The Influence of Climate, Soil Properties and Vegetation on Soil Nitrogen in Sloping Farmland
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sample Points and Sample Collection
3.2. Climate and Vegetation Data Sources
3.3. Statistical Analysis Method
4. Results
4.1. Distribution Characteristics of Soil Nitrogen
4.2. Effect of Environmental Factors on Soil Nitrogen Content
5. Discussion
5.1. Descriptive Statistics of Soil Nitrogen Content
5.2. Effect of Soil Characteristics on Soil Nitrogen Content
5.3. Effect of Climate and Vegetation on Soil Nitrogen Content
6. Conclusions
- (1)
- Soil nitrogen content decreased with the increase of soil depth.
- (2)
- The influence factors of soil TN, NO3-N and NH4-N content were different.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Obade, V.P.; Lal, R. Soil quality evaluation under different land management practices. Environ. Earth Sci. 2014, 72, 4531–4549. [Google Scholar] [CrossRef]
- Yang, X.-L.; Zhu, B.; Li, Y.-L. Spatial and temporal patterns of soil nitrogen distribution under different land uses in a watershed in the hilly area of purple soil, China. J. Mt. Sci. 2013, 10, 410–417. [Google Scholar] [CrossRef]
- Drescher, G.L.; Da Silva, L.S.; Sarfaraz, Q.; Molin, G.D.; Marzari, L.B.; Lopes, A.F.; Cella, C.; Facco, D.B.; Hammerschmitt, R.K. Alkaline hydrolyzable nitrogen and properties that dictate its distribution in paddy soil profiles. Pedosphere 2020, 30, 326–335. [Google Scholar] [CrossRef]
- Nie, S.; Zhao, L.; Lei, X.; Sarfraz, R.; Xing, S. Dissolved organic nitrogen distribution in differently fertilized paddy soil profiles: Implications for its potential loss. Agric. Ecosyst. Environ. 2018, 262, 58–64. [Google Scholar] [CrossRef]
- Xue, Z.; Cheng, M.; An, S. Soil nitrogen distributions for different land uses and landscape positions in a small watershed on Loess Plateau, China. Ecol. Eng. 2013, 60, 204–213. [Google Scholar] [CrossRef]
- Li, C.; Li, C.; Zhao, L.; Ma, Y.; Tong, X.; Deng, J.; Ren, C.; Han, X.; Yang, G. Dynamics of storage and relative availability of soil inorganic nitrogen along revegetation chronosequence in the loess hilly region of China. Soil Tillage Res. 2019, 187, 11–20. [Google Scholar] [CrossRef]
- Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology; Macgraw Hill: New York, NY, USA, 1941. [Google Scholar]
- Suseela, V.; Tharayil, N.; Xing, B.; Dukes, J.S. Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools inQuercus rubra. Glob. Chang. Biol. 2015, 21, 4177–4195. [Google Scholar] [CrossRef]
- Weedon, J.T.; Kowalchuk, G.A.; Aerts, R.; Van Hal, J.; Van Logtestijn, R.; Taş, N.; Röling, W.F.M.; Van Bodegom, P.M. Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Glob. Chang. Biol. 2011, 18, 138–150. [Google Scholar] [CrossRef]
- Sun, S.; Liu, J.; Chang, S.X. Temperature sensitivity of soil carbon and nitrogen mineralization: Impacts of nitrogen species and land use type. Plant Soil 2013, 372, 597–608. [Google Scholar] [CrossRef]
- Cregger, M.A.; McDowell, N.G.; Pangle, R.E.; Pockman, W.T.; Classen, A.T. The impact of precipitation change on nitrogen cycling in a semi-arid ecosystem. Funct. Ecol. 2014, 28, 1534–1544. [Google Scholar] [CrossRef]
- Wang, H.; Shi, X.-Z.; Yu, D.; Weindorf, D.C.; Huang, B.; Sun, W.; Ritsema, C.J.; Milne, E. Factors determining soil nutrient distribution in a small-scaled watershed in the purple soil region of Sichuan Province, China. Soil Tillage Res. 2009, 105, 300–306. [Google Scholar] [CrossRef]
- Ge, N.; Wei, X.; Wang, X.; Liu, X.; Shao, M.; Jia, X.; Li, X.; Zhang, Q. Soil texture determines the distribution of aggregate-associated carbon, nitrogen and phosphorous under two contrasting land use types in the Loess Plateau. Catena 2019, 172, 148–157. [Google Scholar] [CrossRef]
- Li, Q.; Luo, Y.; Wang, C.; Li, B.; Zhang, X.; Yuan, D.; Gao, X.; Zhang, H. Spatiotemporal variations and factors affecting soil nitrogen in the purple hilly area of Southwest China during the 1980s and the 2010s. Sci. Total Environ. 2016, 547, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Gao, W.; Ren, S.-R. Long-term effects of combined application of chemical nitrogen with organic materials on crop yields, soil organic carbon and total nitrogen in fluvo-aquic soil. Soil Tillage Res. 2015, 151, 67–74. [Google Scholar] [CrossRef]
- Hebei Province. Hebei Rural Statistical Yearbook; Economic Science Press: Beijing, China, 2018; p. 10. [Google Scholar]
- Chen, Y.; Gao, W.; Wang, D.; Liu, Y.; Wu, Y.; Guo, H. Net anthropogenic nitrogen inputs (NANI) and riverine response in water shortage region: A case study of Haihe River watershed. Acta Sci. Circumst. 2016, 36, 3600–3606, (In Chinese with English abstract). [Google Scholar]
- Zhu, J.; He, N.; Wang, Q.; Yuan, G.; Wen, D.; Yu, G.; Jia, Y. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems. Sci. Total Environ. 2015, 511, 777–785. [Google Scholar] [CrossRef]
- Nielsen, D.R.; Bouma, J. Soil Spatial Variability: Proceedings of a Workshop of the ISSS and the SSSA, Las Vegas (USA). In Center Agricultural Pub and Document; Pudoc Wageningen: Wageningen, The Netherlands, 1985. [Google Scholar]
- Yinglan, A.; Wang, G.; Liu, T.; Shrestha, S.; Xue, B.; Tan, Z. Vertical variations of soil water and its controlling factors based on the structural equation model in a semi-arid grassland. Sci. Total Environ. 2019, 691, 1016–1026. [Google Scholar] [CrossRef]
- Xu, G.; Cheng, S.; Li, P.; Li, Z.; Gao, H.; Yu, K.; Lu, K.; Shi, P.; Cheng, Y.; Zhao, B. Soil total nitrogen sources on dammed farmland under the condition of ecological construction in a small watershed on the Loess Plateau, China. Ecol. Eng. 2018, 121, 19–25. [Google Scholar] [CrossRef]
- Deng, X.; Ma, W.; Ren, Z.; Zhang, M.; Grieneisen, M.L.; Chen, X.; Fei, X.; Qin, F.; Zhan, Y.; Lv, X. Spatial and temporal trends of soil total nitrogen and C/N ratio for croplands of East China. Geoderma 2020, 361, 114035. [Google Scholar] [CrossRef]
- Li, X.; Shang, B.; Wang, D.; Wang, Z.; Wen, X.; Kang, Y. Mapping soil organic carbon and total nitrogen in croplands of the Corn Belt of Northeast China based on geographically weighted regression kriging model. Comput. Geosci. 2020, 135, 104392. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Xue, S.; Sun, C. Soil organic carbon and total nitrogen storage as affected by land use in a small watershed of the Loess Plateau, China. Eur. J. Soil Biol. 2013, 54, 16–24. [Google Scholar] [CrossRef]
- Wang, T.; Kang, F.; Cheng, X.; Han, H.; Ji, W. Soil organic carbon and total nitrogen stocks under different land uses in a hilly ecological restoration area of North China. Soil Tillage Res. 2016, 163, 176–184. [Google Scholar] [CrossRef]
- Wang, Z.; Bin Liu, G.; Xu, M.; Zhang, J.; Wang, Y.; Tang, L. Temporal and spatial variations in soil organic carbon sequestration following revegetation in the hilly Loess Plateau, China. Catena 2012, 99, 26–33. [Google Scholar] [CrossRef]
- Zhao, B.; Li, Z.; Li, P.; Xu, G.; Gao, H.; Cheng, Y.; Chang, E.; Yuan, S.; Zhang, Y.; Feng, Z. Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau, China. Geoderma 2017, 296, 10–17. [Google Scholar] [CrossRef]
- Gelaw, A.M.; Singh, B.; Lal, R. Soil organic carbon and total nitrogen stocks under different land uses in a semi-arid watershed in Tigray, Northern Ethiopia. Agric. Ecosyst. Environ. 2014, 188, 256–263. [Google Scholar] [CrossRef]
- Hu, K.; Wang, S.; Li, H.; Huang, F.; Li, B. Spatial scaling effects on variability of soil organic matter and total nitrogen in suburban Beijing. Geoderma 2014, 226–227, 54–63. [Google Scholar] [CrossRef]
- Geng, Z.; Jiang, L.; Li, S.; She, D.; Hou, L. Profile distribution of organic carbon and nitrogen in major soil types in the middle of Qilian Mountains. J. Appl. Ecol. 2011, 22, 665–672, (In Chinese with English abstract). [Google Scholar]
- Deng, X.; Chen, X.; Ma, W.; Ren, Z.; Zhang, M.; Grieneisen, M.L.; Long, W.; Ni, Z.; Zhan, Y.; Lv, X. Baseline map of organic carbon stock in farmland topsoil in East China. Agric. Ecosyst. Environ. 2018, 254, 213–223. [Google Scholar] [CrossRef]
- El Basiouny, H.; Abowaly, M.; Alkheir, A.A.; Gad, A.A. Spatial variation of soil carbon and nitrogen pools by using ordinary Kriging method in an area of north Nile Delta, Egypt. Catena 2014, 113, 70–78. [Google Scholar] [CrossRef]
- Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Chaplot, V.; Bouahom, B.; Valentin, C. Soil organic carbon stocks in Laos: Spatial variations and controlling factors. Glob. Chang. Biol. 2010, 16, 1380–1393. [Google Scholar] [CrossRef]
- Matsumoto, S.; Ae, N. Characteristics of extractable soil organic nitrogen determine using various chemical solutions and its significance for nitrogen uptake by crops. Soil Sci. Plant Nutr. 2004, 50, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhejiang Soil Survey Office. Zhejiang Soil; Zhejiang Science and Technology Press: Hangzhou, China, 1994; pp. 391–394. (In Chinese) [Google Scholar]
- Prahl, F.; Ertel, J.; Goni, M.; Sparrow, M.; Eversmeyer, B. Terrestrial organic carbon contributions to sediments on the Washington margin. Geochim. Cosmochim. Acta 1994, 58, 3035–3048. [Google Scholar] [CrossRef]
- Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. Modelling Soil Carbon and Nitrogen Cycles during Land Use Change. Sustain. Agric. 2011, 2, 499–527. [Google Scholar]
- Lorenz, K. Ecosystem carbon sequestration. In Ecosystem Services and Carbon Sequestration in the Biosphere; Lal, R., Lorenz, K., Hüttl, R.F., Schneider, B.U., von Braun, J., Eds.; Springer Science + Business Media: Dordrecht, The Netherlands, 2013; pp. 39–62. [Google Scholar]
- Butterbach-Bahl, L.; Dannenmann, M. Soil carbon and nitrogen interactions and biosphere-atmosphere exchange of nitrous oxide and methane. In Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle; Lal, R., Lorenz, K., Hüttl, R.F., Schneider, B.U., von Braun, J., Eds.; Springer Science + Business Media: Dordrecht, the Netherlands, 2012; pp. 429–442. [Google Scholar]
- Tian, J.; He, N.; Hale, L.; Niu, S.; Yu, G.; Liu, Y.; Blagodatskaya, E.; Kuzyakov, Y.; Gao, Q.; Zhou, J. Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests. Funct. Ecol. 2017, 32, 61–70. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, M.; Zhao, X.; Li, Y.; Zhao, W.; Li, A.; Chen, S.; Chen, S.; Han, X.; Huang, J. Topography and grazing effects on storage of soil organic carbon and nitrogen in the northern china grasslands. Ecol. Indic. 2018, 93, 45–53. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Mary, B.; Zhang, J.; Cai, Z.-C.; Chang, S.X. Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada. Soil Biol. Biochem. 2013, 57, 848–857. [Google Scholar] [CrossRef]
- Bengtsson, G.; Bengtson, P.; Månsson, K.F. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biol. Biochem. 2003, 35, 143–154. [Google Scholar] [CrossRef]
- De Boer, W.; Kowalchuk, G. Nitrification in acid soils: Micro-organisms and mechanisms. Soil Biol. Biochem. 2001, 33, 853–866. [Google Scholar] [CrossRef]
- Kumar, D.; Shivay, Y.S. Definitional Glossary of Agricultural Terms; IKInternational: New Delhi, India, 2008; Volume 1, p. 314. [Google Scholar]
- Li, J.; Nie, M.; Pendall, E. Soil physico-chemical properties are more important than microbial diversity and enzyme activity in controlling carbon and nitrogen stocks near Sydney, Australia. Geoderma 2020, 366, 114201. [Google Scholar] [CrossRef]
- Gami, S.K.; Lauren, J.G.; Duxbury, J.M. Soil organic carbon and nitrogen stocks in Nepal long-term soil fertility experiments. Soil Tillage Res. 2009, 106, 95–103. [Google Scholar] [CrossRef]
- Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P.S. Mineral–Organic Associations: Formation, Properties, and Relevance in Soil Environments. Adv. Agron. 2015, 130, 1–140. [Google Scholar]
- Krull, E.S.; Baldock, J.A.; Skjemstad, J.O. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct. Plant Biol. 2003, 30, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Hepper, E.; Buschiazzo, D.; Hevia, G.; Urioste, A.; Antón, L. Clay mineralogy, cation exchange capacity and specific surface area of loess soils with different volcanic ash contents. Geoderma 2006, 135, 216–223. [Google Scholar] [CrossRef]
- Woodruff, W.F.; Revil, A. CEC-normalized clay-water sorption isotherm. Water Resour. Res. 2011, 47, W11502. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K.; Elliott, E.T.; Combrink, C. Soil Structure and Organic Matter I. Distribution of Aggregate-Size Classes and Aggregate-Associated Carbon. Soil Sci. Soc. Am. J. 2000, 64, 681–689. [Google Scholar] [CrossRef]
- Carter, M.R. Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil function. Agron. J. 2002, 94, 38–47. [Google Scholar] [CrossRef]
- Barthès, B.G.; Kouakoua, E.; Larré-Larrouy, M.-C.; Razafimbelo, T.M.; De Luca, E.F.; Azontonde, A.; Neves, C.S.; De Freitas, P.L.; Feller, C. Texture and sesquioxide effects on water-stable aggregates and organic matter in some tropical soils. Geoderma 2008, 143, 14–25. [Google Scholar] [CrossRef]
- Liu, Z.-P.; Shao, M.-A.; Wang, Y.-Q. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma 2013, 197–198, 67–78. [Google Scholar] [CrossRef]
- Xu, Z.; Chang, Y.; Li, L.; Luo, Q.; Xu, Z.; Li, X.; Qiao, X.; Xu, X.; Song, X.; Wang, Y.; et al. Climatic and topographic variables control soil nitrogen, phosphorus, and nitrogen: Phosphorus ratios in a Picea schrenkiana forest of the Tianshan Mountains. PLoS ONE 2018, 13, e0204130. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Fu, B.; Li, Z.; Wu, X.; Tang, Q. Precipitation gradient determines the tradeoff between soil moisture and soil organic carbon, total nitrogen, and species richness in the Loess Plateau, China. Sci. Total Environ. 2017, 575, 1538–1545. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-H.; Ma, W.-H.; Mohammat, A.; Fang, J.-Y. Storage, Patterns and Controls of Soil Nitrogen in China. Pedosphere 2007, 17, 776–785. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, H.; Guo, S. Soil organic carbon as a function of land use and topography on the Loess Plateau of China. Ecol. Eng. 2015, 83, 249–257. [Google Scholar] [CrossRef]
- Sheik, C.S.; Beasley, W.H.; Elshahed, M.S.; Zhou, X.; Luo, Y.; Krumholz, L.R. Effect of warming and drought on grassland microbial communities. ISME J. 2011, 5, 1692–1700. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Wang, S.; Fan, J.; Gongadze, K.; Wu, L. Soil nutrients of different land-use types and topographic positions in the water-wind erosion crisscross region of China’s Loess Plateau. Catena 2020, 184, 104243. [Google Scholar] [CrossRef]
- Guntiñas, M.E.; Leirós, M.C.; Trasarcepeda, C.; Gil-Sotres, F. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. Eur. J. Soil Biol. 2012, 48, 73–80. [Google Scholar] [CrossRef]
- De Graaff, M.-A.; Adkins, J.; Kardol, P.; Throop, H.L. A meta-analysis of soil biodiversity impacts on the carbon cycle. Soil 2015, 1, 257–271. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Q.; Zhang, S.; Chen, H.; Li, T.; Zhang, C.; Xu, X.; Mao, Z.; Gong, G.; Deng, O.; Deng, L.; et al. The influence of climate, topography, parent material and vegetation on soil nitrogen fractions. Catena 2019, 175, 329–338. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, C.; Li, W. Predictive mapping of soil total nitrogen at a regional scale: A comparison between geographically weighted regression and cokriging. Appl. Geogr. 2013, 42, 73–85. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, Q.; Wang, Q.; Jin, X.; Han, C. Mapping stocks of soil organic carbon and soil total nitrogen in Liaoning Province of China. Geoderma 2017, 305, 250–263. [Google Scholar] [CrossRef]
- Jiang, Y.; Rao, L.; Sun, K.; Han, Y.; Guo, X. Spatio-temporal distribution of soil nitrogen in Poyang lake ecological economic zone (South-China). Sci. Total Environ. 2018, 626, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Banday, M.; Bhardwaj, D.R.; Pala, N.A. Influence of forest type, altitude and NDVI on soil properties in forests of North Western Himalaya, India. Acta Ecol. Sin. 2019, 39, 50–55. [Google Scholar] [CrossRef]
- Kaewpradit, W.; Toomsan, B.; Cadisch, G.; Vityakon, P.; Limpinuntana, V.; Saenjan, P.; Jogloy, S.; Patanothai, A. Mixing groundnut residues and rice straw to improve rice yield and N use efficiency. Field Crop. Res. 2009, 110, 130–138. [Google Scholar] [CrossRef]
- Heitkamp, F.; Wendland, M.; Offenberger, K.; Gerold, G. Implications of input estimation, residue quality and carbon saturation on the predictive power of the rothamsted carbon model. Geoderma 2012, 170, 168–175. [Google Scholar] [CrossRef]
Soil Depth | Max | Min | Average | Variance | CV | |
---|---|---|---|---|---|---|
TN(g/kg) | 0~20 cm | 1.05 | 0.45 | 0.84 a | 0.19 | 0.22 |
20~40 cm | 1.05 | 0.31 | 0.75 ab | 0.26 | 0.34 | |
40~60 cm | 1.26 | 0.23 | 0.65 ab | 0.30 | 0.46 | |
60~80 cm | 1.25 | 0.31 | 0.63 ab | 0.32 | 0.51 | |
80~100 cm | 1.13 | 0.15 | 0.58 b | 0.30 | 0.52 | |
NO3-N(mg/kg) | 0~20 cm | 95.2 | 8.96 | 26.10 a | 23.33 | 0.89 |
20~40 cm | 91 | 4.21 | 23.08 a | 22.51 | 0.98 | |
40~60 cm | 46.1 | 7.59 | 18.45 a | 11.98 | 0.65 | |
60~80 cm | 47.8 | 6.43 | 16.65 a | 11.12 | 0.67 | |
80~100 cm | 49.2 | 3.83 | 19.94 a | 14.31 | 0.72 | |
NH4-N(mg/kg) | 0~20 cm | 3.28 | 2.36 | 2.73 a | 0.38 | 0.14 |
20~40 cm | 2.94 | 2.38 | 2.62 a | 0.21 | 0.08 | |
40~60 cm | 2.94 | 2.13 | 2.55 a | 0.28 | 0.11 | |
60~80 cm | 2.88 | 2.41 | 2.61 a | 0.15 | 0.06 | |
80~100 cm | 2.94 | 2.35 | 2.59 a | 0.19 | 0.07 |
Soil Nitrogen | Contribution of the Individual Predictor (R2, %) | Adj (R2, %) | ||||||
---|---|---|---|---|---|---|---|---|
SOC | pH | SMD | NDVI5 | NDVI6 | NDVI8 | MAP | Full Model | |
TN | 49.7 | 6.81 | 4.62 | / | 16.13 | / | / | 77.4 |
NO3-N | 2.03 | 12.32 | / | 21.16 | / | / | 13.53 | 49.1 |
NH4-N | / | / | / | / | 24.21 | / | 24.2 |
Soil Nitrogen | SOC | pH | SMD | NDVI5 | NDVI6 | NDVI8 | MAP | Full Model |
---|---|---|---|---|---|---|---|---|
TN | 0.705 (0.000) | 0.209 (0.003) | −0.215 (0.001) | / | 0.37 (0.000) | / | / | 0.774 |
NO3-N | 0.231 (0.025) | −0.351 (0.000) | / | 0.462 (0.000) | / | / | 0.323 (0.002) | 0.491 |
NH4-N | / | / | / | / | / | 0.492 (0.000) | / | 0.242 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Qin, T.; Dong, B.; Shi, X.; Lv, Z.; Zhang, G. The Influence of Climate, Soil Properties and Vegetation on Soil Nitrogen in Sloping Farmland. Sustainability 2021, 13, 1480. https://doi.org/10.3390/su13031480
Liu S, Qin T, Dong B, Shi X, Lv Z, Zhang G. The Influence of Climate, Soil Properties and Vegetation on Soil Nitrogen in Sloping Farmland. Sustainability. 2021; 13(3):1480. https://doi.org/10.3390/su13031480
Chicago/Turabian StyleLiu, Shanshan, Tianling Qin, Biqiong Dong, Xuan Shi, Zhenyu Lv, and Guangjun Zhang. 2021. "The Influence of Climate, Soil Properties and Vegetation on Soil Nitrogen in Sloping Farmland" Sustainability 13, no. 3: 1480. https://doi.org/10.3390/su13031480
APA StyleLiu, S., Qin, T., Dong, B., Shi, X., Lv, Z., & Zhang, G. (2021). The Influence of Climate, Soil Properties and Vegetation on Soil Nitrogen in Sloping Farmland. Sustainability, 13(3), 1480. https://doi.org/10.3390/su13031480