Evaluating the Impact of Mega-Sports Events on Urbanization Focusing on Land-Use Changes Using a Scenario-Based Model
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data
3. Methods
3.1. CLUMondo Construction and Setup
3.2. Logistic Regression Analysis
3.3. Land-Use Model Validation
3.4. Future Development Scenario Setup
3.5. Urban Land Expansion Intensity and Difference
4. Results
4.1. Land-Use Spatial Structure and Changes
4.2. Scenario Simulation Results
4.3. Change Detection Results
4.4. Urban Land Expansion Intensity and Difference
5. Discussion
5.1. Comparative Analysis between Two Scenarios
5.2. Urban Spatial Structure Change Analysis
5.3. Impact and Driving Factors of Urban Spatial Development
5.3.1. Direct Driving Factors
5.3.2. Indirect Driving Factors
6. Conclusions
- There were two major land transformation forms according to the analysis of land-use changes from 2005 to 2025; a large area of cultivated land was reduced, and construction land grew fast, accelerating the process of urbanization. In the natural development, cultivated land decreased by 490.70 km2, and construction land increased by 621.54 km2. With the AGH-driven development, cultivated land decreased by 617.60 km2, and construction land increased by 710.01 km2. Specifically, the increase in construction land will be mainly concentrated in the eastern area of Yuhang, Binjiang, the central and western areas of Xiaoshan (bordering with Binjiang), and the center of Lin’an, with the growth rate particularly rapid in Binjiang and Xiaoshan along both sides of the Qiantang River.
- With the development and construction of Hangzhou, the centroid of urban construction constantly shifted, which shifted to the southwest with a larger offset driven by AGH. Urban dispersion slightly increased with an obvious spatial direction. However, in Hangzhou (excluding the Lin’an and Fuyang districts), the centroid shifted to the southeast with a similar offset under two different simulation scenarios. Urban dispersion showed a tendency of gathering, but the spatial direction was still obvious.
- The Hangzhou Government has issued several documents on the construction of the Asian Games and transport [54,57,59,60], which are of great importance in planning city development. The construction and improvement of venues, supporting facilities, and public rail transit are direct driving factors for future urban spatial development; socioeconomic policy and planning indirectly affect urban development by affecting the direct driving factors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Revision of World Urbanization Prospects. Available online: https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html (accessed on 26 July 2018).
- El Garouani, A.; Mulla, D.J.; El Garouani, S.; Knight, J. Analysis of urban growth and sprawl from remote sensing data: Case of Fez, Morocco. Int. J. Sustain. Built Environ. 2017, 6, 160–169. [Google Scholar] [CrossRef]
- He, C.; Okada, N.; Zhang, Q.; Shi, P.; Zhang, J. Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China. Appl. Geogr. 2006, 26, 323–345. [Google Scholar] [CrossRef]
- Rasmussen, L.V.; Rasmussen, K.; Reenberg, A.; Proud, S. A system dynamics approach to land use changes in agro-pastoral systems on the desert margins of Sahel. Agric. Syst. 2012, 107, 56–64. [Google Scholar] [CrossRef]
- Das, S.; Sarkar, R. Predicting the land use and land cover change using Markov model: A catchment level analysis of the Bhagirathi-Hugli River. Spat. Inf. Res. 2019, 27, 439–452. [Google Scholar] [CrossRef]
- Dietzel, C.; Clarke, K. The effect of disaggregating land use categories in cellular automata during model calibration and forecasting. Comput. Environ. Urban Syst. 2006, 30, 78–101. [Google Scholar] [CrossRef]
- Verburg, P.H.; Eickhout, B.; van Meijl, H. A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Ann. Reg. Sci. 2007, 42, 57–77. [Google Scholar] [CrossRef] [Green Version]
- Tian, G.; Ma, B.; Xu, X.; Liu, X.; Xu, L.; Liu, X.; Xiao, L.; Kong, L. Simulation of urban expansion and encroachment using cellular automata and multi-agent system model—A case study of Tianjin metropolitan region, China. Ecol. Indic. 2016, 70, 439–450. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Liu, X.; Li, D.; He, J. Concepts, methodologies, and tools of an integrated geographical simulation and optimization system. Int. J. Geogr. Inf. Sci. 2010, 25, 633–655. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Overmars, K.P. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 2009, 24, 1167–1181. [Google Scholar] [CrossRef]
- Van Asselen, S.; Verburg, P.H. Land cover change or land-use intensification: Simulating land system change with a global-scale land change model. Glob. Chang. Biol. 2013, 19, 3648–3667. [Google Scholar] [CrossRef] [PubMed]
- Ornetsmüller, C.; Verburg, P.H.; Heinimann, A. Scenarios of land system change in the Lao PDR: Transitions in response to alternative demands on goods and services provided by the land. Appl. Geogr. 2016, 75, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Liu, Y.; Zhang, X.; Wang, Y.; Wang, Y. A Scenario-Based Simulation of Land System Changes on Dietary Changes: A Case Study in China. Sustainability 2019, 11, 5196. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Gao, Y.; Zhang, H.; Liu, L. Optimization of the land use pattern in Horqin Sandy Land by using the CLUMondo model and Bayesian belief network. Sci. Total Environ. 2020, 739, 1–15. [Google Scholar] [CrossRef]
- Arunyawat, S.; Shrestha, R.P. Simulating future land use and ecosystem services in Northern Thailand. J. Land Use Sci. 2018, 13, 146–165. [Google Scholar] [CrossRef]
- Caiazza, R.; Audretsch, D. Can a sport mega-event support hosting city’s economic, socio-cultural and political development? Tour. Manag. Perspect. 2015, 14, 1–2. [Google Scholar] [CrossRef]
- Müller, M. What makes an event a megaevent Definitions and sizes. Leis. Stud. 2017, 34, 627–642. [Google Scholar] [CrossRef] [Green Version]
- Preuss, H. A framework for identifying the legacies of a mega sport event. Leis. Stud. 2015, 34, 643–664. [Google Scholar] [CrossRef]
- Klement, M. Mega-Events and Globalization. Capital and Spectacle in a Changing World Order. Hist. Sociol. 2017, 2017, 134–138. [Google Scholar]
- Gold, J.R.; Gold, M.M. Land remediation, event spaces and the pursuit of Olympic legacy. Geogr. Compass 2020, 14, 1–16. [Google Scholar] [CrossRef]
- Gold, J.; Gold, M. Olympic Cities: City Agendas, Planning and the World’s Games, 1896–2020; Routledge: Abingdon, UK, 2016; pp. 1–484. [Google Scholar]
- Zhao, S.X.; Ching, J.L.; He, Y.; Chan, N.Y.M. Playing Games and Leveraging on Land: Unfolding the Beijing Olympics and China’s Mega-event rbanization Model. J. Contemp. China 2016, 26, 1–23. [Google Scholar] [CrossRef]
- Oja, B.D.; Wear, H.T.; Clopton, A.W. Major Sport Events and Psychic Income: The Social Anchor Effect. J. Sport Manag. 2018, 32, 257–271. [Google Scholar] [CrossRef]
- Parra-Camacho, D.; Añó Sanz, V.; Ayora Pérez, D.; González-García, R.J. Applying importance-performance analysis to residents’ perceptions of large sporting events. Sport Soc. 2019, 23, 249–263. [Google Scholar] [CrossRef]
- Müller, M.; Gaffney, C. Comparing the urban impacts of the fifa world cup and olympic games from 2010 to 2016. J. Sport Soc. Issues 2018, 42, 247–269. [Google Scholar] [CrossRef]
- Gold, J.R.; Gold, M.M. Olympic Cities: Regeneration, City Rebranding and Changing Urban Agendas. Geogr. Compass 2008, 2, 300–318. [Google Scholar] [CrossRef]
- Maennig, W.; du Plessis, S. Sport Stadia, Sporting Events and Urban Development: International Experience and the Ambitions of Durban. Urban Forum. 2009, 20, 61–76. [Google Scholar] [CrossRef]
- Pye, P.N.; Toohey, K.; Cuskelly, G. The social benefits in sport city planning: A conceptual framework. Sport Soc. 2015, 18, 1199–1221. [Google Scholar] [CrossRef]
- Hangzhou Statistical Yearbook 2016. Available online: http://tjj.hangzhou.gov.cn/art/2016/9/23/art_1229453592_3819409.html (accessed on 23 September 2016).
- Verburg, P.H.; De Koning, G.H.J.; Kok, K.; Veldkamp, A.; Bouma, J. A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol. Model. 1999, 116, 45–61. [Google Scholar] [CrossRef]
- Eitelberg, D.A.; van Vliet, J.; Verburg, P.H. A review of global potentially available cropland estimates and their consequences for model-based assessments. Glob. Chang. Biol. 2015, 21, 1236–1248. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Liu, J.; Zheng, G.; Li, Y.; Xie, B. Quantitative assessment of urban wetland dynamics using high spatial resolution satellite imagery between 2000 and 2013. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Van Vliet, J.; Verburg, P.H. A Short Presentation of CLUMondo. In Geomatic Approaches for Modeling Land Change Scenarios; Camacho Olmedo, M.T., Paegelow, M., Mas, J.-F., Escobar, F., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 485–492. [Google Scholar]
- Liu, Z.; Verburg, P.H.; Wu, J.; He, C. Understanding Land System Change Through Scenario-Based Simulations: A Case Study from the Drylands in Northern China. Environ. Manag. 2017, 59, 440–454. [Google Scholar] [CrossRef] [PubMed]
- Gong, B.; Liu, Z. Assessing impacts of land use policies on environmental sustainability of oasis landscapes with scenario analysis: The case of northern China. Landsc. Ecol. 2020, 1–20. [Google Scholar] [CrossRef]
- Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash’aari, Z.H. The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: A review. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 380–389. [Google Scholar] [CrossRef]
- Shao, J.; Dang, Y.; Wang, W.; Zhang, S. Simulation of future land-use scenarios in the Three Gorges Reservoir Region under the effects of multiple factors. J. Geogr. Sci. 2018, 28, 1907–1923. [Google Scholar]
- Gobin, A.; Campling, P.; Feyen, J. Logistic modelling to derive agricultural land use determinants: A case study from southeastern Nigeria. Agri. Ecosyst. Environ. 2002, 89, 213–228. [Google Scholar] [CrossRef]
- Hu, T.; Liu, J.; Zheng, G.; Zhang, D.; Huang, K. Evaluation of historical and future wetland degradation using remote sensing imagery and land use modeling. Land Degrad. Dev. 2019, 31, 65–80. [Google Scholar] [CrossRef]
- State Council of the PRC. Urban Master Plan of Hangzhou (2001–2020) (Revised in 2016); State Council of the PRC: Beijing, China, 2016.
- China Railway Corporation; Zhejiang Provincial People’s Government. Reply on Hangzhou Railway Hub Planning (2016–2030); Zhejiang Provincial People’s Government: Hangzhou, China, 2017.
- Zhong, Y.; Lin, A.; He, L.; Zhou, Z.; Yuan, M. Spatiotemporal Dynamics and Driving Forces of Urban Land-Use Expansion: A Case Study of the Yangtze River Economic Belt, China. Remote Sens. 2020, 12, 287. [Google Scholar] [CrossRef] [Green Version]
- Fahui, W. Quantitative Methods and Application in GIS; CRC Press LLC: Florida, FL, USA, 2006. [Google Scholar]
- Qiao, K.; Zhu, W.; Hu, D.; Hao, M.; Chen, S.; Cao, S. Examining the distribution and dynamics of impervious surface in different function zones in Beijing. J. Geogr. Sci. 2018, 28, 669–684. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-T.; Liu, Y.-S.; Yang, Y.-Y. Land use change and effect analysis of tideland reclamation in Hangzhou Bay. J. Mt. Sci. 2018, 15, 394–405. [Google Scholar] [CrossRef]
- Hou, H.; Wang, R.; Murayama, Y. Scenario-based modelling for urban sustainability focusing on changes in cropland under rapid urbanization: A case study of Hangzhou from 1990 to 2035. Sci. Total Environ. 2019, 661, 422–431. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, N.; Wang, X.; Liu, F.; Yang, L. A Comparative Study of Urban Expansion in Beijing, Tianjin and Tangshan from the 1970s to 2013. Remote Sens. 2016, 8, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.; Chen, B.; Yu, L.; Xin, Q.; Gong, P.; Xu, B. How does urban expansion interact with cropland loss? A comparison of 14 Chinese cities from 1980 to 2015. Landsc. Ecol. 2020, 36, 243–263. [Google Scholar] [CrossRef]
- Huang, L.; Shahtahmassebi, A.; Gan, M.; Deng, J.; Wang, J.; Wang, K. Characterizing spatial patterns and driving forces of expansion and regeneration of industrial regions in the Hangzhou megacity, China. J. Clean. Prod. 2020, 253, 119959. [Google Scholar] [CrossRef]
- Action Plan for Qiantang River Development in Hangzhou. Available online: http://www.hangzhou.gov.cn/art/2019/1/5/art_812262_29196169.html (accessed on 5 January 2019).
- Wang, B.; Shi, W.; Miao, Z. Confidence analysis of standard deviational ellipse and its extension into higher dimensional euclidean space. PLoS ONE 2015, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, L.; Forsyth, P.; Spurr, R. Estimating the Impacts of Special Events on an Economy. J. Travel Res. 2016, 43, 351–359. [Google Scholar] [CrossRef]
- Opinions of the Organizing Committee of the 19th Asian Games in 2022 on Speeding up the Construction of Venues and Facilities in Hangzhou for the 19th Asian Games in 2022. Available online: http://www.hangzhou.gov.cn/art/2017/11/13/art_1256295_12962826.html (accessed on 15 October 2017).
- Bhattacharjee, S.; Goetz, A.R. The rail transit system and land use change in the Denver metro region. J. Transp. Geogr. 2016, 54, 440–450. [Google Scholar] [CrossRef]
- Shen, Q.; Chen, P.; Pan, H. Factors affecting car ownership and mode choice in rail transit-supported suburbs of a large Chinese city. Transp. Res. Part A Policy Pract. 2016, 94, 31–44. [Google Scholar] [CrossRef]
- Construction Plan of the Third Phase of Hangzhou Urban Rail Transit (2017–2022). Available online: https://www.ndrc.gov.cn/xxgk/zcfb/tz/201612/t20161222_962824.html (accessed on 12 December 2016).
- Lin, G.C.S.; He, C.; Li, X.; Wu, Y. Empowering regional economy with a spectacular space: Mega-events, over-drafted capital and momentary growth in China’s metropolises. Area Dev. Policy 2017, 3, 24–41. [Google Scholar] [CrossRef]
- Approval of Hangzhou Municipal People’s Government on the Special Planning of Hangzhou Venues and Facilities for the 19th Asian Games. Available online: http://www.hangzhou.gov.cn/art/2020/8/7/art_1229063387_1133741.html (accessed on 7 August 2020).
- Action Plan for Creating a Model City with Strong Transportation in Hangzhou (2020–2025). Available online: http://www.hangzhou.gov.cn/art/2020/7/20/art_1229063390_3656548.html (accessed on 20 July 2020).
IDs | Types | Variable Names | Descriptions |
---|---|---|---|
0 | Num | DEM | Digital elevation mode |
1 | Num | Slope | Slope |
2 | Num | Aspect | Aspect |
3 | Num | Railway | Distance of each cell to nearest railway or expressway |
4 | Num | Road | Distance of each cell to nearest main road |
5 | Num | Subway | Distance of each cell to nearest subway |
6 | Num | River | Distance of each cell to nearest river |
7 | Num | Center | Distance of each cell to nearest city center or district center |
8 | Num | GDP | Per capita GDP |
9 | Num | Population | Population density |
a | b | c | d | e | f | Conversion Resistance | a | b | c | d | e | f | Conversion Resistance | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | 1 | 105 | 1 | 1 | 1 | 1 | 0.6 | 1 | 105 | 1 | 1 | 1 | 1 | 0.52 |
b | 1 | 1 | 1 | 1 | 1 | 1 | 0.85 | 1 | 1 | 1 | 0 | 0 | 0 | 0.88 |
c | 1 | 105 | 1 | 1 | 1 | 1 | 0.7 | 1 | 105 | 1 | 0 | 0 | 0 | 0.75 |
d | 1 | 108 | 1 | 1 | 0 | 1 | 0.83 | 0 | 0 | 0 | 1 | 0 | 0 | 0.85 |
e | 0 | 0 | 0 | 0 | 1 | 1 | 0.9 | 0 | 0 | 0 | 0 | 1 | 0 | 0.92 |
f | 1 | 1 | 1 | 1 | 1 | 1 | 0.3 | 1 | 1 | 1 | 1 | 1 | 1 | 0.2 |
Scenario | Natural development | AGH-driven development |
Driving Factors | Parameters | Cultivated Land | Forestland | Grassland | Water Area | Construction Land | Unused Land |
---|---|---|---|---|---|---|---|
Elevation | β | −0.0052 | 0.0040 | – | −0.0110 | −0.0070 | 0.0090 |
Exp(β) | 0.9948 | 1.0040 | – | 0.9890 | 0.9930 | 1.0090 | |
Slope | β | −0.1609 | 0.2074 | – | – | −0.1326 | – |
Exp(β) | 0.8514 | 1.2305 | – | – | 0.8758 | – | |
Aspect | β | 0.0023 | −0.0029 | −0.0010 | −0.0013 | – | – |
Exp(β) | 1.0023 | 0.9971 | 0.9991 | 0.9987 | – | – | |
Distance to railway, expressway | β | 0.0003 | – | – | – | −0.0004 | −0.0002 |
Exp(β) | 1.0003 | – | – | – | 0.9996 | 0.9998 | |
Distance to main road | β | – | −0.0002 | 0.0001 | 0.0001 | −0.0002 | −0.0005 |
Exp(β) | – | 0.9998 | 1.0001 | 1.0001 | 0.9998 | 0.9995 | |
Distance to subway | β | – | – | 0.0001 | – | −0.0001 | −0.0001 |
Exp(β) | – | – | 1.0001 | – | 0.9999 | 0.9999 | |
Distance to river | β | – | 0.0001 | 0.0001 | −0.0002 | – | 0.0002 |
Exp(β) | – | 1.0001 | 1.0001 | 0.9999 | – | 1.0002 | |
Distance to city center | β | 0.0004 | – | −0.0004 | −0.0002 | −0.0001 | – |
Exp(β) | 1.0004 | – | 0.9996 | 0.9998 | 0.9999 | – | |
Per capita GDP (ten thousand RMB) | β | −0.0047 | −0.0153 | −0.0204 | 0.0071 | – | 0.0452 |
Exp(β) | 0.9953 | 0.9849 | 0.9798 | 1.0072 | – | 1.0462 | |
Population density(person/square kilometer) | β | −0.0004 | −0.0002 | −0.0002 | −0.0002 | 0.0002 | – |
Exp(β) | 0.9996 | 0.9998 | 0.9998 | 0.9998 | 1.0002 | – | |
Constant | −0.2577 | −0.2224 | −3.1619 | −2.0433 | 0.4301 | −12.7826 | |
AUC | 0.8853 | 0.9703 | 0.7584 | 0.8974 | 0.9225 | 0.8500 |
Observation | Cultivated Land | Forestland | Grassland | Water Area | Construction Land | Unused Land | Total | |
---|---|---|---|---|---|---|---|---|
Simulation | ||||||||
Cultivated land | 78,131 | 13,303 | 533 | 124 | 3948 | 61 | 96,100 | |
Forestland | 10,542 | 190,476 | 1893 | 967 | 3886 | 3 | 207,767 | |
Grassland | 38 | 0 | 4519 | 0 | 539 | 0 | 5096 | |
Water area | 121 | 83 | 0 | 14,403 | 148 | 0 | 14,755 | |
Construction land | 5103 | 562 | 116 | 313 | 37,031 | 41 | 43,166 | |
Unused land | 7 | 83 | 0 | 0 | 99 | 44 | 233 | |
Total | 93,942 | 204,507 | 7061 | 15,807 | 45,651 | 149 | 367,117 | |
User accuracy (%) | 83.17 | 93.14 | 64.00 | 91.12 | 81.12 | 29.53 | ||
Producer accuracy (%) | 81.30 | 91.68 | 88.68 | 97.61 | 85.79 | 18.88 | ||
Overall classification accuracy (%) | 88.42 | |||||||
Kappa coefficient (%) | 80.74 |
Scenarios | Cultivated Land | Forestland | Grassland | Water Area | Construction Land | Unused Land |
---|---|---|---|---|---|---|
Natural development | 1842.84 | 4659.28 | 101.54 | 327.58 | 1323.83 | 5.06 |
AGH-driven development | 1715.94 | 4677.08 | 119.48 | 331.92 | 1412.30 | 3.42 |
Hangzhou | |||||||
Year | CenterX | CenterY | Standard Circle Radius (km) | Standard Deviation Ellipse X | Standard Deviation Ellipse Y | Flattening | Azimuth Angle (°) |
2015 | 802.03 | 3348.83 | 25.85 | 31.22 | 19.01 | 0.39 | 72.00 |
2025 natural development scenario | 800.21 | 3348.43 | 28.29 | 35.20 | 19.01 | 0.46 | 78.40 |
2025 AGH-drivendevelopment scenario | 799.58 | 3348.33 | 28.99 | 36.17 | 19.29 | 0.47 | 78.74 |
Hangzhou (Excluding Lin’an and Fuyang) | |||||||
Year | CenterX | CenterY | Standard Circle Radius (km) | Standard Deviation Ellipse X | Standard Deviation Ellipse Y | Flattening | Azimuth Angle (°) |
2015 | 809.24 | 3352.79 | 17.92 | 19.41 | 16.29 | 0.16 | 110.51 |
2025 natural development scenario | 809.66 | 3352.54 | 16.49 | 18.51 | 14.19 | 0.23 | 125.67 |
2025 AGH-drivendevelopment scenario | 809.65 | 3352.59 | 16.65 | 18.75 | 14.25 | 0.24 | 126.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Li, Y.; Zhu, W.; Chen, Y.; Li, Y.; Hou, H.; Hu, T. Evaluating the Impact of Mega-Sports Events on Urbanization Focusing on Land-Use Changes Using a Scenario-Based Model. Sustainability 2021, 13, 1649. https://doi.org/10.3390/su13041649
Fan J, Li Y, Zhu W, Chen Y, Li Y, Hou H, Hu T. Evaluating the Impact of Mega-Sports Events on Urbanization Focusing on Land-Use Changes Using a Scenario-Based Model. Sustainability. 2021; 13(4):1649. https://doi.org/10.3390/su13041649
Chicago/Turabian StyleFan, Jinjin, Yue Li, Wenquan Zhu, Yan Chen, Yao Li, Hao Hou, and Tangao Hu. 2021. "Evaluating the Impact of Mega-Sports Events on Urbanization Focusing on Land-Use Changes Using a Scenario-Based Model" Sustainability 13, no. 4: 1649. https://doi.org/10.3390/su13041649
APA StyleFan, J., Li, Y., Zhu, W., Chen, Y., Li, Y., Hou, H., & Hu, T. (2021). Evaluating the Impact of Mega-Sports Events on Urbanization Focusing on Land-Use Changes Using a Scenario-Based Model. Sustainability, 13(4), 1649. https://doi.org/10.3390/su13041649