Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites?
Abstract
:1. Introduction
- Where are potential sources for industrial excess heat located in the EU?
- How much excess heat from energy-intensive industrial processes is technically available for external use?
- How much excess heat is available for actual and possible DH systems considering efficiency measures in the industrial sector and district heating?
2. Data and Methods
- Allocating industrial processes in the EU-28: We first map geographical locations of energy-intensive industrial sites with relevant processes and annual production in Section 2.1.
- Estimation of process-specific excess heat potentials: We estimate specific energy consumption and excess heat on process level regardless of the geographical context in Section 2.2. The estimation depends on exhaust gas temperatures.
- Mapping industrial excess heat to district heating areas: The excess heat potentials are matched with actual and possible DH systems by applying spatial GIS analyses in Section 2.3. We calculate six different potentials representing the amount of excess heat that can be supplied to district heating areas depending on the assumptions.
- Current situation: many industrial processes already utilize excess heat recovery systems. The calculated excess heat potentials represent the excess heat potential available for external use for current average internal use of excess heat. This is estimated individually for each process considered.
- Full internal use of excess heat: we assume a 100% diffusion of main internal excess heat recovery systems (e.g., for preheating materials), thereby reducing the remaining available excess heat for external use. This potential is more future-oriented and assumes that internal excess heat use is always preferable over external heat use.
- 95 °C: to estimate the maximum excess heat attainable if an exhaust gas is cooled to 95 °C. This can potentially be used directly in typical 3rd generation DH grids, which corresponds to many of the common district heating systems in operation in the EU-28.
- 55 °C: to estimate the maximum excess heat attainable if an exhaust gas is cooled to 55 °C. This is a typical temperature for 4th generation DH grids, which will possibly be operating in the future.
- 25 °C: to estimate the maximum excess heat attainable if an exhaust gas is cooled to ambient temperatures. This can potentially be used as a heat source for large scale heat pumps feeding into 4th generation DH grids. This value is to be considered as a maximum potential for future heating systems, even though it is quite unlikely that all of the systems can utilize these temperatures.
- Actual level (DH-A): this represents the DH areas which are currently in operation in the EU-28.
- Possible level (DH-P): this represents the potential extension of DH grids based on today’s heating demand density of buildings. These areas can currently have district heating systems already (DH-A). Areas with a current heating demand greater than 500 GJ/ha are assumed to be cost-effective or likely suitable for DH distribution. In this study, the sum of heat demands in all DH-P areas aggregates to a share of ~65% of the total heating demand by the residential and service sector in EU-28. Thus, it represents a very ambitious estimate for the possible DH areas. The reduction of useful energy demand of buildings due to renovation is not considered in the assumptions for the extension of DH systems (DH-P) (Please note, that in a previous publication [47] this potential was denominated as "expected" level).
2.1. Allocating Industrial Processes in the EU-28
- coordinates or at least the address of the site;
- industrial subsector together with production processes, or in some cases sufficient information on the manufactured goods;
- annual production data or at least production capacity.
2.2. Estimation of Process-Specific Excess Heat Potentials
2.2.1. Iron and Steel
2.2.2. Cement
2.2.3. Glass
2.2.4. Pulp and Paper
2.2.5. Primary Aluminum
2.2.6. Chemicals and Refineries
2.3. Mapping Industrial Excess Heat to District Heating Areas
3. Results
3.1. Excess Heat Potentials per Process
3.2. Excess Heat Potential per District Heating Areas
4. Discussion
4.1. Data Validation
4.2. Limitations
4.3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Detailed Industry Specific Fuel Demand, Exhaust Temperatures and Excess Heat Estimates
Exhaust Gas Temperature (°C) | Fuel SEC (GJ/t) | Unit | Absolute or Relative Excess Heat | Current Diffusion Rate (%) | Assumed Future Diffusion Rate (%) | |||
---|---|---|---|---|---|---|---|---|
25 °C | 55 °C | 95 °C | ||||||
Coke ovens | ||||||||
Sensible heat in COG | 816 | - | GJ/tonne coke | 0.98 | 0.95 | 0.91 | 100% | 0% |
Sensible heat in COG; with HR | 449 | - | GJ/tonne coke | 0.47 | 0.44 | 0.40 | 0% | 100% |
Excess heat in off-gases | 200 | 1.6 | % of fuel input | 44% | 13% | 9% | 100% | 100% |
Blast furnaces | ||||||||
Sensible heat in BFG | 221 | - | GJ/tonne steel | 0.42 | 0.36 | 0.27 | 100% | 100% |
Blast stove exhaust | 250 | 1.5 | % of fuel input | 13% | 10% | 8% | 50% | 0% |
Blast stove exhaust; with HR | 130 | 1.49 | % of fuel input | 6% | 4% | 2% | 50% | 100% |
Basic oxygen furnace | ||||||||
Sensible heat in BOF off-gases | 1704 | - | GJ/tonne steel | 0.56 | 0.55 | 0.54 | 30% | 0% |
Sensible heat in BOF off-gases; with HR | 250 | - | GJ/tonne steel | 0.02 | 0.02 | 0.01 | 70% | 100% |
Electric arc furnace | ||||||||
Electric arc furnace | 1204 | 1.8 | % of fuel input | 12% | 12% | 12% | 70% | 0% |
Electric arc furnace; with HR | 204 | 1.5 | % of fuel input | 2% | 1% | 1% | 30% | 100% |
Exhaust Gas Temperature (°C) | Electricity SEC (GJ/t) | Unit | % of Fuel Input as Excess Heat | Current Diffusion Rate (%) | Assumed Future Diffusion Rate (%) | |||
---|---|---|---|---|---|---|---|---|
25 °C | 55 °C | 95 °C | ||||||
Primary aluminium | 700 | 54 | GJ/tonne aluminium | 1.09 | 1.05 | 1.00 | 100% | 100% |
Exhaust Gas Temperature (°C) | Fuel SEC (GJ/t) | Unit | % of Fuel Input as Excess Heat | Current Diffusion Rate (%) () | Assumed Future Diffusion Rate (%) | |||
---|---|---|---|---|---|---|---|---|
25 °C | 55 °C | 95 °C | ||||||
Container glass | ||||||||
Recuperative | 982 | 6.2 | % of fuel input | 60% | 47% | 45% | 60% | 0% |
Recuperative; with HR | 200 | 4.6 | % of fuel input | 19% | 7% | 5% | 40% | 100% |
Regenerative | 427 | 5.2 | % of fuel input | 30% | 18% | 16% | 60% | 0% |
Regenerative; with HR | 200 | 3.8 | % of fuel input | 19% | 7% | 5% | 40% | 100% |
Oxy-fuel | 1427 | 5.2 | % of fuel input | 35% | 30% | 29% | 60% | 0% |
Oxy-fuel; with HR | 200 | 3.8 | % of fuel input | 8% | 3% | 2% | 40% | 100% |
Flat glass | ||||||||
Recuperative | 982 | 9.2 | % of fuel input | 60% | 47% | 45% | 100% | 0% |
Recuperative; with HR | 200 | 7.8 | % of fuel input | 19% | 7% | 5% | 0% | 100% |
Regenerative | 427 | 7.5 | % of fuel input | 30% | 18% | 16% | 100% | 0% |
Regenerative; with HR | 200 | 6.4 | % of fuel input | 19% | 7% | 5% | 0% | 100% |
Oxy-fuel | 1427 | 5.6 | % of fuel input | 35% | 30% | 29% | 100% | 0% |
Oxy-fuel; with HR | 200 | 4.8 | % of fuel input | 8% | 3% | 2% | 0% | 100% |
Exhaust Gas Temperature (°C) | Fuel SEC (GJ/t) | Unit | % of Fuel Input as Excess Heat | Current Diffusion Rate (%) | Assumed Future Diffusion Rate (%) | |||
---|---|---|---|---|---|---|---|---|
25 °C | 55 °C | 95 °C | ||||||
Wet | 338 | 5.5 | % of fuel input | 20% | 15% | 13% | not needed | not needed |
Dry | 449 | 4.5 | % of fuel input | 27% | 22% | 20% | not needed | not needed |
Dry, with preheating and precalciner (4 stage preheating) | 338 | 3.3 | % of fuel input | 22% | 17% | 15% | not needed | not needed |
Dry with preheating and precalciner (5-6 stage preheating) | 250 | 3.0 | % of fuel input | 17% | 12% | 10% | not needed | not needed |
Exhaust Gas Temperature (°C) | Fuel SEC (GJ/t) | Unit | % of Fuel Input as Excess Heat | Current Diffusion Rate (%) | Assumed Future Diffusion Rate (%) | |||
---|---|---|---|---|---|---|---|---|
25 °C | 55 °C | 95 °C | ||||||
Pulp making | ||||||||
Chemical pulping | 260 | 12.3 | % of fuel input | 9% | 3% | 3% | 30% | 0% |
Chemical pulping; with HR | 177 | 10.3 | % of fuel input | 8% | 2% | 1% | 70% | 100% |
Lime burning | 650 | 2.2 | % of fuel input | 52% | 36% | 34% | 30% | 0% |
Lime burning; with HR | 200 | 1.4 | % of fuel input | 24% | 8% | 6% | 70% | 100% |
Mechanical pulping | 260 | 2.2 | % of fuel input | 9% | 3% | 3% | 30% | 0% |
Mechanical pulping; with HR | 177 | 1.9 | % of fuel input | 8% | 2% | 1% | 70% | 100% |
Recovered fibres | 260 | 0.6 | % of fuel input | 9% | 3% | 3% | 30% | 0% |
Recovered fibres, with HR | 177 | 0.5 | % of fuel input | 8% | 2% | 1% | 70% | 100% |
Paper making | ||||||||
Board & packaging paper | 260 | 5.7 | % of fuel input | 9% | 3% | 3% | 30% | 0% |
Graphic paper | 260 | 8.4 | % of fuel input | 9% | 3% | 3% | 30% | 0% |
Tissue paper | 260 | 8.1 | % of fuel input | 9% | 3% | 3% | 30% | 0% |
Board & packaging paper; with boiler HR | 177 | 4.9 | % of fuel input | 8% | 2% | 1% | 70% | 100% |
Graphic paper; with boiler HR | 177 | 7.2 | % of fuel input | 8% | 2% | 1% | 70% | 100% |
Tissue paper; with boiler HR | 177 | 6.9 | % of fuel input | 8% | 2% | 1% | 70% | 100% |
Exhaust Gas Temperature (°C) | Fuel SEC (GJ/t) | Unit | % of Fuel Input as Excess Heat | Current Diffusion Rate (%) | Assumed Future Diffusion Rate (%) | |||
---|---|---|---|---|---|---|---|---|
25 °C | 55 °C | 95 °C | ||||||
Ethylene | ||||||||
Furnace | 149 | 23.9 | % of fuel input | 17% | 4% | 3% | 100% | 100% |
Boiler | 260 | 13.3 | % of fuel input | 22% | 10% | 8% | 30% | 0% |
Boiler, with HR | 149 | 11.4 | % of fuel input | 17% | 4% | 3% | 70% | 100% |
Ammonia | ||||||||
Boiler | 260 | 5.1 | % of fuel input | 22% | 10% | 8% | 30% | 0% |
Boiler, with HR | 149 | 4.4 | % of fuel input | 17% | 4% | 3% | 70% | 100% |
Chlorine diaphragm | ||||||||
Boiler | 260 | 3.6 | % of fuel input | 22% | 10% | 8% | 30% | 0% |
Boiler; with HR | 149 | 3.1 | % of fuel input | 17% | 4% | 3% | 70% | 100% |
Chlorine membrane | ||||||||
Boiler | 260 | 1.2 | % of fuel input | 22% | 10% | 8% | 30% | 0% |
Boiler, with HR | 149 | 1.0 | % of fuel input | 17% | 4% | 3% | 70% | 100% |
Exhaust Gas Temperature (°C) | Fuel SEC (GJ/t) | Unit | % Of Fuel Input as Excess Heat | Current Diffusion Rate (%) | Assumed Future Diffusion Rate (%) | |||
---|---|---|---|---|---|---|---|---|
25 °C | 55 °C | 95 °C | ||||||
Boiler, no HR | ||||||||
Refinery basic | 260 | 1.60 | % of fuel input | 29% | 11% | 9% | 30% | 0% |
Refinery gasoline focused | 260 | 2.00 | % of fuel input | 29% | 11% | 9% | 30% | 0% |
Refinery diesel focused | 260 | 2.30 | % of fuel input | 29% | 11% | 9% | 30% | 0% |
Refinery flexible; | 260 | 2.10 | % of fuel input | 29% | 11% | 9% | 30% | 0% |
Boiler, with HR | ||||||||
Refinery basic | 177 | 1.40 | % of fuel input | 24% | 6% | 4% | 70% | 100% |
Refinery gasoline focused | 177 | 1.70 | % of fuel input | 24% | 6% | 4% | 70% | 100% |
Refinery diesel focused | 177 | 2.00 | % of fuel input | 24% | 6% | 4% | 70% | 100% |
Refinery flexible | 177 | 1.80 | % of fuel input | 24% | 6% | 4% | 70% | 100% |
Appendix B. Detailed Industry Specific Fuel Demand, Exhaust Temperatures and Excess Heat Estimates
Scenario | Dimension | Inside (0 km) | Up to <2 km> | 2 up to <5 km | 5 up to 10 km | 10 up to <25 km | 25 up to <100 km | >100 km | Total |
---|---|---|---|---|---|---|---|---|---|
Current potential | Matches DH-A (n) | 206 | 187 | 163 | 196 | 324 | 383 | 149 | 1608 |
Share (%) | 13% | 12% | 10% | 12% | 20% | 24% | 9% | 100% | |
Matches (Acc.) (n) | 206 | 393 | 556 | 752 | 1076 | 1459 | 149 | 1608 | |
Share (Acc.) (%) | 13% | 24% | 35% | 47% | 67% | 91% | 9% | 100% | |
Current potential (95 °C) | Heat (PJ/a) | 54 | 60 | 52 | 64 | 77 | 66 | 53 | 425 |
Share (%) | 13% | 14% | 12% | 15% | 18% | 16% | 12% | 100% | |
Heat (Acc.) (n) | 54 | 114 | 166 | 230 | 306 | 373 | 53 | 425 | |
Share (Acc.) (%) | 13% | 27% | 39% | 54% | 72% | 88% | 12% | 100% | |
System efficiency | Matches DH-P (n) | 702 | 639 | 149 | 79 | 32 | 4 | 3 | 1608 |
Share (%) | 44% | 40% | 9% | 5% | 2% | 0.25% | 0.19% | 100% | |
Matches (Acc.) (n) | 702 | 1341 | 1490 | 1569 | 1601 | 1605 | 3 | 1608 | |
Share (Acc.) (%) | 44% | 83% | 93% | 98% | 99.6% | 99.8% | 0.2% | 100% | |
System efficiency (55 °C) | Heat (PJ/a) | 132 | 106 | 17 | 4 | 4 | 1 | 0.4 | 264 |
Share (%) | 50% | 40% | 6% | 2% | 1% | 0.5% | 0.2% | 100% | |
Heat (Acc.) (n) | 132 | 238 | 254 | 258 | 262 | 263 | 0.4 | 264 | |
Share (Acc.) (%) | 50% | 90% | 96% | 98% | 99% | 99.8% | 0.2% | 100% | |
System efficiency (25 °C) | Heat (PJ/a) | 384 | 248 | 39 | 9 | 10 | 2 | 1.5 | 692 |
Share () | 55% | 36% | 6% | 1% | 1% | 0% | 0% | 100% | |
Heat (Acc.) (n) | 384 | 632 | 671 | 679 | 689 | 691 | 2 | 692 | |
Share (Acc.) (%) | 55% | 91% | 97% | 98% | 100% | 100% | 0% | 100% |
References
- Eurostat. Complete Energy Balances (Table nrg_bal_c). 2020. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 15 July 2020).
- Rehfeldt, M.; Fleiter, T.; Toro, F. A bottom-up estimation of the heating and cooling demand in European industry. Energy Effic. 2017, 45, 786. [Google Scholar] [CrossRef]
- European Commission. Energy Prices and Costs in Europe; COM (2019) I Final; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Eichhammer, W.; Walz, R. Industrial Energy Efficiency and Competitiveness. In Development Policy, Statistics and Research Branch; Working Paper 05/2011; United Nations Industrial Development Organization: Vienna, Austria, 2011. [Google Scholar]
- Aydemir, A.; Rohde, C. What About Heat Integration? Quantifying Energy Saving Potentials for Germany. In ECEEE Industrial Summer Study Proceedings; European Council for an Energy-Efficient Economy—ECEEE: Berlin, Germany, 13 June 2018; pp. 197–205. [Google Scholar]
- Persson, U.; Wiechers, E.; Möller, B.; Werner, S. Heat roadmap Europe: Heat distribution costs. Energy 2019, 176, 604–622. [Google Scholar] [CrossRef]
- Persson, U.; Möller, B.; Werner, S. Heat Roadmap Europe: Identifying strategic heat synergy regions. Energy Policy 2014, 74, 663–681. [Google Scholar] [CrossRef]
- European Commission. An EU Strategy on Heating and Cooling. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; COM(2016) 51 Final; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Odyssee-Mure. Odyssee Database. 2020. Available online: www.odyssee-mure.eu (accessed on 1 September 2020).
- Colmenar-Santos, A.; Borge-Díez, D.; Rosales-Asensio, E. District Heating and Cooling Networks in the European Union; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-57952-8. [Google Scholar]
- Persson, U.; Werner, S. District heating in sequential energy supply. Appl. Energy 2012, 95, 123–131. [Google Scholar] [CrossRef]
- Lund, H.; Werner, S.; Wiltshire, R.; Svendsen, S.; Thorsen, J.E.; Hvelplund, F.; Mathiesen, B.V. 4th generation district heating (4GDH). Energy 2014, 68, 1–11. [Google Scholar] [CrossRef]
- Werner, S. International review of district heating and cooling. Energy 2017, 137, 617–631. [Google Scholar] [CrossRef]
- Nielsen, S.; Möller, B. GIS based analysis of future district heating potential in Denmark. Energy 2013, 57, 458–468. [Google Scholar] [CrossRef] [Green Version]
- Möller, B.; Wiechers, E.; Persson, U.; Grundahl, L.; Lund, R.S.; Mathiesen, B.V. Heat roadmap Europe: Towards EU-Wide, local heat supply strategies. Energy 2019, 177, 554–564. [Google Scholar] [CrossRef]
- Euroheat & Power. Country by Country District Heating and Cooling. 2019. Available online: https://www.euroheat.org/knowledge-hub/country-profiles/ (accessed on 1 September 2020).
- European Commission. EU Reference Scenario 2016: Energy, Transport and GHG Emissions—Trends to 2050; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- International Energy Agency. World Energy Outlook 2019; IEA Publications: Paris, France, 2019; ISBN 9789264973008. [Google Scholar]
- Pezzutto, S.; Zambotti, S.; Croce, S.; Zambelli, P.; Garegnani, G.; Scaramuzzino, C.; Pascuas, R.P.; Haas, F.; Exner, D.; Lucchi, E.; et al. D2.3 WP2 Report—Open Data Set for the EU28: Deliverable D2.3 Hotmaps; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Miró, L.; Brückner, S.; Cabeza, L.F. Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries. Renew. Sustain. Energy Rev. 2015, 51, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Brückner, S.; Miró, L.; Cabeza, L.F.; Pehnt, M.; Laevemann, E. Methods to estimate the industrial waste heat potential of regions—A categorization and literature review. Renew. Sustain. Energy Rev. 2014, 38, 164–171. [Google Scholar] [CrossRef]
- BCS Inc. Waste Heat Recovery: Technology and Opportunities in U.S. Industry; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program: Washington, DC, USA, 2008.
- McKenna, R.C.; Norman, J.B. Spatial modelling of industrial heat loads and recovery potentials in the UK. Energy Policy 2010, 38, 5878–5891. [Google Scholar] [CrossRef]
- Hammond, G.P.; Norman, J.B. Heat recovery opportunities in UK industry. Appl. Energy 2014, 116, 387–397. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. European Union Emissions Trading System (EU ETS) Data from EUTL (EU Transaction Log.). 2020. Available online: https://www.eea.europa.eu/ds_resolveuid/DAT-21-en (accessed on 25 February 2020).
- Manz, P.; Fleiter, T.; Aydemir, A. Developing a Georeferenced Database of Energy-intensive Industry Plants for Estimation of Excess Heat Potentials. In ECEEE Industrial Summer Study Proceedings; European Council for an Energy-Efficient Economy—ECEEE: Berlin, Germany, 13 June 2018; pp. 239–247. [Google Scholar]
- Aydemir, A.; Fleiter, T.; Schilling, D.; Fallahnejad, M. Industrial Excess Heat and District Heating: Potentials and Costs for the EU-28 on the Basis of Network Analysis. In ECEEE Industrial Summer Study Proceedings; European Council for an Energy-Efficient Economy—ECEEE: online, 30 September 2020. [Google Scholar]
- Bühler, F.; Petrović, S.; Holm, F.M.; Karlsson, K.; Elmegaard, B. Spatiotemporal and economic analysis of industrial excess heat as a resource for district heating. Energy 2018, 151, 715–728. [Google Scholar] [CrossRef] [Green Version]
- Bühler, F.; Petrović, S.; Karlsson, K.; Elmegaard, B. Industrial excess heat for district heating in Denmark. Appl. Energy 2017, 205, 991–1001. [Google Scholar] [CrossRef] [Green Version]
- Bühler, F.; Nguyen, T.-V.; Elmegaard, B. Energy and exergy analyses of the Danish industry sector. Appl. Energy 2016, 184, 1447–1459. [Google Scholar] [CrossRef] [Green Version]
- Brückner, S. Industrielle Abwärme: Bestimmung von Gesichertem Aufkommen und Technischer bzw. Wirtschaftlicher Nutzbarkeit; TU München: München, Germany, 2016. [Google Scholar]
- European Environment Agency. The European Pollutant Release and Transfer Register (EPRTR), Member States Reporting under Article 7 of Regulation (EC) No 166/2006. Available online: https://www.eea.europa.eu/ds_resolveuid/DAT-26-en (accessed on 25 February 2020).
- Svensson, E.; Morandin, M.; Harvey, S. Characterization and visualization of industrial excess heat for different levels of on-site process heat recovery. Int. J. Energy Res. 2019, 43, 7988–8003. [Google Scholar] [CrossRef] [Green Version]
- Brückner, S.; Arbter, R.; Pehnt, M.; Laevemann, E. Industrial waste heat potential in Germany—A bottom-up analysis. Energy Effic. 2017, 10, 513–525. [Google Scholar] [CrossRef]
- Pehnt, M.; Bödeker, J.; Arens, M.; Jochem, E.; Idrissova, F. Die Nutzung Industrieller Abwärme—Technisch-Wirtschaftliche Potenziale und Energiepolitische Umsetzung: Wissenschaftliche Begleitforschung zu Übergreifenden Technischen, Ökologischen, Ökonomischen und Strategischen Aspekten des Nationalen Teils der Klimaschutzinitiative; Fraunhofer-Verlag: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Energetics; E3M. Energy Use, Loss and Opportunities Analysis: U.S. Manufacturing & Mining; Prepared for the U.S. Department of Energy—Energy Efficiency and Renewable Energy Industrial Technologies Program; U.S. Department of Energy: Washington, DC, USA, 2004.
- Sollesnes, G.; Helgerud, H.E. Utnyttelse av Spillvarme fra Norsk Industri: En Potensialstudie; Enova Rapport 2009:1; Norsk Energi: Oslo, Norway, 2009. [Google Scholar]
- Papapetrou, M.; Kosmadakis, G.; Cipollina, A.; La Commare, U.; Micale, G. Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country. Appl. Therm. Eng. 2018, 138, 207–216. [Google Scholar] [CrossRef]
- European Commission. Industrial Thermal Energy Recovery Conversion and Management. D 2.1 Literature Review of Energy Use and Potential for Heat Recovery in the Eu28 Report; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Panayiotou, G.P.; Bianchi, G.; Georgiou, G.; Aresti, L.; Argyrou, M.; Agathokleous, R.; Tsamos, K.M.; Tassou, S.A.; Florides, G.; Kalogirou, S.; et al. Preliminary assessment of waste heat potential in major European industries. Energy Procedia 2017, 123, 335–345. [Google Scholar] [CrossRef]
- Forman, C.; Muritala, I.K.; Pardemann, R.; Meyer, B. Estimating the global waste heat potential. Renew. Sustain. Energy Rev. 2016, 57, 1568–1579. [Google Scholar] [CrossRef]
- Bianchi, G.; Panayiotou, G.P.; Aresti, L.; Kalogirou, S.A.; Florides, G.A.; Tsamos, K.; Tassou, S.A.; Christodoulides, P. Estimating the waste heat recovery in the European Union Industry. Energy Ecol. Environ. 2019, 4, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Miró, L.; McKenna, R.; Jäger, T.; Cabeza, L.F. Estimating the industrial waste heat recovery potential based on CO2 emissions in the European non-metallic mineral industry. Energy Effic. 2018, 11, 427–443. [Google Scholar] [CrossRef] [Green Version]
- Aydemir, A.; Fritz, M. Estimating excess heat from exhaust gases: Why corrosion matters. Energy Ecol. Environ. 2020, 28, 1359. [Google Scholar] [CrossRef]
- Fleiter, T.; Manz, P.; Neuwirth, M.; Mildner, F.; Persson, U.; Kermeli, K.; Crijns-Graus, W.; Rutten, C. D5.1 Industry Dataset; sEEnergies Open Data: Flensburg, Germany, 2020. [Google Scholar]
- Fleiter, T.; Manz, P.; Neuwirth, M.; Mildner, F.; Persson, U.; Kermeli, K.; Crijns-Graus, W.; Rutten, C. sEEnergies D5.1 Dataset Web-App; ArcGIS Online; Europa-Universität Flensburg: Flensburg, Germany, 2020. [Google Scholar]
- Fleiter, T.; Manz, P.; Neuwirth, M.; Mildner, F.; Persson, U.; Kermeli, K.; Crijns-Graus, W.; Rutten, C. Documentation on Excess Heat Potentials of Industrial Sites Including Open Data File with Selected Potentials; (Revised Version); ZENODO: Geneva, Switzerland, 2021. [Google Scholar]
- International Energy Agency. Tracking Industrial Energy Efficiency and CO2 Emissions Energy Indicators; International Energy Agency: Paris, France, 2007. [Google Scholar]
- European Commission. Best Available Techniques (BAT) Reference Document for Iron and Steel Production. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control); Publications Office of the European Union: Luxembourg, 2013; ISBN 9789279264764. [Google Scholar]
- Ray, H.S.; Singh, B.P.; Bhattacharjee, S.; Misra, V.N. Energy in Minerals and Metallurgical Industries; Allied Publishers: New Delhi, India, 2005; ISBN 8177648748. [Google Scholar]
- European Commission. Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control); Publications Office of the European Union: Luxembourg, 2013; ISBN 978-92-79-32944-9. [Google Scholar]
- European Commission. Best Available Techniques (BAT) Reference Document for the Manufacture of Glass. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control); Publications Office of the European Union: Luxembourg, 2013; ISBN 978-92-79-28284-3. [Google Scholar]
- Hough, G. (Ed.) Chemical Recovery in the Alkaline Pulping Processes; TAPPI Pr: Atlanta, GA, USA, 1985; ISBN 0898520460. [Google Scholar]
- Lundqvist, P. Mass and Energy Balances Over the Lime Kiln in a Kraft Pulp Mill. Master’s Thesis, Uppsala University, Uppsala, Sweden, 2009. [Google Scholar]
- Hendricks, T.; Choate, W.T. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery; US DOE Office of Energy Efficiency and Renewable Energy (EERE): Washington, DC, USA, 2006.
- Boulamanti, A.; Moya, R.J.A. Energy Efficiency and GHG Emissions: Prospective Scenarios for the Chemical and Petrochemical Industry; EUR—Scientific and Technical Research Reports; Publications Office of the European Union: Brussels, Belgium, 2017. [Google Scholar] [CrossRef]
- United States Department of Energy. Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report; United States Department of Energy: Washington, DC, USA, 2002.
- Jörissen, J.; Turek, T.; Weber, R. Chlorherstellung mit Sauerstoffverzehrkathoden. Energieeinsparung bei der Elektrolyse. Chem. Unserer Zeit 2011, 45, 172–183. [Google Scholar] [CrossRef]
- Halmstad University. Halmstad University District Heating and Cooling Database_Version 5; (2016 Update by Date 2019-09-30); Halmstad University: Halmstad, Sweden, 2019. [Google Scholar]
- Persson, U.; Möller, B.; Wiechers, E. Methodologies and Assumptions Used in the Mapping. In Heat Roadmap Europe 2050, A Low-Carbon Heating and Cooling Strategy; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Persson, U.; Averfalk, H. Accessible Urban Waste Heat: Deliverable D1.4 ReUseHeat. In Recovery of Urban Excess Heat; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Europa-Universität Flensburg. Pan-European Thermal Atlas 4.3 (PETA 4.3). In Heat Roadmap Europe—A Low-Carbon Heating and Cooling Strategy for Europe; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Wiechers, E.; Möller, B.; Persson, U. D5.2 Urban Area Dataset; sEEnergies Open Data: Flensburg, Germany, 2020. [Google Scholar]
- Persson, U.; Werner, S. Heat distribution and the future competitiveness of district heating. Appl. Energy 2011, 88, 568–576. [Google Scholar] [CrossRef]
- Kavvadias, K.C.; Quoilin, S. Exploiting waste heat potential by long distance heat transmission: Design considerations and techno-economic assessment. Appl. Energy 2018, 216, 452–465. [Google Scholar] [CrossRef]
- Pehnt, M.; Arens, M.; Jochem, E.; Bödeker, J.; Idrissova, F. Industrial Waste Heat-Tapping into a Neglected Efficiency Potential. In ECEEE Dummer Study Proceedings; European Council for an Energy-Efficient Economy—ECEEE: Munich, Germany, 2011. [Google Scholar]
- Eurostat. Statistics on the Production of Manufactured Goods. Total Production by PRODCOM List (NACE Rev. 2)—Annual Data (DS-066342). Available online: https://ec.europa.eu/eurostat/web/prodcom/data/database (accessed on 15 July 2020).
- Brough, D.; Jouhara, H. The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. Int. J. Thermofluids 2020, 1–2, 10007. [Google Scholar] [CrossRef]
- Fleiter, T.; Elsland, R.; Herbst, A.; Manz, P.; Popovski, E.; Rehfeldt, M.; Reiter, U.; Catenazzi, G.; Jakob, M.; Harmsen, R.; et al. Baseline Scenario of the Heating and Cooling Demand in Buildings and Industry in the 14 MSs Until 2050: Heat Roadmap Europe Deliverable D3.3 and D3.4; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Kermeli, K.; Worrel, E.; Graus, W.; Corsten, M. Energy Efficiency and Cost Saving Opportunities for Ammonia and Nitrogenous Fertilizer Production; United States Environmental Protection Agency: Washington, DC, USA, 2017.
Study | Method | Comments | Temperature Level Considered | Fuel/Heat Demand by Considered Industry in PJ/a | Excess Heat Potential in PJ/a |
---|---|---|---|---|---|
Brückner et al., 2017 [34] | Emission-based estimates, Germany | Conservative estimates for 80% of companies in Germany | 35 °C as a lower boundary value | 977 | 127 |
Pehnt et al., 2010 [35] | Subsector-based excess heat fraction, Germany | Literature values excess heat per final energy consumption based on [36,37] | 140 °C as lower boundary value | 2653 | 316 |
McKenna & Norman, 2010 [23]; Hammond & Norman, 2014 [24] | Emission based approach by process, UK | Process-specific heat recovery values per process | 5 temperature ranges | 503 | 52 |
Papatreou et al., 2018 [38] | Subsector based excess heat fractions, EU-28 | Literature values from [24] | <200 °C–>1000 °C | 6556 | 1094 |
I-TheRM, 2016 [39], Panayiotou et al., 2017 [40] | Process-based estimates per subsector, EU-28 | Fraction per subsector taken from [41] based on energy consumption statistics | 3 temperature ranges <100 °C–>300 °C | 10,880 | 1334 |
Bianchi et al., 2019 [42] | Theoretical potential by subsector, EU-28 | Based on energy consumption statistics | Not considered | 3196 | 279 |
Manz et al., 2018 [26] and Aydemir et al., 2020 [27] | Specific SECs by process, EU-28 | Conservative estimates for energy-intensive industries | 3 temperature ranges | 4241 | 338 |
Miró et al., 2018 [43] | Non-metallic mineral, based on emissions EU-28 | Literature values per subsector, based on [23] | Not considered | - | 134 |
Bühler et al., 2017 [29] | Exergy analysis by process, Denmark | 22 industrial processes included | 40 °C as lower boundary value | 64 | 12.3 |
Persson et al., 2014 [7] | Emission-based estimates by subsectors, EU 28 | Application of estimated emission factors and recovery efficiency. | No | 10,880 | 2924 |
Name of Excess Heat Potential | Level of Internal Heat Recovery | Exhaust Gases Cooled Down to | DH Diffusion | ||||
---|---|---|---|---|---|---|---|
Distinction | Average | Maximum Diffusion | 95 °C | 55 °C | 25 °C | Actual Level (DH-A) | Possible Level (DH-P) |
Current potential | x | x | x | ||||
Industrial efficiency | x | x | x | ||||
DH efficiency (55 °C) | x | x | x | ||||
System efficiency (55 °C) | x | x | x | ||||
DH efficiency (25 °C) | x | x | x | ||||
System efficiency (25 °C) | x | x | x |
Name of Sectoral Database | Production/Capacity | Location | Processes Included |
---|---|---|---|
VDEh Steel Plantfacts | Annual capacity | City | Type of process, age of installations |
Global Cement Directory | Annual capacity | City | Clinker: wet/dry |
Number of kilns | |||
glassglobal Plants | Annual and daily production | Address | Flat, container and tableware glass types together with the type of furnaces |
RISI Pulp and Paper: Fastmarkets RISI | Annual production | Coordinates | Detailed list of paper grades and produced products |
Eurochlor Chlorine Industry Review | Annual capacity | City | Chlorine production by membrane, diaphragm, mercury and other processes |
Internet research for individual companies in the EU of the sectors ethylene, ammonia, aluminum and petrochemicals | Depending on source; annual capacity/annual production | Depending on source; mostly address | Production processes and type of refinery |
Temperature Range (°C) | Fuel (Composition) | |
---|---|---|
Coke ovens | 200–800 | COG (52% H2; 37% CH4; 5% C2H6; 4% CO; 2% CO2) |
Blast furnaces | 130–250 | BFG (50% N2; 26% CO; 21% CO2; 3% H2) enriched with COG |
Basic oxygen furnaces | 250–1700 | None (exothermic reaction) |
Electric arc furnaces | 200–1200 | not applicable: furnaces are based on electricity |
Cement clinker kilns | 250–338 | Coal (72% C; 8% H2O; 4% H2; 2% S; 12% rest) |
Glass furnaces | 200–1400 | Natural gas (93% CH4; 4% C2H6; 1% C3H8; 1% N2; 1% CO2) |
Pulping | 170–260 | Black liquor |
Lime burning | 200–650 | Natural gas |
Paper making | 170–260 | Black liquor |
Primary aluminum | 700 | not applicable: furnaces are based on electricity |
Chemicals (boilers) | 150–260 | Natural gas |
Refineries (boilers) | 170–260 | Refinery fuel gas (44% CH4; 17% H2; 16% C4H10; 10% C3H8; 9% C2H6; 1% CO2; 2% rest) |
Subsector | Process | Number of Installations | Current Potential | Industrial Efficiency | DH Efficiency (55 °C) | System Efficiency (55 °C) | DH Efficiency (25 °C) | System Efficiency (25 °C) |
---|---|---|---|---|---|---|---|---|
Iron and Steel | Coke ovens | 52 | 1.06 | 0.55 | 1.16 | 0.65 | 1.68 | 1.17 |
Blast furnaces | 56 | 0.34 | 0.30 | 0.46 | 0.41 | 0.56 | 0.51 | |
Basic oxygen furnace | 32 | 0.17 | 0.01 | 0.18 | 0.02 | 0.18 | 0.02 | |
Electric arc furnace | 186 | 0.15 | 0.02 | 0.16 | 0.02 | 0.16 | 0.03 | |
Non-ferrous metals | Primary aluminum | 16 | 1.00 | 1.00 | 1.05 | 1.05 | 1.09 | 1.09 |
Container glass | Recuperative | 165 | 1.78 | 0.23 | 1.88 | 0.31 | 2.59 | 0.89 |
Regenerative | 0.57 | 0.19 | 0.66 | 0.26 | 1.25 | 0.74 | ||
Oxy-fuel | 9 | 0.94 | 0.08 | 0.98 | 0.11 | 1.22 | 0.30 | |
Flat glass | Recuperative | 61 | 4.18 | 0.38 | 4.35 | 0.53 | 5.52 | 1.52 |
Regenerative | 1.19 | 0.31 | 1.33 | 0.43 | 2.28 | 1.24 | ||
Oxy-fuel | 3 | 1.64 | 0.10 | 1.68 | 0.13 | 1.97 | 0.38 | |
Cement Clinker | Wet | 28 | 0.72 | 0.72 | 0.83 | 0.83 | 1.09 | 1.09 |
Dry | 156 | 0.91 | 0.29 | 1.01 | 0.36 | 1.23 | 0.51 | |
Dry+ph+pc 1 (4 stage PH) | 24 | 0.49 | 0.29 | 0.56 | 0.36 | 0.73 | 0.51 | |
Dry+ph+pc (5–6 stage PH) | 0.29 | 0.29 | 0.36 | 0.36 | 0.51 | 0.51 | ||
Pulp making | Chemical pulping | 123 | 0.48 | 0.22 | 0.59 | 0.32 | 1.46 | 1.12 |
Mechanical pulping | 58 | 0.04 | 0.03 | 0.05 | 0.04 | 0.16 | 0.14 | |
Recovered fibers | 457 | 0.01 | 0.01 | 0.01 | 0.01 | 0.04 | 0.04 | |
Paper making | Board & packaging paper | 495 | 0.09 | 0.07 | 0.13 | 0.10 | 0.41 | 0.37 |
Graphic paper | 175 | 0.14 | 0.10 | 0.19 | 0.14 | 0.61 | 0.55 | |
Tissue paper | 252 | 0.13 | 0.09 | 0.18 | 0.14 | 0.59 | 0.52 | |
Chemicals | Ethylene | 31 | 1.11 | 0.88 | 1.77 | 1.54 | 6.32 | 6.02 |
Ammonia | 26 | 0.20 | 0.11 | 0.28 | 0.19 | 0.87 | 0.75 | |
Chlorine, diaphragm | 4 | 0.14 | 0.08 | 0.20 | 0.13 | 0.61 | 0.53 | |
Chlorine, membrane | 60 | 0.05 | 0.03 | 0.07 | 0.04 | 0.20 | 0.18 | |
Refineries | Refinery basic | 24 | 0.09 | 0.06 | 0.12 | 0.09 | 0.37 | 0.34 |
Refinery gasoline focused | 13 | 0.11 | 0.07 | 0.14 | 0.11 | 0.46 | 0.41 | |
Refinery diesel focused | 22 | 0.12 | 0.09 | 0.17 | 0.13 | 0.54 | 0.48 | |
Refinery flexible | 39 | 0.11 | 0.08 | 0.15 | 0.12 | 0.48 | 0.43 |
Industrial Subsector | Number of Sites | Total Current Potential per Site, Average | Total Current Potential | Total Industrial Efficiency | Total DH Efficiency at 55 °C | Total System Efficiency at 55 °C | Total DH Efficiency at 25 °C | Total System Efficiency at 25 °C |
---|---|---|---|---|---|---|---|---|
Iron and steel | 195 | 0.56 | 109 | 54 | 125 | 69 | 157 | 101 |
Non-ferrous metals | 16 | 0.14 | 2 | 2 | 2 | 2 | 2 | 2 |
Non-metallic minerals | 432 | 0.44 | 192 | 51 | 208 | 64 | 262 | 106 |
Pulp and paper | 760 | 0.03 | 26 | 15 | 34 | 22 | 95 | 80 |
Chemicals | 107 | 0.19 | 20 | 16 | 32 | 27 | 113 | 106 |
Refineries | 98 | 0.77 | 75 | 53 | 103 | 80 | 331 | 297 |
Total | 1608 | 0.26 | 425 | 191 | 504 | 264 | 960 | 692 |
Member State | Number of Industrial Sites | Number of Industrial Sites—1st Rank Match to DH-A | Current Potential in PJ/a | Industrial Efficiency in PJ/a | Number of Industrial Sites—1st Rank Match to DH-P | DH Efficiency (55 °C) in PJ/a | System Efficiency (55 °C) in PJ/a | DH Efficiency (25 °C) in PJ/a | System Efficiency (25 °C) in PJ/a |
---|---|---|---|---|---|---|---|---|---|
AT | 44 | 40 | 10.7 | 5.1 | 44 | 13.1 | 7.2 | 24.3 | 17.7 |
BE | 34 | 26 | 14.4 | 7.7 | 34 | 18.3 | 10.9 | 37.7 | 29.4 |
BG | 19 | 10 | 1.9 | 0.7 | 18 | 4.1 | 2.0 | 7.6 | 5.2 |
CY | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CZ | 39 | 38 | 11.2 | 4.6 | 39 | 13.1 | 6.1 | 20.5 | 12.8 |
DE | 310 | 142 | 52.8 | 26.2 | 310 | 99.3 | 53.0 | 184.1 | 132.8 |
DK | 5 | 4 | 2.3 | 0.8 | 5 | 3.2 | 1.5 | 5.9 | 4.0 |
EE | 4 | 3 | 0.4 | 0.3 | 4 | 0.5 | 0.4 | 0.7 | 0.5 |
EL | 36 | 1 | 0.0003 | 0.0002 | 31 | 8.0 | 4.5 | 15.7 | 11.7 |
ES | 143 | 21 | 3.9 | 0.9 | 138 | 43.3 | 21.4 | 81.5 | 57.1 |
FI | 47 | 38 | 8.8 | 4.5 | 44 | 11.4 | 6.8 | 25.9 | 20.4 |
FR | 197 | 102 | 24.3 | 10.7 | 193 | 53.4 | 27.9 | 101.1 | 72.7 |
HR | 12 | 6 | 2.1 | 1.0 | 10 | 3.8 | 1.9 | 7.6 | 5.3 |
HU | 14 | 12 | 4.1 | 2.0 | 14 | 6.0 | 2.9 | 10.2 | 6.9 |
IE | 4 | 0 | 0 | 0 | 3 | 1.5 | 0.6 | 1.8 | 0.9 |
IT | 275 | 47 | 6.5 | 1.6 | 274 | 54.2 | 25.0 | 102.4 | 70.0 |
LT | 8 | 8 | 2.1 | 1.5 | 8 | 2.7 | 2.0 | 6.6 | 5.8 |
LU | 5 | 2 | 1.8 | 0.2 | 5 | 2.9 | 0.5 | 3.6 | 1.1 |
LV | 2 | 2 | 0.9 | 0.3 | 2 | 1.0 | 0.3 | 1.2 | 0.4 |
MT | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
NL | 41 | 10 | 8.1 | 5.3 | 41 | 25.2 | 17.4 | 65.8 | 56.6 |
PL | 98 | 76 | 27.6 | 12.5 | 97 | 40.5 | 19.8 | 63.8 | 41.6 |
PT | 38 | 3 | 0.3 | 0.04 | 33 | 10.8 | 5.0 | 20.1 | 13.4 |
RO | 36 | 18 | 6.5 | 2.4 | 35 | 12.5 | 5.5 | 20.6 | 12.8 |
SE | 70 | 54 | 12.6 | 6.5 | 62 | 17.9 | 10.6 | 41.3 | 32.5 |
SI | 15 | 14 | 1.0 | 0.4 | 15 | 1.1 | 0.5 | 1.6 | 0.8 |
SK | 16 | 16 | 7.2 | 3.5 | 16 | 8.3 | 4.5 | 13.2 | 9.1 |
UK | 94 | 59 | 17.9 | 9.3 | 94 | 36.4 | 20.3 | 76.0 | 57.8 |
EU-28 | 1608 | 752 | 230 | 108 | 1569 | 493 | 258 | 941 | 679 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manz, P.; Kermeli, K.; Persson, U.; Neuwirth, M.; Fleiter, T.; Crijns-Graus, W. Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites? Sustainability 2021, 13, 1439. https://doi.org/10.3390/su13031439
Manz P, Kermeli K, Persson U, Neuwirth M, Fleiter T, Crijns-Graus W. Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites? Sustainability. 2021; 13(3):1439. https://doi.org/10.3390/su13031439
Chicago/Turabian StyleManz, Pia, Katerina Kermeli, Urban Persson, Marius Neuwirth, Tobias Fleiter, and Wina Crijns-Graus. 2021. "Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites?" Sustainability 13, no. 3: 1439. https://doi.org/10.3390/su13031439