Retrospection of Outbreaks of Spodoptera mauritia Boisduval in NER India: The Solution Lies in Ecological Engineering, Not in Insecticides
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. More Outbreaks of RSC Are Likely to Occur in the Future
3.2. Crop’s Phenological Stage Determines the Loss Due to RSC Outbreak
3.3. Combating the Outbreak thorough Insecticides May Pose Threat to Resilience to Rice Ecosystem
3.4. Summer Ploughing Had a Great Impact on the RSC Outbreak
3.5. Bird-Perches Are Not Just a Bamboo Structure, but an Effective Ecological Tool
4. Discussion
4.1. Identifying the RSC Hubs at Each Agricultural Development Circle
4.2. Government Must Ban Cutting of Roosting Trees and Killing of Birds in Rice Ecosystems
4.3. Mandatory Use of Traps for Monitoring the Population Buildup of RSC
4.4. Management of Alternate Hosts of RSC Ahead of the Rice Crop Season
4.5. The Goodness in theSauri System for Poor and Marginal Farmers
4.6. Need for Promoting Entomophagy of RSC, and Rice-Cum-Fish Culture
4.7. Provision of Payment for Collection of RSC during Outbreak and Awards to Participating Farmers in Field Research
4.8. Repeated Awareness of Farmers Is Essential
4.9. Due Emphasis on Research on the Ecological Roles of Insectivorous Birds in Rice Ecosystem
4.10. Agricultural Policy on Rice–Duck Farming and Complex Rice System (CRS)
4.11. Precise Prediction of RSC Outbreak Is the Need of the Hour
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GRiSP (Global Rice Science Partnership). Rice Almanac, 4th ed.; International Rice Research Institute: Los Banos, Philippines, 2013; pp. 1–283. [Google Scholar]
- Northeast India. Available online: https://en.wikipedia.org/wiki/Northeast_India#wildlife (accessed on 14 November 2021).
- Roy, A.; Singh, N.U.; Dkhar, D.S.; Mohanty, A.K.; Singh, S.B.; Tripathi, A.K. Food security in North-East Region of India—A state-wise analysis. ICAR Research Complex for North-Eastern Hill Region, Umiam, Meghalaya, India. Agric. Econ. Res. Rev. 2015, 28, 259–266. [Google Scholar] [CrossRef]
- Tanwar, R.K.; Anand, P.; Panda, S.K.; Swain, N.C.; Garg, D.K.; Singh, S.P.; Kumar, S.S.; Bambawale, O.M. Rice Swarming Caterpillar (Spodoptera mauritia) and Its Management Strategies; Technical Bulletin 24; National Centre for Integrated Pest Management: New Delhi, India, 2010; pp. 1–19. [Google Scholar]
- Pathak, M.D.; Khan, Z.R. Insect Pests of Rice; International Centre of Insect Physiology and Ecology, IRRI: Manila, Philippines, 1994; p. 68. [Google Scholar]
- NRRI. Rice Swarming Caterpillar Devastates Winter Rice Fields in Assam; News Letter; ICAR-National Rice Research Institute: Cuttack, India, 2016; Volume 37, pp. 9–10. [Google Scholar]
- Anonymous. DRR Annual Progress Report, Kharif, 2012. Vol. 2 (Entomology); Directorate of Rice Research: Hyderabad, India, 2012; p. 23. [Google Scholar]
- Sarma, A.K.; Bhattacharyya, H.K.; Ojah, H.; Sharma, K. Outbreak of rice swarming caterpillar under the changing climatic conditions of Assam. In Abstracts: National symposium on Climate Change and Indian Agriculture: Slicing down the Uncertainties, 22–23 January 2013; CRIDA: Hyderabad, India, 2013; p. 226. [Google Scholar]
- Upamanya, G.K.; Kalita, N.; Sarma, R. Incidence of swarming caterpillar in winter paddy in Barpeta district of Assam. Insect Environ. 2013, 19, 171–172. [Google Scholar]
- Baruah, M. Swarming Caterpillar: A Menace to Rice Farmers in Assam; ICAR-IIRR News Letter: Cuttack, India, 2017; Volume 15, pp. 36–37. [Google Scholar]
- Sarma, A.K.; Gupta, M.K. Favourable factors for outbreak of Rice Swarming Caterpillar in Dibrugarh, Assam. Indian J. Entomol. 2018, 80, 698–702. [Google Scholar] [CrossRef]
- Sarma, A.K.; Salam, A. Outbreak of Spodoptera mauritia Boisduval in Assam. Indian J. Entomol. 2018, 80, 1646–1653. [Google Scholar] [CrossRef]
- Jena, M.; Guru, P.P.; Pun, K.B.; Saikia, K.; Rath, P.C.; Basana Gowda, G.; Patil, N.D.; Mohapatra, S.D.; Totan, A. Swarming Caterpillar in Rice: Status and Their Management; NRRI Technology Bulletin-127, 2017; National Rice Research Institute: Cuttack, India, 2017. [Google Scholar]
- Sampathkumar, M.; Amala, U.; Jalali, S.K.; Ballal, C.R. Crop Pest Report & Media Coverage; AICRP-BC, ICAR-National Bureau of Agricultural Insect Resources: Bengaluru, India, 2018; p. 37. [Google Scholar]
- Amala, U.; Sampathkumar, M.; Ramanujam, B.; Ballal, C.R. Crop Pest Report & Media Coverage; AICRP-BC, ICAR-National Bureau of Agricultural Insect Resources: Bengaluru, India, 2019; p. 44. [Google Scholar]
- Armyworm. Available online: http://www.knowledgebank.irri.org/training/fact-sheets/pest-management/insects/item/armyworms (accessed on 14 November 2021).
- Mani, M.; Sushenjit, B.; Shun, C.; Anil, M.; Thomas, M. South Asia’s Hotspots: The Impact of Temperature and Precipitation Changes on Living Standards. South Asia Development Matters; World Bank: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Patle, G.T.; Libang, A. Trend analysis of annual and seasonal rainfall to climate variability in North-East region of India. J. Appl. Nat. Sci. 2014, 6, 480–483. [Google Scholar] [CrossRef] [Green Version]
- Deka, R.L.; Mahanta, C.; Pathak, H.; Nath, K.K.; Das, S. Trends and fluctuations of rainfall regime in the Brahmaputra and Barak basins of Assam, India. Theor. Appl. Climatol. 2013, 114, 61–71. [Google Scholar] [CrossRef]
- Rathore, L.S.; Attri, A.D.; Jaswal, A.K. State level climate change trends in India. In Meteorological Monograph; (ESSO/IMD/EMRC/02/2013); India Meteorological Department, Goverment of India: New delhi, 2013. [Google Scholar]
- Neog, P.; Sarma, P.K.; Saikia, D.; Borah, P.; Hazarika, G.N.; Sarma, M.K.; Sarma, D.; Chary, G.R.; Rao, S.C. Management of drought in sali rice under increasing rainfall variability in the North Bank Plains Zone of Assam, North East India. Clim. Chang. 2019, 158, 473–484. [Google Scholar] [CrossRef]
- Sisay, B.; Simiyu, J.; Mendesil, E.; Likhayo, P.; Ayalew, G.; Mohamed, S.; Subramanian, S.; Tefera, T. Fall armyworm, Spodoptera frugiperda infestations in East Africa: Assessment of damage and parasitism. Insects 2019, 10, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazar, K.V.; Mohamed, U.V. The excretion of urea by the larvae of Spodoptera mauritia Boisd. (Noctuidae: Lepidoptera) during development. Experientia 1979, 35, 1468. [Google Scholar] [CrossRef]
- Nyffeler, M.; Sekercioglu, C.H.; Whelan, C.J. Insectivorous birds consume an estimated 400–500 milliontons of prey annually. Sci. Nat. 2018, 105, 47. [Google Scholar] [CrossRef] [Green Version]
- Sekercioglu, C.H. Increasing awareness of avian ecological function. Trends Ecol. Evol. 2006, 21, 464–471. [Google Scholar] [CrossRef]
- Whelan, C.J.; Wenny, D.G.; Marquis, R.J. Ecosystem services provided by birds. Annals N. Y. Acad. Sci. 2008, 1134, 25–60. [Google Scholar] [CrossRef] [PubMed]
- Saikia, P.K.; Saikia, M.K. Diversity of Bird Fauna in North East India. J. Assam Sci. Soc. 2000, 41, 379–396. [Google Scholar]
- Saikia, P. Amar Gaonphura Choraibor; Nature’s Beckon, Assam and Creative Design: Assam, India, 2019; p. 92. [Google Scholar]
- Saikia, P. A Monograph on Birds of Economic Importance in Agricultural Landscapes of Assam; Regional Agricultural Research Station, North Lakhimpur, Assam Agricultural University: Assam, India, 2019; p. 11. [Google Scholar]
- Jamdar, N. Nocturnal habits of Black Drongo (Dicrurus adsimilis). J. Bombay Nat. Hist. Soc. 1983, 80, 218. [Google Scholar]
- Nameer, P.O. Midnight feeding by black drongo. Newsl. Birdwatchers 1990, 30, 9. [Google Scholar]
- Sharma, S.K. Nocturnal feeding by Black Drongo. Newsl. Birdwatchers 1991, 31, 8. [Google Scholar]
- Parasharya, B.M.; Dodia, J.F.; Mathew, K.L.; Yadav, D.N. Natural regulation of white grub (Holotrichia sp.: Scarabeidae) by birds in agroecosystem. J. Biosci. 1994, 19, 381–389. [Google Scholar] [CrossRef]
- Parasharya, B.M.; Dodia, J.F.; Mathew, K.L.; Yadav, D.N. The role of birds in the natural regulation of Helicoverpa armigeraHubner in wheat. Pavo 1996, 34, 33–38. [Google Scholar]
- Chari, N.; Janaki Rama Rao, N.; Ramesh, R.; Sattaiah, G. Comparative studies on flight characteristics, moment of inertia and flight behaviour of two fly-catchers, Dicrurus adsimilis and Merops orientalis. Ind. J. Exp. Biol. 1982, 20, 894–896. [Google Scholar]
- Spodopter Litura. Available online: https://en.wikipedia.org/wiki/Spodoptera_litura#Range (accessed on 14 November 2021).
- Spodopter Frugiperda (Fall Armyworm). Available online: https://www.cabi.org/isc/datasheet/29810#tobiologyAndEcology (accessed on 14 November 2021).
- Deka, J.; Barua, I.C. Problem weeds and their management in the North-East Himalayas. Indian J. Weed Sci. 2015, 47, 296–305. [Google Scholar]
- Ali, M.P.; Bari, M.N.; Haque, S.S.; Kabir, M.M.M.; Afrin, S.; Nowrin, F.; Islam, M.S.; Landis, D.A. Establishing next generation pest control services in rice fields: Eco-agriculture. Sci. Rep. 2019, 9, 10180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, N.; Hazarika, N.C.; Narain, K.; Mahanta, J. Nutritive value of non-mulberry and mulberry silkworm pupae and consumption pattern in Assam, India. Nutr. Res. 2003, 23, 1303–1311. [Google Scholar] [CrossRef]
- Alemla, A.M.; Singh, H.K. Utilization of insects as human food in Nagaland. Indian J. Entomol. 2004, 66, 308–310. [Google Scholar]
- Ronghang, R.; Ahmed, R. Edible insects and their conservation strategy in Karbi Anglong district of Assam, North-East India. Bioscan 2010, 2, 516–521. [Google Scholar]
- Narzari, S.; Sarmah, J.A. Study on the prevalence of entomophagy among the Bodos of Assam. J. Entomol. Zool. Stud. 2015, 3, 315–320. [Google Scholar]
- Shantibala, T.; Lokeshwari, R.K.; Sharma, H.D. Entomophagy practices among the ethnic communities of Manipur, Northeast India. Int. J. Integrat. Sci. Innov. Technol. 2012, 1, 13–20. [Google Scholar]
- Singh, K.M.; Singh, M.P.; Kumawat, M.M.; Riba, T. Entomophagy by the tribal communities of North East India. Indian J. Entomol. 2013, 75, 132–136. [Google Scholar]
- Ayekpam, N.; Singh, N.I.; Singh, T.K. Edible and medicinal insects of Manipur. Indian J. Entomol. 2014, 76, 256–259. [Google Scholar]
- Chowdhury, S.; Sontakke, P.P.; Bhattacharjee, J.; Bhattacharjee, D.; Debanath, A.; Kumar, A.; Datta, J. An overview of edible insects in Eastern Himalayas: Indigenous traditional food of Tribals. Ecol. Environ. Conserv. 2015, 21, 1941–1946. [Google Scholar]
- Dutta, L.; Ghosh, S.S.; Deka, P.; Deka, K. Terrestrial edible insects and their therapeutic value in Moridhal Panchayat of Dhemaji District, Assam, Northeast-India. Int. J. Fauna Biol. Stud. 2016, 3, 11–14. [Google Scholar]
- Ruparao, J.G. Entomophagy for Nutritional Security in India: Potential and Promotion. Curr. Sci. 2018, 115, 1078–1084. [Google Scholar]
- Anungla, P.; Bendang, A.O.; Sarat, C.Y.; Pardeshi, L. Ethonozoology and entomophagy of Ao Tribe in the district of Mokokchung, Nagaland. IJTK 2019, 18, 508–515. [Google Scholar]
- Ramos-Elorduy, J.; Moreno, J.M.; Vázquez, A.I.; Landero, I.; Oliva-Rivera, H.; Camacho, V.H. Edible Lepidoptera in Mexico: Geographic distribution, ethnicity, economic and nutritional importance for rural people. J. Ethnobiol. Ethnomed. 2011, 7, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saharia, P.K.; Bhuyan, S.; Bordoloi, R.; Borah, D.; Rahman, B.; Rabha, H.; Deka, P. Introduction of Climbing perch, Anabas testudineus Blotch, in low lying rice field as a component of integration for doubling farmers income in Assam. J. Commun. Mobilization Sustain. Devt. 2018, 13, 13–16. [Google Scholar]
- Nagamandla, R.S.; Mogili, R.; Uma, M.T. A rapid method for identification of Spodoptera species. J. Entomol. Zool. Stud. 2019, 7, 1417–1419. [Google Scholar]
- Elphick, C.S. History of ecological studies of birds in rice fields. J. Ornithol. 2015, 156 (Suppl. 1), S239–S245. [Google Scholar] [CrossRef]
- Elphick, C.S. Why study birds in rice fields? Waterbirds 2010, 33, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sundar, K.S.G.; Subramanya, S. Bird use of rice fields in the Indian subcontinent. Waterbirds 2010, 33, 44–70. [Google Scholar] [CrossRef]
- Elphick, C.S. Assessing conservation trade-offs: Identifying the effects of flooding rice fields for waterbirds on non-target bird species. Biol. Conserv. 2004, 117, 105–110. [Google Scholar] [CrossRef]
- Bird, J.A.; Pettygrove, G.S.; Eadie, J.M. The impact of waterfowl foraging on the decomposition of rice straw: Mutual benefits for rice growers and waterfowl. J. Appl. Ecol. 2000, 37, 728–741. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Burns, E.G.; Eadie, J.M.; Horwath, W.R.; van Kessel, C. Effects of foraging waterfowl in winter flooded rice fields on weed stress and residue decomposition. Agric. Ecosyst. Environ. 2003, 95, 289–296. [Google Scholar] [CrossRef]
- Stafford, J.D.; Kaminski, R.M.; Reinecke, K.J. Avian foods foraging, and habitat conservation in world rice fields. Waterbirds 2010, 33, 133–150. [Google Scholar] [CrossRef] [Green Version]
- Men, B.X.; Tinh, T.K.; Preston, T.R.; Ogle, B.; Lindberg, J.E. Use of local ducklings to control insect pests and weeds in the growing rice field. Livest. Res. Rural Dev. 1999, 11. Available online: www.lrrd.org/lrrd11/2/men112.htm (accessed on 12 November 2021).
- Tong, Z.X. Preliminary study on the relationship between dynamic of pests in rice-duck field. China Rice 2002, 8, 33–44. [Google Scholar]
- Dai Zhiming, Y.H.; Xi, Z.; Xiaozhi, Z.; Zihong, H.; Yang, Y.; Guoping, Q.; Shuqing, Z.; Manda, M.; Nakanishi, Y.; Hongjiang, W. The research on the benefit of Yunnan rice-duck intergrowth model and its comprehensive evaluation (Part 3). Chin. Agric. Sci. Bull. 2004, 4, 265–267. [Google Scholar]
- Yang, Z.P.; Liu, X.Y.; Huang, H.; Liu, D.Z.; Hu, L.D.; Su, W.; Tan, S.Q. A study on the influence of rice-duck intergrowth on spider, rice diseases, insect and weeds in rice-duck complex ecosystem. Acta Ecol. Sin. 2004, 24, 2756–2776. [Google Scholar]
- Zhu, F.G.; Feng, Q.S.; Zhuge, Z. Control impact of rice-duck ecological structure on harmful biotic community of rice field. Acta Agric. Zhejiang 2004, 16, 37–41. [Google Scholar]
- Liu, X.Y.; Liu, D.Z.; Chen, Y.F.; Huang, H.; Zhong, L.; Yu, J.B. The character of rice roots in rice-duck-fish commensalisms ecosystem and its economic benefit. J. Hunan Agric. Univ. Nat. Sci. 2005, 31, 314–316. [Google Scholar]
- Quan, G.M.; Zhang, J.E.; Xu, R.B.; Liu, J.L.; Huang, Z.X. Effectof biological control of pests and diseases of rice by raising ducks in the paddy fields. Ecol. Sci. 2005, 4, 336–338. [Google Scholar]
- Deka, M.K.; Bhuyan, M.; Hazarika, L.K. Traditional Pest Management Practices of Assam. Indian J. Tradit. Knowl. 2006, 5, 75–78. [Google Scholar]
- Qianghui, D.; Xiaohua, P. Effects of Rice-duck Mutualism on Diseases Insect Pests and Weeds and Economic Benefits. Agric. Sci. Technol. 2008, 9, 128–138, Abstract. Available online: https://agris.fao.org (accessed on 14 November 2021).
- Liang, K.M.; Zhang, J.E.; Lin, T.A.; Quan, G.M.; Zhao, B.L. Control effects of two-batch-duck raising with rice framing on rice diseases, insect pests and weeds in paddy field. Adv. J. Food Sci. Technol. 2012, 4, 309–315. [Google Scholar]
- Long, P.; Huang, H.; Liao, X.; Fu, Z.; Zheng, H.; Chen, A.; Chen, C. Mechanism and capacities of reducing ecological cost through rice-duck cultivation. J. Sci. Food Agric. 2013, 93, 2881–2891. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.G.; Zhang, G.R.; Zhang, W.Q.; Hu, Y.; Zhang, J. Biological control of rice insect pests in China. Biol. Control. 2013, 67, 8–20. [Google Scholar] [CrossRef]
- Wang, N. Effects of Duck Density on Suppression of Weeds and Pests in Complex Rice Systems in Indonesia. Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2016. [Google Scholar]
- Teng, Q.; Hu, X.F.; Cheng, C.; Luo, Z.; Luo, F.; Xue, Y.; Jiang, Y.; Mu, Z.; Liu, L.; Yang, M. Ecological effects of rice-duck integrated farming on soil fertility and weed and pest control. J. Soils Sediments 2016, 16, 2395–2407. [Google Scholar] [CrossRef]
- Xu, H.X.; Yang, Y.J.; Lu, Y.H.; Zheng, X.S.; Tian, J.C.; Lai, F.X.; Fu, Q.; Lu, Z.X. Sustainable Management of Rice Insect Pests by Non-Chemical-Insecticide Technologies in China. Rice Sci. 2017, 24, 61–72. [Google Scholar]
- Endriany, E.N. Effects of Duck Density and Foraging Frequency on Rice Production Systems in East Java, Indonesia. Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2018. [Google Scholar]
- Furuno, T. The Power of Duck: Integrated Rice and Duck Farming, 1st ed.; Tagari Publications: Sisters Creek, Australia, 2001; pp. 1–94. [Google Scholar]
- Men, B.X.; Ogle, R.B.; Lindberg, J.E. Studies on integrated duck-rice systems in the Mekong Delta of Vietnam. J. Sustain. Agric. 2002, 20, 27–40. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, P.; Zhen, R.; Jing, L.; Tang, H.; Zhang, C. Effect of rice-duck mutualism on nutrition ecology of paddy field and rice quality. J. Appl. Ecol. 2004, 15, 639–645. [Google Scholar]
- Pin, S.U.; Xiaolan, L.; Ya, Z. Influencing factors on rice sheath blight epidemics in integrated rice-duck system. J. Integr. Agric. 2012, 11, 1462–1473. [Google Scholar]
- Li, S.S.; Wei, S.H.; Zuo, R.L.; Wei, J.G.; Qiang, S. Changes in the weed seed bank over 9 consecutive years of rice–duck farming. Crop Prot. 2012, 37, 42–50. [Google Scholar] [CrossRef]
- Hossain, S.T.; Sugimoto, H.; Ahmed, G.J.U.; Islam, M. Effect of integrated rice-duck farming on rice yield, farm productivity, and rice-provisioning ability of farmers. Asian J. Agric. Dev. 2005, 2, 79–86. [Google Scholar]
- Suh, J. An institutional and policy framework to foster integrated rice–duck farming in Asian developing countries. Int. J. Agric. Sustain. 2015, 13, 294–307. [Google Scholar] [CrossRef]
- Dahong, X.; Kui, F.; Ying, L.; Xiaopeng, D. Modeling of duck density and complex stocking time in rice-duck agroecosystems in terms of economic and ecological benefits. Math. Probl. Eng. 2014, 2014, 487537. [Google Scholar] [CrossRef] [Green Version]
- Khumairoh, U.; Groot, J.C.; Lantinga, E.A. Complex agro-ecosystems for food security in a changing climate. Ecol. Evol. 2012, 2, 1696–1704. [Google Scholar] [CrossRef]
- Cagauan, A.G.; Branckaert, R.D.; van Hove, C. Integrating fish and azolla into rice-duck farming in Asia. Naga 2000, 23, 4–10. [Google Scholar]
- Hokazono, S.; Hayashi, K. Variability in environmental impacts during conversion from conventional to organic farming: A comparison among three rice production systems in Japan. J. Clean. Prod. 2012, 28, 101–112. [Google Scholar] [CrossRef]
- Widyaningrum, I. Pest and Weed Suppressive Mechanisms in Complex Rice System at Malang, East Java, Indonesia. Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2015. [Google Scholar]
- Damgaard, C.; Bruus, M.; Axelsen, J.A. The effect of spatial variation for predicting aphid outbreaks. J. Appl. Entomol. 2019, 144, 263–269. [Google Scholar] [CrossRef] [Green Version]
(a) | |||||
---|---|---|---|---|---|
Year | Area Affected | Region/States/Country | Source of Information | ||
1904 | Not available | Sri Lanka | Wikipedia $ | ||
1920 | Not available | Sri Lanka | Wikipedia $ | ||
1967 | Not available | Assam, India | Baruah (2017) [10] | ||
1969 | Not available | Chattishgarh, India | Jena et al., 2017 [13] | ||
1969 | 200 acres | Sabah region, Malaysia | Wikipedia $ | ||
1969 | 6000 sq. miles | Sarawak region, Malaysia | Wikipedia $ | ||
1970 | Not available | Punjab, India | Jena et al., 2017 [13] | ||
1981 | Not available | Indonesia | Wikipedia $ | ||
1993 | Not available | Tamil Nadu, India | Tanwar et al., 2010 [4] | ||
1999 | 250 ha | Kotma Block, Central India | Tanwar et al., 2010 [4] | ||
2004 | 100 ha | Dhenkanal, Odisha, India | Jena et al., 2017 [13] | ||
2007 | 50 ha | Tangi Block, Cuttack, India | Jena et al., 2017 [13] | ||
2008 | 150 ha | Odisha, India | Jena et al., 2017 [13] | ||
2009 | 125,000 ha | Odisha, India | Tanwar et al., 2010 [4] | ||
2012 | 800 ha | Dibrugarh, Assam, India | Sarma et al. (2013) [8]; Sarma and Gupta (2018) [11]. | ||
2013 | 100 ha | Barpeta, Assam, India | Upamanya et al. (2013) [9] | ||
2016 | 56,768 ha | Assam, India | NRRI, 2016 [6] | ||
2016 | 1304 ha | Kuttanad, Kerala, India | Jena et al., 2017 [13] | ||
2017 | Not available | Nalbari, Bangaigaon, Jorhat district of Assam, India. | Sampathkumar M. et al. (2018) [14]. | ||
2018 | Not available | Kottayam district, Kerala, India | Amala et al. (2019) [15] | ||
2018 | Not available | Mayurbhanj district, Odisha, India | Amala et al. (2019) [15] | ||
(b) | |||||
S. No. | Districts | Area (ha) | S. No. | Districts | Area (ha) |
1 | Golaghat | 6671 b | 15 | Kokrajhar | 192 |
2 | Jorhat | 1871 f | 16 | Baksa | 62 |
3 | Majuli | 1600 g | 17 | Bongaigaon | 90 |
4 | Sivasagar | 6681 a | 18 | Sonitpur | 654 |
5 | Charaideu | 66 | 19 | Biswanath Chariali | 1080 j |
6 | Dibrugarh | 5150 c | 20 | Lakhimpur | 2445 d |
7 | Tinisukia | 250 | 21 | Dhemaji | 62 |
8 | Kamrup (R) | 390 | 22 | Darrang | 1265 i |
9 | Kamrup (S) | 200 | 23 | Morigaon | 92 |
10 | Kamrup (E) | 470 | 24 | Nagaon | 171 |
11 | Nalbari | 913 | 25 | Hailakandi | 20 |
12 | Barpeta | 1269 h | 26 | Mancachar | 15 |
13 | Dhubri | 488 | 27 | Karbi- Anglong | 353 |
14 | Goalpara | 2083 e | 28 | Dima Hasao | 54 |
(a–j): The top ten most infested districts. Total: 34,657 ha (as on 19 September 2016) * | |||||
(c) | |||||
Name of the Zone | Affected Area (ha) | Affected Area Per District (ha) | |||
1. Upper Brahmaputra valley Zone (Sl No. 1–7 in Table 1b) | 22,289 | 3184.1 | |||
2. Lower Brahmaputra valley Zone (Sl No. 8–17 in Table 1b) | 6157 | 615.7 | |||
3. North Bank Plain Zone (Sl No. 18–22 in Table 1b) | 5506 | 1101.2 | |||
4. Central Brahmaputra Valley Zone (Sl No. 23–24 in Table 1b) | 263 | 132.5 | |||
5. Barak Valley Zone (Sl No. 25–26 in Table 1b) | 35 | 17.5 | |||
6. Hill Zone (Sl No. 26–27 in Table 1b) | 407 | 203.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarma, A.K.; Damgaard, C.; Neog, P. Retrospection of Outbreaks of Spodoptera mauritia Boisduval in NER India: The Solution Lies in Ecological Engineering, Not in Insecticides. Sustainability 2021, 13, 12824. https://doi.org/10.3390/su132212824
Sarma AK, Damgaard C, Neog P. Retrospection of Outbreaks of Spodoptera mauritia Boisduval in NER India: The Solution Lies in Ecological Engineering, Not in Insecticides. Sustainability. 2021; 13(22):12824. https://doi.org/10.3390/su132212824
Chicago/Turabian StyleSarma, Arup Kumar, Christian Damgaard, and Prasanta Neog. 2021. "Retrospection of Outbreaks of Spodoptera mauritia Boisduval in NER India: The Solution Lies in Ecological Engineering, Not in Insecticides" Sustainability 13, no. 22: 12824. https://doi.org/10.3390/su132212824
APA StyleSarma, A. K., Damgaard, C., & Neog, P. (2021). Retrospection of Outbreaks of Spodoptera mauritia Boisduval in NER India: The Solution Lies in Ecological Engineering, Not in Insecticides. Sustainability, 13(22), 12824. https://doi.org/10.3390/su132212824