Impact of Green Innovation Efficiency on Carbon Emission Reduction in the Guangdong-Hong Kong-Macao GBA
Abstract
:1. Introduction
2. Literature Review and Mechanism of Action
2.1. Literature Review
2.2. Research Hypothesis
3. Measurement of Green Innovation Efficiency in the Guangdong-Hong Kong-Macao GBA
3.1. Indicator System
3.2. Measuring the Efficiency of Green Innovation
4. Empirical Test
4.1. Model Setting and Variable Description
4.2. Moran Index of Carbon Emissions
4.3. Carbon Emission Intensity Theil Index
4.4. Empirical Results
5. Research Conclusions and Prospects
5.1. Research Conclusions
5.2. Policy Recommendations
5.3. Prospects for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keeling, C.D.; Bacastow, R.B.; Carter, A.F.; Piper, S.C.; Whorf, T.P.; Heimann, M.; Mook, W.G.; Roeloffzen, H. A three-dimensional model of atmospheric CO2transport based on observed winds: 1. Analysis of observational data. Geophys. Monogr. Ser. 2013, 55, 165–236. [Google Scholar] [CrossRef]
- Houghton, J.T.; Meira Filho, L.G.; Callander, B.A.; Harris, N.; Katternberg, A.; Maskell, K. (Eds.) Climate change 1995: The science of climate change: Contribution of working group I to the second assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, UK, 1996; Volume 2. [Google Scholar]
- Qin, L.; Kirikkaleli, D.; Hou, Y.; Miao, X.; Tufail, M. Carbon neutrality target for G7 economies: Examining the role of environmental policy, green innovation and composite risk index. J. Environ. Manag. 2021, 295, 113119. [Google Scholar] [CrossRef]
- Ambec, S.; Barla, P. A theoretical foundation of the Porter hypothesis. Econ. Lett. 2002, 75, 355–360. [Google Scholar] [CrossRef]
- Company BPL. BP World Energy Statistical Yearbook 2016; BP Public Limited Company: Beijing, China, 2016. [Google Scholar]
- Xi, J. Address to the General Debate of the 75th Session United Nations General Assembly Speech. People’s Daily, 23 September 2020. [Google Scholar]
- Xinhua News Agency. Xi Jinping Presided over the Ninth Meeting of the Central Finance and Economics Committee. The Meeting Emphasized to Promote the Healthy and Sustainable Development of the Platform Economy, and Incorporate Carbon Peak and Carbon Neutrality into the Overall Layout of Ecological Civilization Construction. People’s Daily, 16 March 2021. [Google Scholar]
- Chen, Z.; Zhang, X.; Chen, F. Do carbon emission trading schemes stimulate green innovation in enterprises? Evidence from China. Technol. Forecast. Soc. Chang. 2021, 168, 120744. [Google Scholar] [CrossRef]
- Dong, H.; Li, X.; Zhang, R. Spatial-temporal characteristics and driving factors analysis of green innovation efficiency in the Guangdong-Hong Kong-Macao Greater Bay Area. Econ. Geogr. 2021, 41, 134–144. [Google Scholar]
- Lin, B.; Li, Z. Spatial analysis of mainland cities’ carbon emissions of and around Guangdong-Hong Kong-Macao Greater Bay area. Sustain. Cities Soc. 2020, 61, 102299. [Google Scholar] [CrossRef]
- Jiang, Z.; Lyu, P.; Ye, L.; Zhou, Y.W. Green innovation transformation, economic sustainability and energy consumption during China’s new normal stage. J. Clean. Prod. 2020, 273, 123044. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, N. The impact of industrial agglomeration on the efficiency of urban green innovation: An empirical test based on 9 cities in the Guangdong-Hong Kong-Macao Greater Bay Area. Sci. Technol. Manag. Res. 2021, 41, 215–226. [Google Scholar]
- Liu, R.; Wang, G.; Huang, N.; Ding, M. Study on the path of China’s scientific and technological innovation to support carbon peak and carbon neutrality. Guangxi Soc. Sci. 2021, 8, 1–7. [Google Scholar]
- Li, M.; Wang, Q. Will technology advances alleviate climate change? Dual effects of technology change on aggregate carbon dioxide emissions. Energy Sustain. Dev. 2017, 41, 61–68. [Google Scholar] [CrossRef]
- Wu, R.; Geng, Y.; Dong, H.; Fujita, T.; Tian, X. Changes of CO2 emissions embodied in China–Japan trade: Drivers and implications. J. Clean. Prod. 2016, 112, 4151–4158. [Google Scholar] [CrossRef]
- Li, J.; Du, Y. Spatial effect of environmental regulation on green innovation efficiency: Evidence from prefectural-level cities in China. J. Clean. Prod. 2021, 286, 125032. [Google Scholar] [CrossRef]
- Fussler, C.; James, P. Driving Eco Innovation. In A Breakthrough Discipline for Innovation and Sustainability; Pitman Publishing: London, UK, 1996. [Google Scholar]
- Chen, Y.-S.; Lai, S.-B.; Wen, C.-T. The Influence of Green Innovation Performance on Corporate Advantage in Taiwan. J. Bus. Ethics 2006, 67, 331–339. [Google Scholar] [CrossRef]
- Oltra, V.; Jean, M.S. Sectoral systems of environmental innovation: An application to the French automotive industry. Technol. Forecast. Soc. Chang. 2009, 76, 567–583. [Google Scholar] [CrossRef]
- Blättel-Mink, B. Innovation towards sustainable economy-The integration of economy and ecology in companies. Sustain. Dev. 1998, 6, 49–58. [Google Scholar] [CrossRef]
- Mirata, M.; Emtairah, T. Industrial symbiosis networks and the contribution to environmental innovation: The case of the Landskrona industrial symbiosis programme. J. Clean. Prod. 2005, 13, 993–1002. [Google Scholar] [CrossRef]
- Chen, L.; Ye, W.; Huo, C.; James, K. Environmental Regulations, the Industrial Structure, and High-Quality Regional Economic Development: Evidence from China. Land 2020, 9, 517. [Google Scholar] [CrossRef]
- Apergis, N.; Eleftheriou, S.; Payne, J.E. The relationship between international financial reporting standards, carbon emissions, and R&D expenditures: Evidence from European manufacturing firms. Ecol. Econ. 2013, 88, 57–66. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y. Research on the Impact of Environmental Regulations on the Green Innovation Efficiency of Chinese Industrial Enterprises. Pol. J. Environ. Stud. 2021, 30, 1433–1445. [Google Scholar] [CrossRef]
- Chen, H.; Lin, H.; Zou, W. Research on the Regional Differences and Influencing Factors of the Innovation Efficiency of China’s High-Tech Industries: Based on a Shared Inputs Two-Stage Network DEA. Sustainability 2020, 12, 3284. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Sun, Z.; Li, H. Can Carbon Trading Policies Promote Regional Green Innovation Efficiency? Empirical Data from Pilot Regions in China. Sustainability 2021, 13, 2891. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Morey, R.C. Efficiency Analysis for Exogenously Fixed Inputs and Outputs. Oper. Res. 1986, 34, 513–521. [Google Scholar] [CrossRef]
- Azomahou, T.; Laisney, F.; Nguyen-Van, P. Economic development and CO2 emissions: A nonparametric panel approach. J. Public Econ. 2006, 90, 1347–1363. [Google Scholar] [CrossRef] [Green Version]
- Kaya, Y. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios; IPCC Energy and Industry Subgroup, Response Strategies Working Group: Paris, France, 1990. [Google Scholar]
- Park, S.H. Decomposition of industrial energy consumption: An alternative method. Energy Econ. 1992, 14, 265–270. [Google Scholar] [CrossRef]
- Boyd, G.A.; Hanson, D.A.; Sterner, T. Decomposition of changes in energy intensity: A comparison of the Divisia index and other methods. Energy Econ. 1988, 10, 309–312. [Google Scholar] [CrossRef]
- Ang, B.; Zhang, F.; Choi, K.-H. Factorizing changes in energy and environmental indicators through decomposition. Energy 1998, 23, 489–495. [Google Scholar] [CrossRef]
- He, W.; Wang, B.; Danish; Wang, Z. Will regional economic integration influence carbon dioxide marginal abatement costs? Evidence from Chinese panel data. Energy Econ. 2018, 74, 263–274. [Google Scholar] [CrossRef]
- Beinhocker, E.; Oppenheim, J.; Irons, B.; Lahti, M.; Farrell, D.; Nyquist, S.; Remes, J.; Naucler, T.; Enkvist, P.A. The carbon productivity challenge: Curbing climate change and sustaining economic growth. McKinsey Glob. Inst. 2008, 6, 1–48. [Google Scholar]
- Lu, N.; Wang, W.; Wang, M.; Zang, C.; Lu, H. Breakthrough low-carbon technological innovation and carbon emissions: Direct impact and spatial spillover. China Popul. ·Resour. Environ. 2019, 29, 30–39. [Google Scholar]
- Wang, W.; Lu, N.; Zhang, C. The response of low-carbon technological innovation to climate change from the perspective of spatial spillover effects. China Popul. Resour. Environ. 2018, 28, 22–30. [Google Scholar]
- Tsurumi, T.; Managi, S. Decomposition of the environmental Kuznets curve: Scale, technique, and composition effects. Environ. Econ. Policy Stud. 2010, 11, 19–36. [Google Scholar] [CrossRef]
- Musolesi, A.; Mazzanti, M. Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries. Stud. Nonlinear Dyn. Econ. 2014, 18, 521–541. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.M.; Murad, M.W.; Noman, A.H.M.; Ozturk, I. Relationships among carbon emissions, economic growth, energy consumption and population growth: Testing Environmental Kuznets Curve hypothesis for Brazil, China, India and Indonesia. Ecol. Indic. 2016, 70, 466–479. [Google Scholar] [CrossRef]
- Liu, X. Research on the urban innovation network structure and division of labor in the Guangdong-Hong Kong-Macao Greater Bay Area. Geogr. Sci. 2020, 40, 874–881. [Google Scholar]
- Wu, Z.; Zhang, L.; Huang, S. The Spatial Structure and Cooperative Mode of Tourism Economic Linkages in the Guangdong-Hong Kong-Macao Greater Bay Area. Geogr. Res. 2020, 39, 1370–1385. [Google Scholar]
- Gu, S.; Cao, D.; Yang, M. Strategic Thinking on Building an Innovation Ecosystem in the Guangdong-Hong Kong-Macao Greater Bay Area. China Soft Sci. 2018, 4, 1–9. [Google Scholar]
- Zhang, F.; Song, X.; Dong, H. Measure of Green Competitiveness Index of Manufacturing Industry in Guangdong-Hong Kong-Macao Greater Bay Area and Analysis of Spatiotemporal Pattern Evolution Characteristics. China Soft Sci. 2019, 10, 70–89. [Google Scholar]
- Zhang, Y.; Cheng, J.; Xu, Z.; Song, Q.; Li, W. Does Green Innovation Adapt to Climate Change: An Empirical Study of Chinese Patent and GHG Emission Data. China Popul. Resour. Environ. 2021, 31, 48–56. [Google Scholar]
- Lu, J.; Fan, W.; Meng, M. Empirical Research on China’s Carbon Productivity Decomposition Model Based on Multi-Dimensional Factors. Energies 2015, 8, 3093–3117. [Google Scholar] [CrossRef]
- Kumar, S.; Managi, S. Energy price-induced and exogenous technological change: Assessing the economic and environmental outcomes. Resour. Energy Econ. 2009, 31, 334–353. [Google Scholar] [CrossRef]
- Van der Zwaan, B.; Gerlagh, R.; Klaassen, G.; Schrattenholzer, L. Endogenous technological change in climate change modelling. Energy Econ. 2002, 24, 1–19. [Google Scholar] [CrossRef]
- Wang, Q.; She, S.; Zeng, J. The mechanism and effect identification of the national high-tech zone in improving the efficiency of urban green innovation: Based on the test of the double difference method. China Popul. Resour. Environ. 2020, 30, 129–137. [Google Scholar]
- Zhang, R.; Dong, H. The temporal and spatial evolution and influencing factors of China’s industrial eco-efficiency based on the provincial scale. Econ. Geogr. 2020, 40, 124–132, 173. [Google Scholar]
- Gorgij, A.D.; Kisi, O.; Moghaddam, A.A.; Taghipour, A. Groundwater quality ranking for drinking purposes, using the entropy method and the spatial autocorrelation index . Environ. Earth Sci. 2017, 76, 269. [Google Scholar] [CrossRef]
- Li, X.; Wei, X.; Huang, Q. Comprehensive entropy weight observability-controllability risk analysis and its application to water resource decision-making. Water SA 2012, 38, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Dong, G.; Shen, J.; Jia, Y.; Sun, F. Comprehensive Evaluation of Water Resource Security: Case Study from Luoyang City, China. Water 2018, 10, 1106. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, J.; An, X.; Zhang, Y.; Yang, L. Using fuzzy theory and information entropy for water quality assessment in Three Gorges region, China. Expert Syst. Appl. 2010, 37, 2517–2521. [Google Scholar] [CrossRef]
- Amiri, V.; Rezaei, M.; Sohrabi, N. Groundwater quality assessment using entropy weighted water quality index (EWQI) in Lenjanat, Iran. Environ. Earth Sci. 2014, 72, 3479–3490. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef] [Green Version]
- Lian, Y.; Cheng, J. Research on the relationship between capital structure and operating performance under different growth opportunities. Contemp. Econ. Sci. 2006, 2, 97–103. [Google Scholar]
Indicator Categories | Index Composition | Variable (Unit) | Indicator Attributes |
---|---|---|---|
Input | Capital investment | R&D expenditure (million yuan) | Negative indicator |
Human capital | The full-time equivalent of R&D employees (persons) | Negative indicator | |
Energy input | Total industrial energy consumption (million tons) | Negative indicator | |
Output | Economic output | New product sales revenue (million yuan) | Positive indicator |
Technical output | Number of patents granted (pieces) | Positive indicator | |
Economic growth | GDP per capita (yuan) | Positive indicator | |
Pollutant output | Pollution intensity | Negative indicator |
Region | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|---|
Guangzhou | 0.36 | 0.365 | 0.344 | 0.329 | 0.337 | 0.313 | 0.371 | 1.039 | 0.985 | 1.042 | 0.879 |
Shenzheng | 0.346 | 0.474 | 0.556 | 0.605 | 0.555 | 0.603 | 0.725 | 0.75 | 1.004 | 1.013 | 1.081 |
Zhuhai | 0.286 | 0.303 | 0.288 | 0.275 | 0.36 | 0.364 | 0.4 | 0.433 | 0.486 | 0.684 | 1.005 |
Foshan | 1.083 | 1.019 | 1.01 | 0.869 | 1.025 | 1.015 | 1.061 | 1.007 | 1.005 | 1.01 | 1.029 |
Zhongshan | 0.544 | 0.502 | 0.706 | 0.639 | 0.572 | 0.461 | 0.437 | 0.498 | 1.005 | 1.03 | 1.038 |
Dongguan | 0.215 | 0.217 | 0.279 | 0.257 | 0.312 | 0.401 | 0.549 | 0.583 | 0.676 | 0.835 | 1.02 |
Huizhou | 0.447 | 0.462 | 0.494 | 0.544 | 0.578 | 0.609 | 0.676 | 1.008 | 1.005 | 1.013 | 1.04 |
Jiangmen | 0.557 | 0.646 | 0.784 | 0.653 | 0.529 | 0.423 | 0.442 | 0.579 | 0.632 | 0.607 | 0.791 |
Zhaoqin | 0.805 | 0.734 | 0.656 | 0.629 | 0.614 | 0.808 | 0.706 | 0.852 | 0.968 | 0.297 | 1.003 |
Hongkong | 1.017 | 1.022 | 1.004 | 1.016 | 0.899 | 1.002 | 0.933 | 1.016 | 1.004 | 1.011 | 1.062 |
Macao | 0.738 | 1.006 | 1.025 | 0.822 | 1.019 | 1.012 | 1.028 | 0.838 | 1.003 | 1.003 | 1.017 |
Mean | 0.627 | 0.614 | 0.650 | 0.603 | 0.618 | 0.637 | 0.666 | 0.782 | 0.888 | 0.868 | 0.942 |
Variable | Moran’ I | Z(I) | p-Value |
---|---|---|---|
2009 | 0.323 | 1.751 | 0.04 |
2010 | 0.328 | 1.792 | 0.037 |
2011 | 0.333 | 1.819 | 0.034 |
2012 | 0.336 | 1.836 | 0.033 |
2013 | 0.333 | 1.817 | 0.035 |
2014 | 0.318 | 1.763 | 0.039 |
2015 | 0.315 | 1.759 | 0.039 |
2016 | 0.313 | 1.758 | 0.039 |
2017 | 0.311 | 1.744 | 0.041 |
2018 | 0.307 | 1.734 | 0.041 |
2019 | 0.295 | 1.685 | 0.046 |
Critical Value | |||||
---|---|---|---|---|---|
F-Value | p-Value | 1% | 5% | 10% | |
Single threshold test | 11.25 | 0.2533 | 32.28 | 21.447 | 16.934 |
Double threshold test | 15.28 | 0.04 | 22.457 | 14.907 | 10.824 |
Triple threshold test | 8.05 | 0.2233 | 33.528 | 16.122 | 11.135 |
Estimated Value | 95% Confidence Interval | |
---|---|---|
Threshold value | 0.288 | [0.268,0.3] |
Threshold value | 0.405 | [0.401,0.423] |
Variable | Variable Interval | Coefficient | p-Value (t-Value) |
---|---|---|---|
Green innovation efficiency | 1.83 *** | 0.001 (3.42) | |
0.426 | 0.241 (1.18) | ||
−0.4848 *** | 0.000 (−4.00) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Huo, C. Impact of Green Innovation Efficiency on Carbon Emission Reduction in the Guangdong-Hong Kong-Macao GBA. Sustainability 2021, 13, 13450. https://doi.org/10.3390/su132313450
Chen L, Huo C. Impact of Green Innovation Efficiency on Carbon Emission Reduction in the Guangdong-Hong Kong-Macao GBA. Sustainability. 2021; 13(23):13450. https://doi.org/10.3390/su132313450
Chicago/Turabian StyleChen, Lingming, and Congjia Huo. 2021. "Impact of Green Innovation Efficiency on Carbon Emission Reduction in the Guangdong-Hong Kong-Macao GBA" Sustainability 13, no. 23: 13450. https://doi.org/10.3390/su132313450
APA StyleChen, L., & Huo, C. (2021). Impact of Green Innovation Efficiency on Carbon Emission Reduction in the Guangdong-Hong Kong-Macao GBA. Sustainability, 13(23), 13450. https://doi.org/10.3390/su132313450