version]
- Yi, C.; Liu, K.; Cui, Z.; Jiao, K.; Yao, T.; He, Y. AMS radiocarbon dating of late Quaternary glacial landforms, source of the Urumqi River, Tien Shan—a pilot study of 14C dating on inorganic carbon. Quat. Int. 2004, 121, 99–107. [Google Scholar] [CrossRef]
- Li, Y.; Liu, G.; Chen, Y.; Li, Y.; Harbor, J.; Stroeven, A.P.; Caffee, M.; Zhang, M.; Li, C.; Cui, Z. Timing and extent of Quaternary glaciations in the Tianger Range, eastern Tian Shan, China, investigated using 10Be surface exposure dating. Quat. Sci. Rev. 2014, 98, 7–23. [Google Scholar] [CrossRef]
- Ganiushkin, D.; Chistyakov, K.; Kunaeva, E. Fluctuation of glaciers in the southeast Russian Altai and northwest Mongolia Mountains since the Little Ice Age maximum. Environ. Earth Sci. 2015, 74, 1883–1904. [Google Scholar] [CrossRef]
- Chen, J.H.; Chen, F.H.; Feng, S.; Huang, W.; Liu, J.B.; Zhou, A.F. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms. Quat. Sci. Rev. 2015, 107, 98–111. [Google Scholar] [CrossRef]
- Lahijani, H.A.K.; Rahimpour-Bonab, H.; Tavakoli, V.; Hosseindoost, M. Evidence for late Holocene highstands in Central Guilan–East Mazanderan, South Caspian coast, Iran. Quat. Int. 2009, 197, 55–71. [Google Scholar] [CrossRef]
- Naderi Beni, A.; Lahijani, H.; Harami, R.M.; Arpe, K.; Leroy, S.A.G.; Marriner, N.; Berberian, M.; Andrieu-Ponel, V.; Djamali, M.; Mahboubi, A.; et al. Caspian sea-level changes during the last millennium: Historical and geological evidence from the south Caspian Sea. Clim. Past. 2013, 9, 1645–1665. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Lan, J.H.; Zhao, J.J.; Vachula, R.S.; Xu, H.; Cai, Y.J.; Cheng, H.; Huang, Y.S. Abrupt Freshening Since the Early Little Ice Age in Lake Sayram of Arid Central Asia Inferred From an Alkenone Isomer Proxy. Geophy. Res. Lett. 2020, 47, GL089257. [Google Scholar] [CrossRef]
- Rossabi, M. All the Khan’s horses. Nat. Hist. 1994, 103, 48–57. [Google Scholar]
- Zhang, P.Z.; Cheng, H.; Edwards, R.L.; Chen, F.H.; Wang, Y.J.; Yang, X.L.; Liu, J.; Tan, M.; Wang, X.F.; Liu, J.H.; et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 2008, 322, 940–942. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, P.; Lan, J. Climate Change along the Silk Road and Its Influence on Scythian Cultural Expansion and Rise of the Mongol Empire. Sustainability 2021, 13, 2530. https://doi.org/10.3390/su13052530
Che P, Lan J. Climate Change along the Silk Road and Its Influence on Scythian Cultural Expansion and Rise of the Mongol Empire. Sustainability. 2021; 13(5):2530. https://doi.org/10.3390/su13052530
Chicago/Turabian StyleChe, Ping, and Jianghu Lan. 2021. "Climate Change along the Silk Road and Its Influence on Scythian Cultural Expansion and Rise of the Mongol Empire" Sustainability 13, no. 5: 2530. https://doi.org/10.3390/su13052530
APA StyleChe, P., & Lan, J. (2021). Climate Change along the Silk Road and Its Influence on Scythian Cultural Expansion and Rise of the Mongol Empire. Sustainability, 13(5), 2530. https://doi.org/10.3390/su13052530