Does Social Businesses Development Affect Bioenergy Industry Growth under the Pathway of Sustainable Development?
Abstract
:1. Introduction
1.1. Bioenergy Industry Background
1.2. Social Businesses Status in EU28 Region
1.3. Paper Organization
2. Literature Review
3. Methodology and Data
4. Results and Discussion
5. Conclusions and Implication
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
European Union (EU28) Region | |||
---|---|---|---|
Developed Countries (EU15) | Underdeveloped Countries (EU13) | ||
Member Countries | Year | Member Countries | Year |
Austria | 1995 | Bulgaria | 2007 |
Belgium | 1958 | Croatia | 2013 |
Denmark | 1973 | Cyprus | 2004 |
Finland | 1995 | Czech | 2004 |
France | 1958 | Estonia | 2004 |
Germany | 1958 | Hungary | 2004 |
Greece | 1981 | Latvia | 2004 |
Ireland | 1973 | Lithuania | 2004 |
Italy | 1958 | Malta | 2004 |
Luxemburg | 1958 | Poland | 2004 |
Netherlands | 1958 | Romania | 2007 |
Portugal | 1986 | Slovakia | 2004 |
Spain | 1986 | Slovenia | 2004 |
Sweden | 1995 | ||
United Kingdom | 1973 |
References
- Bogaert, S. Sustainable and Optimal Use of Biomass for Energy in the EU Beyond 2020; European Commission Report; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Borzaga, C.; Galera, G.; Franchini, B.; Chiomento, S.; Nogales, R.; Chiara Carini, C. European Commission (2020) Social Enterprises and Their Ecosystems in Europe; Comparative synthesis report; European Commission: Luxembourg, 2020. [Google Scholar]
- Bah, M.M.; Abdulwakil, M.M.; Azam, M. Income heterogeneity and the Environmental Kuznets Curve hypothesis in Sub-Saharan African countries. GeoJournal 2019, 85, 1–12. [Google Scholar] [CrossRef]
- Kerlin, B.J. Social Business Initiative (SBI) Follow Up: Co-Operation between Social Economy Enterprises and Traditional Enterprises; Technopolis Group: Woluwe-Saint-Pierre, Belgium, 2018. [Google Scholar]
- Alsaleh, M.; Zubair, A.; Abdul-Rahim, A.S. The impact of global competitiveness on the growth of bioenergy industry in EU-28 region. Sustain. Dev. 2020, 28, 1304–1316. [Google Scholar] [CrossRef]
- Alsaleh, M.; Abdulwakil, M.; Abdul-Rahim, A.S. EU28 region’s water security and the effect of bioenergy industry sustainability. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Yunus, M. A World of Three Zeros: The New Economics of Zero Poverty, Zero Unemployment, and Zero Net Carbon Emissions; Public Affairs: New York, NY, USA, 2017. [Google Scholar]
- Sinkovics, N.; Sinkovics, R.R.; Hoque, S.F.; Czaban, L. A reconceptualisation of social value creation as social constraint alleviation. Crit. Perspect. Int. Bus. 2015, 11, 340–363. [Google Scholar] [CrossRef] [Green Version]
- Stevens, R.; Moray, N.; Bruneel, J. The social and economic mission of social enterprises: Dimensions, measurement, validation, and relation. Entrep. Theory Pract. 2015, 39, 1051–1082. [Google Scholar] [CrossRef]
- Sutter, C.; Bruton, G.D.; Chen, J. Entrepreneurship as a solution to extreme poverty: A review and future research directions. J. Bus. Ventur. 2018, 34, 197–214. [Google Scholar] [CrossRef]
- Sengupta, S.; Sahay, A.; Croce, F. Conceptualizing social entrepreneurship in the context of emerging economies: An integrative review of past research from BRIICS. Int. Entrep. Manag. J. 2018, 14, 771–803. [Google Scholar] [CrossRef]
- Saebi, T.; Foss, N.J.; Linder, S. Social entrepreneurship research: Past achievements and future promises. J. Manag. 2019, 45, 70–95. [Google Scholar] [CrossRef]
- Aliaga-Isla, R.; Huybrechts, B. From “Push Out” to “Pull In” together: An analysis of social entrepreneurship definitions in the academic field. J. Clean. Prod. 2018, 205, 645–660. [Google Scholar] [CrossRef]
- Bauwens, T.; Huybrechts, B.; Dufays, F. Understanding the diverse scaling strategies of social enterprises as hybrid organizations: The case of renewable energy cooperatives. Organ. Environ. 2019, 33, 195–219. [Google Scholar] [CrossRef] [Green Version]
- Siegner, M.; Pinkse, J.; Panwar, R. Managing tensions in a social enterprise: The complex balancing act to deliver a multi-faceted but coherent social mission. J. Clean. Prod. 2018, 174, 1314–1324. [Google Scholar] [CrossRef]
- Fitch-Roy, O.; Benson, D.; Mitchell, C. Wipeout? Entrepreneurship, policy interaction and the EU’s 2030 renewable energy target. J. Eur. Integr. 2019, 41, 87–103. [Google Scholar] [CrossRef]
- Padmanathan, K.; Govindarajan, U.; Ramachandaramurthy, V.K.; Rajagopalan, A.; Pachaivannan, N.; Sowmmiya, U.; Padmanaban, S.; Holm-Nielsen, J.B.; Xavier, S.; Periasamy, S.K. A sociocultural study on solar photovoltaic energy system in India: Stratification and policy implication. J. Clean. Prod. 2019, 216, 461–481. [Google Scholar] [CrossRef]
- Swain, S.S.; Mishra, P. Determinants of adoption of cleaner cooking energy: Experience of the Pradhan Mantri Ujjwala Yojana in rural Odisha, India. J. Clean. Prod. 2020, 248, 119–223. [Google Scholar] [CrossRef]
- Bozhikin, I.; Macke, J.; da Costa, L.F. The role of government and key non-state actors in 644 social entrepreneurship: A systematic literature review. J. Clean. Prod. 2019, 226, 730–747. [Google Scholar] [CrossRef]
- Lakshmi, G.; Tilley, S. The “power” of community renewable energy enterprises: The case of Sustainable Hockerton Ltd. Energy Policy 2019, 129, 787–795. [Google Scholar] [CrossRef]
- Murta, J.C.D.; Willetts, J.R.M.; Triwahyudi, W. Sanitation entrepreneurship in rural Indonesia: A closer look. Environ. Dev. Sustain. 2018, 20, 343–359. [Google Scholar] [CrossRef]
- Doyle, G. A new era for reuse social enterprises in Ireland? The capacities required for achieving sustainability. Resour. Conserv. Recycl. 2019, 149, 65–74. [Google Scholar] [CrossRef]
- Adams, S.; Acheampong, A.O. Reducing carbon emissions: The role of renewable energy and democracy. J. Clean. Prod. 2019, 240, 118245. [Google Scholar] [CrossRef]
- Mohan, A.; Topp, K. India’s energy future: Contested narratives of change. Energy Res. Soc. Sci. 2018, 44, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Mahzouni, A. The role of institutional entrepreneurship in emerging energy communities: The town of St. Peter in Germany. Renew. Sustain. Energy Rev. 2019, 107, 297–308. [Google Scholar] [CrossRef]
- Plutshack, V.; Sengupta, S.; Sahay, A.; Viñuales, J.E. New and renewable energy social enterprises accessing government support: Findings from India. Energy Policy 2019, 132, 367–378. [Google Scholar] [CrossRef]
- Rahdari, A.; Sepasi, S.; Moradi, M. Achieving sustainability through Schumpeterian social entrepreneurship: The role of social enterprises. J. Clean. Prod. 2016, 137, 347–360. [Google Scholar] [CrossRef]
- Surie, G. Fostering Sustainability through Ecosystems for Renewable Energy in India. J. Sustain. Res. 2020, 2, 1–30. [Google Scholar]
- Surie, G. Creating the innovation ecosystem for renewable energy via social entrepreneurship: 792 Insights from India. Technol. Forecast. Soc. Chang. 2017, 121, 184–195. [Google Scholar] [CrossRef]
- Sengupta, S.; Sahay, A. Comparing mission statements of social enterprises and corporate enterprises in the new and renewable energy sector of India: A computer aided content analysis study. J. Glob. Entrep. Res. 2017, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Zurba, M.; Bullock, R. Bioenergy development and the implications for the social wellbeing of Indigenous peoples in Canada. Ambio 2020, 49, 299–309. [Google Scholar] [CrossRef]
- Aguilar-Støen, M. Beyond transnational corporations, food and biofuels: The role of extractivism and agribusiness in land grabbing in Central America. Forum Dev. Stud. 2016, 43, 155–175. [Google Scholar] [CrossRef]
- Kasurinen, H.; Uusitalo, V.; Väisänen, S.; Soukka, R.; Havukainen, J. From Sustainability-as-usual to Sustainability Excellence in Local Bioenergy Business. J. Sustain. Dev. Energy Water Environ. Syst. 2017, 5, 240–272. [Google Scholar] [CrossRef] [Green Version]
- Kokkonen, K.; Ojanen, V. From opportunities to action—An integrated model of small actors’ engagement in bioenergy business. J. Clean. Prod. 2018, 182, 496–508. [Google Scholar] [CrossRef]
- Bozhikaliev, V.; Sazdovski, I.; Adler, J.; Markovska, N. Techno-economic, Social and Environmental Assessment of Biomass Based District Heating in a Bioenergy Village. J. Sustain. Dev. Energy Water Environ. Syst. 2019, 7, 601–614. [Google Scholar] [CrossRef]
- Thomsen, T.P.; Christensen, T.B.; Lybæk, R.; Thomsen, S.T.; Lunde, A.; Pedersen, S.H. Maabjerg Bioenergy Center: Development of Technical Solutions, Politics and Business Concepts Across 20 Years; Roskilde Universitet: Roskilde, Denmark, 2019. [Google Scholar]
- Fedorova, E.; Aaltonen, K.; Pongrácz, E. Social Sustainability Dilemma: Escape or Communicate? Managing Social Risks Upstream of the Bioenergy Supply Chain. Resources 2020, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Nwakuya, M.T.; Ijomah, M.A. Fixed Effect Versus Random Effects Modeling in a Panel Data Analysis; A Consideration of Economic and Political Indicators in Six African Countries. Int. J. Stat. Appl. 2017, 7, 275–279. [Google Scholar] [CrossRef]
- Bruce, E.H. Econometrics; University of Wisconsin Press: Madison, WI, USA, 2016. [Google Scholar]
- Kurt, S. Short Guides to Microeconometrics, Panel Data, Fixed and Random Effects. 2016. Available online: https://0x9.me/YRDk8 (accessed on 10 September 2020).
- Wilson, S.E.; Butler, D.M. A lot more to do: The sensitivity of time series cross-section analyses to simple alternative specifications. Political Anal. 2007, 15, 101–123. [Google Scholar] [CrossRef] [Green Version]
- Plumper, T.; Troeger, V.E. Efficient estimation of time-invariant and rarely changing variables in finite sample panel analyses with unit fixed effects. Political Anal. 2007, 15, 124–139. [Google Scholar] [CrossRef]
- Astaiza-Gomez, G.J. Lagrange Multiplier Tests in Applied Research. J. Cienc. Ing. 2020, 12, 13–19. [Google Scholar]
- Koçak, E.; Şarkgüneşi, A. The renewable energy and economic growth nexus in black sea and Balkan Countries. Energy Policy 2016, 100, 51–57. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Paramati, S.R.; Ozturk, I.; Bhattacharya, S. The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Appl. Energy 2015, 162, 733–741. [Google Scholar] [CrossRef]
- Shahbaz, M.; Tang, C.F.; Shabbir, M.S. Electricity consumption and economic growth nexus in Portugal using cointegration and causality approaches. Energy Policy 2011, 39, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, H.; Shin, Y.; Smith, R. Bound testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Pesaran, M.H. A simple panel unit root test in the presence of cross section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, D.; Phillips, P.C.B.; Schmidt, P.; Shin, Y. Testing the null of stationarity against the alternative of a unit root: How sure are we the economic time series have a unit root. J. Econom. 1992, 54, 159–178. [Google Scholar] [CrossRef]
- Pedroni, P. Purchasing power parity tests in cointegrated panels. Rev. Econ. Stat. 2001, 83, 727–731. [Google Scholar] [CrossRef] [Green Version]
- Pedroni, P. Fully Modified OLS for Heterogeneous Cointegrated Panels (No. 2000-03); Department of Economics, Williams College: Wiliamstown, MA, USA, 2000. [Google Scholar]
- Pedroni, P. Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econ. Theory 2004, 20, 597–625. [Google Scholar] [CrossRef] [Green Version]
- Pedroni, P. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxf. Bull. Econ. Stat. 1999, 61, 653–670. [Google Scholar] [CrossRef]
- Tillie, N.; Dobbelsteen, A.V.D.; Doepel, D.; Joubert, M.; Jager, W.D.; Mayenburg, D. Towards CO2 Neutral Urban Planning: Presenting the Rotterdam Energy Approach and Planning (REAP). J. Green Build. 2009, 4, 103–112. [Google Scholar] [CrossRef]
- Dobbelsteen, A.V.D.; Broersma, S.; Stremke, S. Energy Potential Mapping for Energy-Producing Neighborhoods. Int. J. Sustain. Build. Technol. Urban Dev. 2011, 2, 170–176. [Google Scholar] [CrossRef]
- Broersma, S.; Fremouw, M.; Dobbelsteen, A. Energy Potential Mapping—Visualising Energy Characteristics for the Exergetic Optimisation of the Built Environment. Entropy 2013, 2, 490–510. [Google Scholar] [CrossRef] [Green Version]
- Prodan, I. The Effect of Weather on Stock Returns: A Comparison between Emerging and Developed Markets; Anchor Academic Publishing: Hamburg, Germany, 2013. [Google Scholar]
- Kaddoura, S.; Khatib, E.S. Review of water-energy-food Nexus tools to improve the Nexus modelling approach for integrated policy making. Environ. Sci. Policy 2017, 77, 114–121. [Google Scholar] [CrossRef]
- Balezentis, T.; Streimikiene, D.; Zhang, T.; Liobikiene, G. The role of bioenergy in greenhouse gas emission reduction in EU countries: An Environmental Kuznets Curve modelling. Resour. Conserv. Recycl. 2019, 142, 225–231. [Google Scholar] [CrossRef]
- Bilgili, F.; Koçak, E.; Bulut, U.; Kuskaya, S. Can biomass energy be an efficient policy tool for sustainable development? Renew. Sustain. Energy Rev. 2017, 71, 830–845. [Google Scholar] [CrossRef]
- Abdulwakil, M.M.; Abdul-Rahim, A.S.; Alsaleh, M. Bioenergy Efficiency Change and its determinants in EU-28 Region: Evidence Using Least Square Dummy Variable Corrected Estimation. Biomass Bioenergy 2020, 137, 105569. [Google Scholar] [CrossRef]
- Alsaleh, M.; Abdul-Rahim, A.S.; Mohd-Shahwahid, H.O. Determinants of Technical Efficiency in the Bioenergy Industry in the EU28 Region. Renew. Sustain. Energy Rev. 2017, 78, 1331–1349. [Google Scholar] [CrossRef]
- Pueyo, A.; Carreras, M.; Ngoo, G. Exploring the linkages between energy, gender, and enterprise: Evidence from Tanzania. World Dev. 2020, 128, 104840. [Google Scholar] [CrossRef]
- Sarah, G.; Naziha, S.; Allison, G. Reducing Vulnerable Employment: Is there a Role for Reproductive Health, Social Protection, and Labor Market Policy? Fem. Econ. 2020, 26, 121–153. [Google Scholar]
- Ude, D.K. Youth Employment Challenge and Rural Transformation in Africa. In The Palgrave Handbook of Agricultural and Rural Development in Africa; Osabuohien, E., Ed.; Palgrave Macmillan: London, UK, 2020. [Google Scholar]
- Shokhrukh-Mirzo, J.; Marko, K.; Olli, V.; Saud, A.; Ward, F.A. Managing the water-energy-food nexus: Gains and losses from new water development in Amu Darya River Basin. J. Hydrol. 2016, 539, 648–661. [Google Scholar]
- Taghizadeh-Hesary, F.; Rasoulinezhad, E.; Yoshino, N. Energy and Food Security: Linkages through Price Volatility. Energy Policy 2019, 128, 796–806. [Google Scholar] [CrossRef]
- Danish; Ulucak, R. Linking biomass energy and CO2 emissions in China using dynamic Autoregressive-Distributed Lag simulations. J. Clean. Prod. 2020, 250, 119533. [Google Scholar] [CrossRef]
- Pimhidzai, O. Breaking the Metal Ceiling: Female Entrepreneurs who Succeed in Male-Dominated Sectors; Policy Research Working Paper Series 7503; The World Bank: Bretton Woods, NH, USA, 2015. [Google Scholar]
- Campos, F.; Goldstein, M.; McGorman, L.; Munoz Boudet, A.M.; Pimhidzai, O. Breaking the Metal Ceiling: Female Entrepreneurs who Succeed in Male-Dominated Sectors; WIDER Working Paper Series wp-2017-166; World Institute for Development Economic Research (UNU-WIDER): Helsinki, Finland, 2017. [Google Scholar]
- Alfonso, U.; Álvaro, L.; Javier, C.; Rene, W. Social Innovation Regime: An integrated approach to measure social innovation. Eur. Plan. Stud. 2020, 28, 906–924. [Google Scholar]
- Rafik, A.; Jean, B.; Patricia, R.M. What are the drivers of business demography and employment in the countries of the European Union? Appl. Econ. 2020, 52, 4018–4043. [Google Scholar]
- Alsaleh, M.; Abdul-Rahim, A.S.; Mohd-Shahwahid, H.O. An Empirical and Forecasting Analysis of the Bioenergy Market in the EU28 Region: Evidence from a Panel Data Simultaneous Equation Model. Renew. Sustain. Energy Rev. 2017, 80, 1123–1137. [Google Scholar] [CrossRef]
- Romero-Lankao, P.; McPhearson, T.; Davidson, D. The food-energy-water nexus and urban complexity. Nat. Clim. Chang. 2017, 7, 233–235. [Google Scholar] [CrossRef]
- Danish; Wang, Z. Does biomass energy consumption help to control environmental pollution? Evidence from BRICS countries. Sci. Total Environ. 2019, 670, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Dogan, E.; Inglesi-Lotz, R. Analyzing the effects of real income and biomass energy consumption on carbon dioxide (CO2) emissions: Empirical evidence from the panel of biomass-consuming countries. Energy 2017, 138, 721–727. [Google Scholar] [CrossRef]
- Bilgili, F.; Ozturk, I.; Koçak, E.; Bulut, U.; Pamuk, Y.; Mugaloglu, E.; Baglıtas, H.H. The influence of biomass energy consumption on CO2 emissions: A wavelet coherence approach. Environ. Sci. Pollut. Res. 2016, 23, 19043–19061. [Google Scholar] [CrossRef]
- Caroline, D.L.P.; Sabina, S. Lessons about the ‘Harder’ elements of OMC governance for the EU energy Union. J. Environ. Policy Plan. 2020, 152, 1–13. [Google Scholar]
- Agrawal, A.; Hockerts, K. Impact Investing Strategy: Managing Conflicts between Impact Investor and Investee Social Enterprise. Sustainability 2019, 11, 4117. [Google Scholar] [CrossRef] [Green Version]
- Alsaleh, M.; Abdul-Rahim, A.S.; Mohd-Shahwahid, H.O. Determinants of Cost Efficiency of Bioenergy Industry: Evidence from EU28 Countries. Renew. Energy 2018, 127, 746–762. [Google Scholar] [CrossRef]
Variable | Abbreviated | Data Source | Statistics/Sign | Unit |
---|---|---|---|---|
Bioenergy Output | BIO | Eurostat | Dependent Variable | Terajoule (TJ) |
Food Security | FS | World Bank Datasets | Significant/+ | (2004–2006 = 100) |
Economic Growth | GDP | World Bank Datasets | Significant/+ | GDP per capita growth % |
Carbon Dioxide | CO2 | Eurostat | Significant/- | CO2 emissions (kiloton) |
Female Labor Rate | FML | World Bank Datasets | Significant/+ | % of female participation |
Unemployment Rate | UE | World Bank Datasets | Significant/- | % of unemployment labor |
Vulnerable Employment | VE | World Bank Datasets | Significant/- | % of employment |
Variable | Observations | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
BIO | 765 | 4.589 | 0.822 | 1.690 | 5.770 |
FS | 765 | 2.000 | 0.047 | 1.850 | 2.270 |
CO2 | 765 | 4.775 | 0.619 | 3.170 | 5.970 |
UE | 765 | 0.859 | 0.221 | 0.050 | 1.041 |
FML | 765 | 1.689 | 0.068 | 1.450 | 1.800 |
VE | 765 | 1.106 | 0.204 | 0.530 | 1.630 |
GDP | 765 | 1.250 | 0.108 | 0.240 | 1.600 |
Variables | FS | CO2 | UE | FML | VE | GDP |
---|---|---|---|---|---|---|
FS | 1.000 | |||||
CO2 | 0.047 | 1.000 | ||||
UE | 0.023 | 0.150 | 1.000 | |||
FML | 0.183 | 0.127 | 0.029 | 1.000 | ||
VE | −0.144 | 0.154 | 0.231 | −0.214 | 1000 | |
GDP | −0.095 | −0.141 | −0.222 | −0.098 | −0.040 | 1000 |
Variable | Difference | First Difference | ||
---|---|---|---|---|
LLC | IPS | LLC | IPS | |
BIO | −59.127 *** (0.000) | −34.113 *** (0.000) | −10.826 *** (0.000) | −21.138 *** (0.000) |
FS | −22.089 *** (0.000) | −26.115 *** (0.000) | −17.234 *** (0.000) | −23.499 *** (0.000) |
CO2 | −20.726 *** (0.000) | −21.731 *** (0.000) | −18.552 *** (0.000) | −21.982 *** (0.000) |
UE | −12.430 *** (0.000) | −13.099 *** (0.000) | −9.654 *** (0.000) | −10.538 *** (0.000) |
FML | −19.896 *** (0.000) | −20.633 *** (0.000) | −19.273 *** (0.000) | −20.646 *** (0.000) |
VE | −20.058 *** (0.000) | −19.821 *** (0.000) | −17.923 *** (0.000) | −17.944 *** (0.000) |
GDP | −28.308 *** (0.000) | −27.341 *** (0.000) | −24.334 *** (0.000) | −24.604 *** (0.000) |
Dependent Variable: Fish Population | ||
---|---|---|
Table Header | Without Trend | With Trend |
Pedroni Residual Co-integration Test | ||
Alternative hypothesis: common AR coefficients (within dimension): | ||
Panel v-Statistic | −1.570 (0.941) | −1.704 (0.955) |
Panel rho-Statistic | 3.715 (0.999) | 3.361 (0.999) |
Panel PP-Statistic | −3.278 *** (0.000) | −4.397 *** (0.000) |
Panel ADF-Statistic | −3.075 *** (0.001) | −4.625 *** (0.000) |
Alternative hypothesis: common AR coefficients (between dimension) | ||
Group rho-Statistic | 4.686 | 1.000 |
Group PP-Statistic | −8.955 *** | (0.000) |
Group ADF-Statistic | −6.235 *** | (0.000) |
KAO Residual Cointegration Test | ||
ADF | −3.140 *** | (0.000) |
Model 1. Panel Data Analysis Estimation for EU28 Region 1990–2018 | ||||||
---|---|---|---|---|---|---|
Dependent Variable: Bioenergy Production | ||||||
Long-Run Coefficient | DOLS | FMOLS | Pooled OLS | |||
Coefficient | Std. Error | Coefficient | Std. Error | Coefficient | Std. Error | |
FS | 2.341 *** | 0.462 | 2.350 *** | 0.444 | 2.341 *** | 0.250 |
CO2 | -0.847 *** | 0.059 | −0.867 *** | 0.056 | −0.847 *** | 0.032 |
UE | −0.780 *** | 0.169 | −0.813 *** | 0.162 | −0.780 *** | 0.091 |
FML | 2.697 *** | 0.501 | 2.800 *** | 0.480 | 2.697 *** | 0.271 |
VE | −0.448 ** | 0.179 | −0.502 *** | 0.171 | −0.448 *** | 0.097 |
GDP | 0.398 | 0.315 | 0.229 | 0.310 | 0.398 ** | 0.170 |
Model 2. Panel Data Analysis Estimation for EU15 Developed Countries 1990–2018 | ||||||
---|---|---|---|---|---|---|
Dependent Variable: Bioenergy Production | ||||||
Long-Run Coefficient | DOLS | FMOLS | Pooled OLS | |||
Coefficient | Std. Error | Coefficient | Std. Error | Coefficient | Std. Error | |
FS | 0.966 ** | 0.640 | 0.988 ** | 0.502 | 3.964 *** | 0.463 |
CO2 | −1.437 *** | 0.352 | −1.325 *** | 0.259 | −0.786 *** | 0.050 |
UE | −0.282 *** | 0.125 | −0.256 *** | 0.086 | −0.468 *** | 0.132 |
FML | 4.387 *** | 0.487 | 4.946 *** | 0.399 | 4.822 *** | 0.411 |
VE | −0.545 *** | 0.292 | −7.799 *** | 0.232 | −0.254 * | 0.139 |
GDP | 1.856 ** | 0.457 | 0.432 ** | 0.188 | 0.052 | 0.331 |
Model 3. Panel Data Analysis Estimation for Underdeveloped Countries 1990–2018 | ||||||
---|---|---|---|---|---|---|
Dependent Variable: Bioenergy Production | ||||||
Long-Run Coefficient | DOLS | FMOLS | Pooled OLS | |||
Coefficient | Std. Error | Coefficient | Std. Error | Coefficient | Std. Error | |
FS | 1.513 *** | 0.553 | 1.748 *** | 0.495 | 1.513 *** | 0.313 |
CO2 | −1.138 *** | 0.098 | −1.118 *** | 0.088 | −1.138 *** | 0.055 |
UE | −0.731 *** | 0.235 | −0.850 *** | 0.211 | −0.731 *** | 0.133 |
FML | 1.260 * | 0.702 | 1.569 ** | 0.625 | 1.260 *** | 0.397 |
VE | −1.131 *** | 0.287 | −1.133 *** | 0.259 | −1.131 *** | 0.162 |
GDP | 0.643 * | 0.341 | 0.576 * | 0.319 | 0.643 *** | 0.193 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaleh, M.; Abdulwakil, M.M.; Abdul-Rahim, A.S. Does Social Businesses Development Affect Bioenergy Industry Growth under the Pathway of Sustainable Development? Sustainability 2021, 13, 1989. https://doi.org/10.3390/su13041989
Alsaleh M, Abdulwakil MM, Abdul-Rahim AS. Does Social Businesses Development Affect Bioenergy Industry Growth under the Pathway of Sustainable Development? Sustainability. 2021; 13(4):1989. https://doi.org/10.3390/su13041989
Chicago/Turabian StyleAlsaleh, Mohd, Muhammad Mansur Abdulwakil, and Abdul Samad Abdul-Rahim. 2021. "Does Social Businesses Development Affect Bioenergy Industry Growth under the Pathway of Sustainable Development?" Sustainability 13, no. 4: 1989. https://doi.org/10.3390/su13041989
APA StyleAlsaleh, M., Abdulwakil, M. M., & Abdul-Rahim, A. S. (2021). Does Social Businesses Development Affect Bioenergy Industry Growth under the Pathway of Sustainable Development? Sustainability, 13(4), 1989. https://doi.org/10.3390/su13041989