Analysing the Pattern of Productivity Change in the European Energy Industry
Abstract
:1. Introduction
2. Conceptual Background with a Literature Review
2.1. Sample and Data
2.2. Methods
θxi−Xλ ≥ 0, λ ≥ 0,
3. Empirical Results with Discussion
3.1. Preliminary Analysis
3.2. Results with Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
State | Energy Company | State | Energy Company |
---|---|---|---|
Austria | VERBUND Hydro Power GmbH | Latvia | Latvenergo |
Belgium | GDF SUEZ | Lithuania | Ignalinos atomine elektrine |
Bulgaria | Kozloduy NPP Plc | Luxembourg | Twinerg SA |
Cyprus | Electricity Authority of Cyprus (EAC) | Malta | Enemalta Corp |
Czech Republic | ČEZ Group | The Netherlands | Essent Nederland B.V. |
Denmark | DONG Energy | Poland | PGE Polska Grupa energetyczna SA |
Estonia | Eesti Energia | Portugal | EDP Producao |
Finland | Fortum Power & Heat | Croatia | Hrvatska elektroprivreda d.d. |
France | EDF France | Romania | Hidroelectrica |
Germany | RWE Power AG | Slovakia | Vodohospodarska Vystavba, s.p. |
Greece | PPC Public Power Corp SA | Slovenia | HSE Holding Slovenske elektrarne |
Hungary | MVM Magyar Villamos Művek Zrt. | Spain | Iberdrola, SA |
Ireland | ESB Electricity Supply Board | Sweden | Vattenfall |
Italy | Enel SpA | United Kingdom | British Energy Group |
Variable. | Revenue | GHG | Asset | Employees | Investment |
---|---|---|---|---|---|
Revenue | 1 | - | - | - | - |
GHG | 0.8913 * | 1 | - | - | - |
Asset | 0.9529 * | 0.7768 * | 1 | - | - |
Employees | 0.9059 * | 0.8581 * | 0.8380 * | 1 | - |
Investment | 0.5631 * | 0.3664 * | 0.5366 * | 0.4831 * | 1 |
References
- European Commission. Energy Sector Economic Analysis. Available online: https://ec.europa.eu/jrc/en/research-topic/energy-sector-economic-analysis (accessed on 14 April 2021).
- Barros, C.P.; Peypoch, N. Technical efficiency of thermoelectric power plants. Energy Econ. 2008, 30, 3118–3127. [Google Scholar] [CrossRef]
- Borozan, D.; Starcevic, D. P. European energy industry: Managing operations on the edge of efficiency. Renew. Sust. Energy Rev. 2019, 116, 109401. [Google Scholar] [CrossRef]
- United Nations. Paris Agreement to the United Nations Framework Convention on Climate Change FCCC/CP/2015/10/Add.1. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 13 October 2021).
- European Commission. The European Green Deal, COM/2019/640 Final; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Commission. A Policy Framework for Climate and Energy in the Period from 2020 to 2030, COM/2014/015 Final; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions “Fit. for 55”: Delivering the EU’s 2030 Climate Target. On the Way to Climate Neutrality, COM(2021) 550 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. Energy Prices and Costs in Europe, COM(2019) 1 Final; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Behera, S.K.; Farooquie, J.A.; Dash, A.P. Productivity change of coal-fired thermal power plants in India: A Malmquist index approach. IMA J. Manag. Math. 2011, 22, 387–400. [Google Scholar] [CrossRef]
- Liu, W.B.; Wongchai, A.; Yotimart, D.; Peng, K.C. Productive Performance Analysis in Taiwan Energy Companies: Application of DEA Malmquist Index. Adv. Mat. Res. 2012, 616–618, 1354–1357. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, J.; Yang, F.; Zhang, Y. Evaluation and prediction on total factor productivity of Chinese petroleum companies via three-stage DEA model and time series neural network model. Sustain. Comput.-Inf. 2020, 27, 100397. [Google Scholar] [CrossRef]
- Lo Storto, C.; Capano, B. Productivity changes of the renewable energy installed capacity: An empirical study relating to 31 European countries between 2002 and 2011. Energy Educ. Sci. Tech. A 2014, 32, 3061–3072. [Google Scholar]
- Corsatea, T.D.; Giaccaria, S. Market regulation and environmental productivity changes in the electricity and gas sector of 13 observed European countries. Energy 2018, 164, 1286–1297. [Google Scholar] [CrossRef]
- Sánchez-Ortiz, J.; Garcia-Valderrama, T.; Rodríguez-Cornejo, V.; Cabrera-Monroy, F. DEA window analysis and Malmquist index to assess efficiency and productivity in the Spanish electricity sector. Int. J. Energy Sect. Manag. 2020, 15, 765–788. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee, the Committee of the Regions and the European Investment Bank: A Framework Strategy for a Resilient Energy Union with a Forward-Looking Climate Change Policy, COM(2015) 080 Final; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Eurostat. Database on Energy, Luxembourg. 2021. Available online: http://ec.europa.eu/eurostat/web/energy/data/main-tables (accessed on 15 January 2021).
- Jardine, N. Meet the 20 Most Profitable Energy Companies in Europe. Business Insider. 11 November 2011. Available online: https://www.businessinsider.com/gazprom-profits-energy-europe-2011-11?op=1#20-gas-natural-fenosa-1 (accessed on 11 October 2021).
- S&P Global Market Intelligence. Italy’s Enel Tops List of 20 largest European Utilities by Market Cap. 20 June 2019. Available online: https://www.spglobal.com/marketintelligence/en/news-insights/trending/sgSxFo7P69ByGX1pBy4mvg2 (accessed on 11 October 2021).
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity growth, technical progress, and efficiency change in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Wu, J.; Zhu, Q.; Yin, P.; Song, M. Measuring energy and environmental performance for regions in China by using DEA-based Malmquist indices. Oper. Res. 2017, 17, 715–735. [Google Scholar] [CrossRef]
- Tavana, M.; Khalili-Damghani, K.; Arteaga, F.J.S.; Hashemi, A. A Malmquist productivity index for network production systems in the energy sector. Ann. Oper. Res. 2020, 284, 415–445. [Google Scholar] [CrossRef]
- Comin, D. Total factor productivity. In Economic Growth; Durlauf, S.N., Blume, L.E., Eds.; Palgrave Macmillan: London, UK, 2010; pp. 260–263. [Google Scholar]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A-G 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Abbott, M. The productivity and efficiency of the Australian electricity supply industry. Energy Econ. 2006, 28, 444–454. [Google Scholar] [CrossRef]
- Ramos-Real, F.J.; Tovar, B.; Iootty, M.; de Almeida, E.F.; Pinto, H.Q., Jr. The evolution and main determinants of productivity in Brazilian electricity distribution 1998–2005: An empirical analysis. Energy Econ. 2009, 31, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.Y.; Liu, H.H.; Liu, X.X.; Yang, G.L. Measuring the productivity evolution of Chinese regional thermal power industries using global Malmquist-Luenberger productivity index. Int. J. Energy Sect. Manag. 2018, 12, 221–243. [Google Scholar] [CrossRef]
- Zhang, W.; Meng, J.; Tian, X. Does de-capacity policy enhance the total factor productivity of China’s coal companies? A Regression Discontinuity design. Resour. Policy 2020, 68, 101741. [Google Scholar] [CrossRef]
- Barros, C.P. Efficiency analysis of hydroelectric generating plants: A case study for Portugal. Energy Econ. 2008, 30, 59–75. [Google Scholar] [CrossRef]
- Lu, C.C.; Lu, L.C. Evaluating the energy efficiency of European Union countries: The dynamic data envelopment analysis. Energy Environ. 2019, 30, 27–43. [Google Scholar] [CrossRef]
- Ahnagaran, A.A.; Nabavieh, S.A.; Taheri, S.D.M.; Gholamiangonabadi, D. Measurement of productivity changes by bootstrapping Malmquist in combined cycle power plants. In Proceedings of the 5th Conference on Thermal Power Plants (CTPP), Tehran, Iran, 10–11 June 2014; pp. 83–88. [Google Scholar]
- Cullmann, A.; von Hirschhausen, C. Efficiency analysis of East European electricity distribution in transition: Legacy of the past? J. Prod. Anal. 2008, 29, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Jaunky, V.C. Divergence in technical efficiency of electric utilities: Evidence from the SAPP. Energy Policy 2013, 62, 419–430. [Google Scholar] [CrossRef]
- Korhonen, P.J.; Luptacik, M. Eco-efficiency analysis of power plants: An extension of data envelopment analysis. Eur. J. Oper. Res. 2004, 154, 437–446. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Cook, W.D.; Seiford, L.M. Data envelopment analysis (DEA)—Thirty years on. Eur. J. Oper. Res. 2009, 192, 1–17. [Google Scholar] [CrossRef]
- Coelli, T.J.; Rao, D.S.P.; O’Donnell, C.J.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis, 2nd ed.; Springer Science+Business Media: Berlin, Germany, 2005. [Google Scholar]
- Sarkins, J. Preparing your data in DEA. In Modelling Data Irregularities and Structural Complexities in DEA; Zhu, J., Cook, W.D., Eds.; Springer: Boston, MA, USA, 2007; pp. 305–320. [Google Scholar]
- Wang, Y.M.; Luo, Y.; Liang, L. Ranking decision making units by imposing a minimum weight restriction in the data envelopment analysis. J. Comput. Appl. Math. 2009, 223, 469–484. [Google Scholar] [CrossRef] [Green Version]
- Moutinho, V.; Madaleno, M.; Robaina, M. The economic and environmental efficiency assessment in EU cross-country: Evidence from DEA and quantile regression approach. Ecol. Indic. 2017, 78, 85–97. [Google Scholar] [CrossRef]
- Wang, L.W.; Le, K.D. Energy efficiency and improvement European countries: Data envelopment analysis approach. Int. J. Sci. Res. 2019, 9, 66–78. [Google Scholar] [CrossRef]
- Borozan, D. Technical Efficiency and Productivity Change in the European Union with Undesirable Output Considered. Energies 2021, 14, 4937. [Google Scholar] [CrossRef]
- Timmer, M.P.; Inklaar, R.; O’Mahony, M.; van Ark, B. Productivity and economic growth in Europe: A comparative industry perspective. Int. Prod. Mon. 2011, 21, 3–23. [Google Scholar]
- Oberfield, E. Productivity and misallocation during a crisis: Evidence from the Chilean crisis of 1982. Rev. Econ. Dynam. 2013, 16, 100–119. [Google Scholar] [CrossRef]
- Furceri, D.; Celik, S.K.; Jalles, J.T.; Koloskova, K. Recessions and total factor productivity: Evidence from sectoral data. Econ. Model. 2021, 94, 130–138. [Google Scholar] [CrossRef]
- Draghi, M. The Productivity Challenge for Europe, Speeches, 30 November 2016. 2016. Available online: https://www.ecb.europa.eu/press/key/date/2016/html/sp161130_1.en.html (accessed on 10 October 2021).
- Midttun, A.; Piccini, B.P. Facing the climate and digital challenge: European energy industry from boom to crisis and transformation. Energy Policy 2017, 108, 330–343. [Google Scholar] [CrossRef]
- Statista. Renewable Energy in Europe, 2020. Available online: https://www-statista-com.ezproxy.nsk.hr/study/43575/renewable-energy-in-europe/ (accessed on 15 January 2021).
- Li, K.; Lin, B. Impact of energy conservation policies on the green productivity in China’s manufacturing sector: Evidence from a three-stage DEA model. Appl. Energy 2016, 168, 351–363. [Google Scholar] [CrossRef]
- Kim, J.; Park, S. A contingent approach to energy mix policy. Energy Policy 2018, 123, 749–758. [Google Scholar] [CrossRef]
- Díaz, A.; Marrero, G.A.; Puch, L.A.; Rodríguez, J. Economic growth, energy intensity and the energy mix. Energy Econ. 2019, 81, 1056–1077. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, H.; Roser, M. Energy, 2020. Available online: https://ourworldindata.org/energy (accessed on 12 October 2021).
- Ahn, K.; Chu, Z.; Lee, D. Effects of renewable energy use in the energy mix on social welfare. Energy Econ. 2021, 96, 105174. [Google Scholar] [CrossRef]
- Pacudan, R.; de Guzman, E. Impact of energy efficiency policy to productive efficiency of electricity distribution industry in the Philippines. Energy Econ. 2002, 24, 41–54. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Primary and final energy consumption in Europe, 18 December 2020. Available online: https://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-by-sector-11/assessment/ (accessed on 15 September 2021).
- EU Technical Expert Group (TEG) on Sustainable Finance. Taxonomy Report: Technical Annex, March 2020. Available online: https://ec.europa.eu/info/sites/default/files/business_economy_euro/banking_and_finance/documents/200309-sustainable-finance-teg-final-report-taxonomy-annexes_en.pdf (accessed on 12 October 2021).
- Latilla, V.M.; Urbinati, A.; Cavallo, A.; Franzo, S.; Ghezzi, A. Organizational re-design for business model innovation while exploiting digital technologies: A single case study of an energy company. Int. J. Innov. Technol. 2021, 18, 2040002. [Google Scholar] [CrossRef]
- Zhen, W.; Xin-gang, Z.; Ying, Z. Biased technological progress and total factor productivity growth: From the perspective of China’s renewable energy industry. Renew. Sust. Energy Rev. 2021, 146, 111136. [Google Scholar] [CrossRef]
- Du, L.; He, Y.; Yan, J. The effects of electricity reforms on productivity and efficiency of China’s fossil-fired power plants: An empirical analysis. Energy Econ. 2013, 40, 804–812. [Google Scholar] [CrossRef]
- See, K.F.; Coelli, T. An analysis of factors that influence the technical efficiency of Malaysian thermal power plants. Energy Econ. 2012, 34, 677–685. [Google Scholar] [CrossRef]
- Celen, A. Efficiency and productivity (TFP) of the Turkish electricity distribution companies: An application of two-stage (DEA&Tobit) analysis. Energy Policy 2013, 63, 300–310. [Google Scholar]
- European Commission. Energy Technology & Innovation. Available online: https://ec.europa.eu/jrc/en/research-topic/energy-technology-innovation (accessed on 10 October 2021).
- Sterlacchini, A. Energy R&D in private and state-owned utilities: An analysis of the major world electric companies. Energy Policy 2012, 41, 494–506. [Google Scholar]
- European Commission. Report from the Commission to the European Parliament and the Council on Progress of Clean Energy Competitiveness, COM(2020) 953 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
Output/Input | Obs | Mean | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|---|
Total revenue (in millions of euros at 2015 constant prices) | 228 | 8028.89 | 12,122.40 | 67.98 | 54,422.75 |
GHG emissions from the energy sector (in millions of tonnes) | 228 | 97.57 | 175.89 | 5.79 | 841.33 |
Total asset (in millions of euros at 2015 constant prices) | 228 | 20,927.41 | 28,154.89 | 1022.45 | 125,869.62 |
Number of employees | 228 | 14,017.41 | 15,987.69 | 188.00 | 85,928.00 |
Investment (in millions of euros at 2015 constant prices) | 228 | 1497.51 | 2739.71 | 5.08 | 16,978.30 |
Period | Malmquist Productivity Change Index (MPI) | Efficiency Change Index (TE) | Technology Change Index (TEC) | Pure Technical Efficiency Change Index (PTE) | Scale Efficiency Change Index (SE) |
---|---|---|---|---|---|
2005–2006 | 1.011 | 1.086 | 0.933 | 1.025 | 1.058 |
2006–2007 | 1.088 | 0.943 | 1.156 | 0.957 | 0.984 |
2007–2008 | 1.079 | 0.945 | 1.142 | 0.943 | 1.003 |
2008–2009 | 0.916 | 1.131 | 0.815 | 1.077 | 1.050 |
2009–2010 | 1.039 | 1.030 | 1.013 | 0.990 | 1.042 |
2010–2011 | 1.045 | 1.009 | 1.029 | 0.982 | 1.027 |
2011–2012 | 1.063 | 0.972 | 1.093 | 0.976 | 0.995 |
2012–2013 | 0.991 | 1.027 | 0.969 | 1.014 | 1.013 |
2013–2014 | 0.944 | 0.934 | 1.016 | 0.954 | 0.976 |
2014–2015 | 0.991 | 0.975 | 1.019 | 0.992 | 0.983 |
2015–2016 | 1.001 | 1.081 | 0.931 | 1.061 | 1.018 |
mean | 1.015 | 1.012 | 1.011 | 0.998 | 1.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borozan, D.; Pekanov Starcevic, D. Analysing the Pattern of Productivity Change in the European Energy Industry. Sustainability 2021, 13, 11742. https://doi.org/10.3390/su132111742
Borozan D, Pekanov Starcevic D. Analysing the Pattern of Productivity Change in the European Energy Industry. Sustainability. 2021; 13(21):11742. https://doi.org/10.3390/su132111742
Chicago/Turabian StyleBorozan, Djula, and Dubravka Pekanov Starcevic. 2021. "Analysing the Pattern of Productivity Change in the European Energy Industry" Sustainability 13, no. 21: 11742. https://doi.org/10.3390/su132111742
APA StyleBorozan, D., & Pekanov Starcevic, D. (2021). Analysing the Pattern of Productivity Change in the European Energy Industry. Sustainability, 13(21), 11742. https://doi.org/10.3390/su132111742