The Role of Collaboration Breadth Attributes in Research Project and Innovation: The Example of National Funded Projects in China
Abstract
:1. Introduction
2. Literature Review and Hypothesis
2.1. R&D Subsidy and Innovation
2.2. R&D Subsidy and Collaboration Breadth
2.3. Collaboration Breadth and Innovation
3. Data and Method
3.1. Sample and Data
3.2. Dependent Variable
3.3. Independent Variables
3.4. Control Variables
3.5. Descriptive Statistics
3.6. Method Specification
4. Empirical Analysis
4.1. Direct Effects
4.2. Indirect Effects
4.3. Robustness Check
5. Conclusions and Limitations
5.1. Theoretical Contributions
5.2. Practical Implications
5.3. Limitations and Future
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bae, S.J.; Lee, H. The role of government in fostering collaborative R&D projects: Empirical evidence from South Korea. Technol. Forecast. Soc. Chang. 2020, 151, 119826. [Google Scholar]
- Zeng, S.X.; Xie, X.M.; Tam, C.M. Relationship between cooperation networks and innovation performance of SMEs. Technovation 2010, 30, 181–194. [Google Scholar] [CrossRef]
- Lenihan, H.; McGuirk, H.; Murphy, K.R. Driving innovation: Public policy and human capital. Res. Policy 2019, 48, 103791. [Google Scholar] [CrossRef]
- Kang, K.-N.; Park, H. Influence of government R&D support and inter-firm collaborations on innovation in Korean biotechnology SMEs. Technovation 2012, 32, 68–78. [Google Scholar]
- Laursen, K.; Salter, A. Open for innovation: The role of openness in explaining innovation performance among U.K. manufacturing firms. Strateg. Manag. J. 2006, 27, 131–150. [Google Scholar] [CrossRef]
- Zhang, G.; Tang, C. How could firm’s internal R&D collaboration bring more innovation? Technol. Forecast. Soc. Chang. 2017, 125, 299–308. [Google Scholar]
- Lin, J.-Y. Balancing industry collaboration and academic innovation: The contingent role of collaboration-specific attributes. Technol. Forecast. Soc. Chang. 2017, 123, 216–228. [Google Scholar] [CrossRef]
- Troilo, G.; de Luca, L.M.; Atuahene-Gima, K. More Innovation with Less? A Strategic Contingency View of Slack Resources, Information Search, and Radical Innovation. J. Prod. Innov. Manag. 2014, 31, 259–277. [Google Scholar] [CrossRef]
- Kobarg, S.; Stumpf-Wollersheim, J.; Welpe, I.M. More is not always better: Effects of collaboration breadth and depth on radical and incremental innovation performance at the project level. Res. Policy 2019, 48, 1–10. [Google Scholar] [CrossRef]
- Praest Knudsen, M.; Mortensen, T.B. Some immediate—But negative—Effects of openness on product development performance. Technovation 2011, 31, 54–64. [Google Scholar] [CrossRef]
- Pérez-Luño, A.; Medina, C.C.; Lavado, A.C.; Rodríguez, G.C. How social capital and knowledge affect innovation. J. Bus. Res. 2011, 64, 1369–1376. [Google Scholar] [CrossRef]
- Qiu, S.; Liu, X.; Gao, T. Do emerging countries prefer local knowledge or distant knowledge? Spillover effect of university collaborations on local firms. Res. Policy 2017, 46, 1299–1311. [Google Scholar] [CrossRef]
- Kafouros, M.; Love, J.H.; Ganotakis, P.; Konara, P. Experience in R&D collaborations, innovative performance and the moderating effect of different dimensions of absorptive capacity. Technol. Forecast. Soc. Chang. 2020, 150, 119757. [Google Scholar]
- Adams, J.D.; Black, G.C.; Clemmons, J.R.; Stephan, P.E. Scientific teams and institutional collaborations: Evidence from U.S. universities, 1981–1999. Res. Policy 2005, 34, 259–285. [Google Scholar] [CrossRef]
- Hewittdundas, N. Resource and Capability Constraints to Innovation in Small and Large Plants. Small Bus. Econ. 2006, 26, 257–277. [Google Scholar] [CrossRef]
- Nielsen, B.B. The role of knowledge embeddedness in the creation of synergies in strategic alliances. J. Bus. Res. 2005, 58, 1194–1204. [Google Scholar] [CrossRef]
- Wang, J. Knowledge creation in collaboration networks: Effects of tie configuration. Res. Policy 2016, 45, 68–80. [Google Scholar] [CrossRef] [Green Version]
- Dewick, P.; Miozzo, M. Networks and innovation: Sustainable technologies in Scottish social housing. R&D Manag. 2004, 34, 323–333. [Google Scholar]
- Kaminski, P.C.; de Oliveira, A.C.; Lopes, T.M. Knowledge transfer in product development processes: A case study in small and medium enterprises (SMEs) of the metal-mechanic sector from São Paulo, Brazil. Technovation 2008, 28, 29–36. [Google Scholar] [CrossRef]
- Argote, L.; Miron-Spektor, E. Organizational Learning: From Experience to Knowledge. Organ. Sci. 2011, 22, 1123–1137. [Google Scholar] [CrossRef]
- Estrada, I.; Faems, D.; de Faria, P. Coopetition and product innovation performance: The role of internal knowledge sharing mechanisms and formal knowledge protection mechanisms. Ind. Mark. Manag. 2016, 53, 56–65. [Google Scholar] [CrossRef]
- Zhao, J.; Xi, X.; Yi, S. Resource allocation under a strategic alliance: How a cooperative network with knowledge flow spurs co-evolution. Knowl.-Based Syst. 2015, 89, 497–508. [Google Scholar] [CrossRef]
- Kong, X.; Mao, M.; Jiang, H.; Yu, S.; Wan, L. How does collaboration affect researchers’ positions in co-authorship networks? J. Informetr. 2019, 13, 887–900. [Google Scholar] [CrossRef]
- Busom, I.; Fernández-Ribas, A. The impact of firm participation in R&D programmes on R&D partnerships. Res. Policy 2008, 37, 240–257. [Google Scholar]
- Bertoni, F.; Tykvová, T. Does governmental venture capital spur invention and innovation? Evidence from young European biotech companies. Res. Policy 2015, 44, 925–935. [Google Scholar] [CrossRef]
- Wakelin, K. Productivity growth and R&D expenditure in UK manufacturing firms. Res. Policy 2001, 30, 1079–1090. [Google Scholar]
- Teirlinck, P.; Spithoven, A. Research collaboration and R&D outsourcing: Different R&D personnel requirements in SMEs. Technovation 2013, 33, 142–153. [Google Scholar]
- Narula, R. R&D collaboration by SMEs: New opportunities and limitations in the face of globalisation. Technovation 2004, 24, 153–161. [Google Scholar]
- Szücs, F. Research subsidies, industry–university cooperation and innovation. Res. Policy 2018, 47, 1256–1266. [Google Scholar] [CrossRef]
- Padillaperez, R.; Gaudin, Y. Science, technology and innovation policies in small and developing economies: The case of Central America. Res. Policy 2014, 43, 749–759. [Google Scholar] [CrossRef]
- Audretsch, D.B.; Link, A.N.; Scott, J.T. Public/private technology partnerships: Evaluating SBIR-supported research. Res. Policy 2002, 31, 145–158. [Google Scholar] [CrossRef]
- Gorg, H.; Strobl, E. The Effect of R&D Subsidies on Private R&D. Economica 2007, 74, 215–234. [Google Scholar]
- Guo, D.; Guo, Y.; Jiang, K. Government-subsidized R&D and firm innovation: Evidence from China. Res. Policy 2016, 45, 1129–1144. [Google Scholar]
- Blažek, J.; Kadlec, V. Knowledge bases, R&D structure and socio-economic and innovation performance of European regions. Innov. Eur. J. Soc. Sci. Res. 2018, 32, 26–47. [Google Scholar]
- Cainelli, G.; Mancinelli, S.; Mazzanti, M. Social capital and innovation dynamics in district-based local systems. J. Socio-Econ. 2007, 36, 932–948. [Google Scholar] [CrossRef]
- Whitley, R. Developing innovative competences: The role of institutional frameworks. Ind. Corp. Chang. 2002, 11, 497–528. [Google Scholar] [CrossRef]
- Fischer, M.M.; Varga, A. Technological innovation and interfirm cooperation: An exploratory analysis using survey data from manufacturing firms in the metropolitan region of Vienna. Int. J. Technol. Manag. 2002, 24, 724–742. [Google Scholar] [CrossRef]
- Fritsch, M.; Franke, G. Innovation, regional knowledge spillovers and R&D cooperation. Res. Policy 2004, 33, 245–255. [Google Scholar]
- Lee, Y.S. The Sustainability of University-Industry Research Collaboration: An Empirical Assessment. J. Technol. Transf. 2000, 25, 111–133. [Google Scholar] [CrossRef]
- Subramaniam, M.; Youndt, M. The Influence of Intellectual Capital on the Types of Innovative Capabilities. Acad. Manag. J. 2005, 48, 450–463. [Google Scholar] [CrossRef] [Green Version]
- Fleisher, B.M.; McGuire, W.H.; Smith, A.N.; Zhou, M. Knowledge capital, innovation, and growth in China. J. Asian Econ. 2015, 39, 31–42. [Google Scholar] [CrossRef]
- Godin, B.; Gingras, Y. The place of universities in the system of knowledge production. Res. Policy 2000, 29, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, D.; Schwartz, D. Networking strategies of young biotechnology firms in Israel. Ann. Reg. Sci. 2009, 43, 599–613. [Google Scholar] [CrossRef]
- Delgado-Verde, M.; Castro, G.Ma.; Amores-Salvadó, J. Intellectual capital and radical innovation: Exploring the quadratic effects in technology-based manufacturing firms. Technovation 2016, 54, 35–47. [Google Scholar] [CrossRef]
- Norman, P.M. Knowledge acquisition, knowledge loss, and satisfaction in high technology alliances. J. Bus. Res. 2004, 57, 610–619. [Google Scholar] [CrossRef]
- De Man, A.; Duysters, G. Collaboration and innovation: A review of the effects of mergers, acquisitions and alliances on innovation. Technovation 2005, 25, 1377–1387. [Google Scholar] [CrossRef]
- Barnard, H.; Cowan, R.; Müller, M. Global excellence at the expense of local diffusion, or a bridge between two worlds? Research in science and technology in the developing world. Res. Policy 2012, 41, 756–769. [Google Scholar] [CrossRef] [Green Version]
- Bozeman, B.; Corley, E.A. Scientists’ collaboration strategies: Implications for scientific and technical human capital. Res. Policy 2004, 33, 599–616. [Google Scholar] [CrossRef]
- Sullivan, H.; Williams, P.; Jeffares, S. Leadership for Collaboration. Public Manag. Rev. 2012, 14, 41–66. [Google Scholar] [CrossRef]
- Nieto, M.J.; Santamaria, L. The importance of diverse collaborative networks for the novelty of product innovation. Technovation 2007, 27, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Diez, J.R. Metropolitan Innovation Systems: A Comparison between Barcelona, Stockholm, and Vienna. Int. Reg. Sci. Rev. 2002, 25, 63–85. [Google Scholar] [CrossRef]
- Guan, J.; Liu, N. Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy. Res. Policy 2016, 45, 97–112. [Google Scholar] [CrossRef]
- Leydesdorff, L.; Wagner, C. Macro-level indicators of the relations between research funding and research output. J. Informetr. 2009, 3, 353–362. [Google Scholar] [CrossRef]
- Ponds, R. The limits to internationalization of scientific research collaboration. J. Technol. Transf. 2009, 34, 76–94. [Google Scholar] [CrossRef]
- Shi, X.; Wu, Y.; Fu, D. Does University-Industry collaboration improve innovation efficiency? Evidence from Chinese Firms◊. Econ. Model. 2020, 86, 39–53. [Google Scholar] [CrossRef]
- Clauss, T.; Kesting, T. How businesses should govern knowledge-intensive collaborations with universities: An empirical investigation of university professors. Ind. Mark. Manag. 2017, 62, 185–198. [Google Scholar] [CrossRef]
- Zhou, Y.; Hong, Y.; Liu, J. Internal Commitment or External Collaboration? The Impact of Human Resource Management Systems on Firm Innovation and Performance. Hum. Resour. Manag. 2013, 52, 263–288. [Google Scholar] [CrossRef]
- Chang, C.-F.; Wang, P.; Liu, J.-T. Knowledge spillovers, human capital and productivity. J. Macroecon. 2016, 47, 214–232. [Google Scholar] [CrossRef]
- Reed, K.K.; Lubatkin, M.; Srinivasan, N. Proposing and Testing an Intellectual Capital-Based View of the Firm. J. Manag. Stud. 2006, 43, 867–893. [Google Scholar] [CrossRef]
- Johnson, L.D.; Neave, E.H.; Pazderka, B. Knowledge, innovation and share value. Int. J. Manag. Rev. 2002, 4, 101–134. [Google Scholar] [CrossRef]
- Un, C.A.; Cuervocazurra, A.; Asakawa, K. R&D Collaborations and Product Innovation. J. Prod. Innov. Manag. 2010, 27, 673–689. [Google Scholar]
- Ritala, P.; Olander, H.; Michailova, S.; Husted, K. Knowledge sharing, knowledge leaking and relative innovation performance: An empirical study. Technovation 2015, 35, 22–31. [Google Scholar] [CrossRef]
- Qiu, X.; Haugland, S.A. The role of regulatory focus and trustworthiness in knowledge transfer and leakage in alliances. Ind. Mark. Manag. 2019, 83, 162–173. [Google Scholar] [CrossRef]
- Li, F.; Miao, Y.; Yang, C. How do alumni faculty behave in research collaboration? An analysis of Chang Jiang Scholars in China. Res. Policy 2015, 44, 438–450. [Google Scholar] [CrossRef]
- Czarnitzki, D.; Ebersberger, B.; Fier, A. The relationship between R&D collaboration, subsidies and R&D performance: Empirical evidence from Finland and Germany. J. Appl. Econom. 2007, 22, 1347–1366. [Google Scholar]
- Mazloomi Khamseh, H.; Jolly, D.; Morel, L. The effect of learning approaches on the utilization of external knowledge in strategic alliances. Ind. Mark. Manag. 2017, 63, 92–104. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Hewitt-Dundas, N.; Gkypali, A.; Roper, S. Does learning from prior collaboration help firms to overcome the ‘two-worlds’ paradox in university-business collaboration? Res. Policy 2019, 48, 1310–1322. [Google Scholar] [CrossRef]
- Frishammar, J.; Ericsson, K.; Patel, P.C. The dark side of knowledge transfer: Exploring knowledge leakage in joint R&D projects. Technovation 2015, 41–42, 75–88. [Google Scholar]
- Velu, C. Evolutionary or revolutionary business model innovation through coopetition? The role of dominance in network markets. Ind. Mark. Manag. 2016, 53, 124–135. [Google Scholar] [CrossRef] [Green Version]
- Al-Kurdi, O.F.; El-Haddadeh, R.; Eldabi, T. The role of organisational climate in managing knowledge sharing among academics in higher education. Int. J. Inf. Manag. 2020, 50, 217–227. [Google Scholar] [CrossRef]
- Figueiredo, P.N.; Larsen, H.; Hansen, U.E. The role of interactive learning in innovation capability building in multinational subsidiaries: A micro-level study of biotechnology in Brazil. Res. Policy 2020, 49, 103995. [Google Scholar] [CrossRef]
- Robertson, J.; McCarthy, I.P.; Pitt, L. Leveraging social capital in university-industry knowledge transfer strategies: A comparative positioning framework. Knowl. Manag. Res. Pract. 2019, 17, 461–472. [Google Scholar] [CrossRef]
Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1.Innovation output | 1 | ||||||
2.R&D subsidy | 0.7995 *** | 1 | |||||
3. Collaboration breadth of organizations | 0.3129 *** | 0.2764 *** | 1 | ||||
4. Collaboration breadth of researchers | 0.1493 ** | 0.1491 ** | 0.3086 *** | 1 | |||
5. Project duration | 0.3038 *** | 0.4142 *** | 0.3309 *** | 0.4429 | 1 | ||
6. Fund type | −0.0045 | −0.1588 ** | 0.0117 | 0.0956 | −0.1098 * | 1 | |
7. University involvement | 0.0687 | −0.0081 | −0.0594 | −0.3007 | −0.4398 *** | 0.0101 | 1 |
Mean | 20.9000 | 77.4609 | 1.3304 | 7.4739 | 3.5391 | 0.7261 | 0.5478 |
S.D. | 28.6081 | 147.4804 | 0.6832 | 2.0296 | 0.7152 | 0.4469 | 0.4988 |
VIF | 2.2109 | 1.3400 | 1.6118 | 2.1725 | 1.3465 | 1.2217 |
Model | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 |
---|---|---|---|---|---|---|---|---|
Variables | IO | CO | CR | IO | ||||
Control variables | ||||||||
Project duration | 0.0110 (0.0276) | 0.5531 (0.0219) *** | 0.6743 (0.0239) *** | 0.0445 (0.1245) | 0.0584 (0.0548) | −0.0127 (0.0281) | 0.0303 (0.0287) | 0.0080 (0.0292) |
Fund type | 0.4780 (0.0302) *** | 0.4219 (0.0307) *** | 0.5102 (0.0300) *** | 0.1313 (0.1219) | −0.0432 (0.0533) | 0.4480 (0.0309) *** | 0.4747 (0.0302) *** | 0.4394 (0.0311) |
University involvement | 0.3311 (0.0341) *** | 0.1674 (0.0337) *** | 0.2119 (0.0344) *** | 0.1116 (0.1319) | 0.1065 (0.0559) + | 0.3067 (0.0345) *** | 0.3597 (0.0354) *** | 0.3377 (0.0355) *** |
Independent variables | ||||||||
R&D subsidies | 0.6334 (0.0190) *** | 0.2388 (0.0960) * | 0.1106 (0.0447) * | 0.6143 (0.0197) *** | 0.6418 (0.0192) *** | 0.6222 (0.0199) *** | ||
Collaboration breadth of organizations | 0.2236 (0.0165) *** | 0.0766 (0.0175) *** | 0.0878 (0.0177) *** | |||||
Collaboration breadth of researchers | 0.0005 (0.0089) | −0.0255 (0.0079) ** | −0.0316 (0.0080) *** | |||||
Constant | −0.1179 (0.0890) | 0.3144 (0.0923) *** | 0.1122 (0.0920) | −0.9741 (0.3740) ** | 1.3118 (0.1663) *** | −0.0295 (0.0907) | −0.0463 (0.0919) | 0.0721 (0.0944) |
Number of observations | 230 | 230 | 230 | 230 | 230 | 230 | 230 |
Model | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 |
---|---|---|---|---|---|---|---|---|
Variables | IO | CO | CR | IO | ||||
Control variables | ||||||||
Project duration | −0.0158 (0.0306) | 0.6028 (0.0245) *** | 0.7498 (0.0271) *** | 0.0450 (0.1248) | 0.0573 (0.0545) | −0.0301 (0.0312) | 0.0217 (0.0325) | 0.0053 (0.0330) |
Fund type | 0.3603 (0.0340) *** | 0.3678 (0.0347) *** | 0.4432 (0.0338) *** | 0.1340 (0.1226) | −0.0487 (0.0535) + | −0.0301 (0.0350) | 0.3533 (0.0389) *** | 0.3265 (0.0352) *** |
University involvement | 0.1822 (0.0372) *** | 0.005 (0.0368) | 0.0667 (0.0375) + | 0.1111 (0.1319) | 0.1078 (0.0559) | 0.1684 (0.0376) *** | 0.2337 (0.0341) *** | 0.2182 (0.0390) *** |
Location | −0.1819 (0.0378) *** | 0.0379 (0.0367) | 0.0958 (0.0360) ** | 0.0275 (0.1277) | −0.0559 (0.0528) | −0.1858 (0.0378) *** | −0.1929 (0.0379) *** | −0.2008 (0.0380) *** |
Independent variables | ||||||||
R&D subsidies | 0.7184 (0.0214) *** | 0.2353 (0.0975) * | 0.1177 (0.0451) ** | 0.7091 (0.0219) *** | 0.7281 (0.0215) *** | 0.7157 (0.0221) *** | ||
Collaboration breadth of organizations | 0.1958 (0.0194) *** | 0.0451 (0.0203) * | 0.0664 (0.0206) ** | |||||
Collaboration breadth of researchers | −0.0304 (0.0100) ** | −0.1929 (0.0087) *** | −0.0506 (0.0089) *** | |||||
Constant | −0.3305 (0.0994) *** | 0.0562 (0.1038) | −0.0969 (0.1037) | −0.9813 (0.3757) ** | 1.3262 (0.1667) *** | −0.2831 (0.1013) ** | −0.1837 (0.1037) + | −0.0984 (0.1066) |
Number of observations | 230 | 230 | 230 | 230 | 230 | 230 | 230 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Xu, Y. The Role of Collaboration Breadth Attributes in Research Project and Innovation: The Example of National Funded Projects in China. Sustainability 2021, 13, 1362. https://doi.org/10.3390/su13031362
Yang Z, Xu Y. The Role of Collaboration Breadth Attributes in Research Project and Innovation: The Example of National Funded Projects in China. Sustainability. 2021; 13(3):1362. https://doi.org/10.3390/su13031362
Chicago/Turabian StyleYang (Alamo), Zhenhua, and Yanmei Xu. 2021. "The Role of Collaboration Breadth Attributes in Research Project and Innovation: The Example of National Funded Projects in China" Sustainability 13, no. 3: 1362. https://doi.org/10.3390/su13031362
APA StyleYang, Z., & Xu, Y. (2021). The Role of Collaboration Breadth Attributes in Research Project and Innovation: The Example of National Funded Projects in China. Sustainability, 13(3), 1362. https://doi.org/10.3390/su13031362