# Local Energy Communities in Spain: Economic Implications of the New Tariff and Variable Coefficients

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Literature Review

## 3. Methodology

#### 3.1. Mathematical Model

#### 3.2. Metrics

#### 3.3. Limitations and Assumptions

## 4. Case Study

#### 4.1. Studied Scenarios

#### 4.2. LEC Characteristics

#### 4.3. Electricity Tariffs in Spain

#### 4.4. Allocation Coefficients

## 5. Results and Discussion

#### 5.1. Tariff Effect

#### 5.2. Variable Coefficients Effect

#### 5.3. Overall Effect

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

Indices | |

g | Point of consumption index |

t | Time index (hours) |

y | Tariff periods index |

Sets | |

G | Set of all points of consumption |

T | Set of all time periods |

Y | Set of all tariff periods |

Parameters | |

$C{F}_{t}$ | Capacity factor of the PV installation at time t |

$Cos{t}_{0}$ | Total original cost of energy for the users of the LEC (€) |

$Cos{t}_{LEC}$ | Total cost of energy for the users of the LEC (€) |

N | PV Project expected lifetime (years) |

$PV$ | Nominal power of the photovoltaic installation (kW) |

Variables | |

${P}_{g,y}^{Cont}$ | Contracted power of consumption point g at tariff period y (kW) |

${P}_{t,g}^{D}$ | Power demand of point of consumption g at time t (kW) |

${P}_{t,g}^{P}$ | Power purchased from grid by the point of consumption point g at moment t (kW) |

${P}_{t,g}^{SC}$ | Self-consumed power of point of consumption g at time t (kW) |

${P}_{t,g}^{V}$ | Power sold from point of consumption point g at moment t (kW) |

${\beta}_{g}$ | Static allocation coefficient of point of consumption g at time t |

${\beta}_{t,g}$ | Dinamic allocation coefficient of point of consumption g at time t |

${\beta}_{t}^{S}$ | Dinamic allocation coefficient of sold electricity at time t |

${\pi}_{y}^{Cont}$ | Price of contracted power at tariff period y (€/kW) |

${\pi}^{DA}$ | Variable term of the electricity bill at moment t (€/kWh) |

${\pi}_{t}^{DER}$ | Selling price of surplus power at time t (€/kWh) |

${\pi}_{t}^{T}$ | Variable taxes of the electricity bill at moment t (€/kWh) |

Metrics | |

$Inv$ | Inversion required to start the LEC (€) |

$LCO{E}_{PV}$ | Levelized cost of photovoltaic energy (€) |

$PB$ | Simple payback period of the LEC (years) |

$Savings$ | Difference between electric bills before and after participating in LEC (€) |

## References

- Lowitzsch, J.; Hoicka, C.; van Tulder, F. Renewable energy communities under the 2019 European Clean Energy Package—Governance model for the energy clusters of the future? Renew. Sustain. Energy Rev.
**2020**, 122, 109489. [Google Scholar] [CrossRef] - European Comission. Proposal for a Directive of the European Parliament and of the Council on Common Rules for the Internal Market in Electricity; European Comission: Brussels, Belgium, 2019. [Google Scholar]
- Roldán Fernández, J.M.; Burgos Payán, M.; Riquelme Santos, J.M. Profitability of household photovoltaic self-consumption in Spain. J. Clean. Prod.
**2021**, 279, 123439. [Google Scholar] [CrossRef] - Gjorgievski, V.Z.; Cundeva, S.; Georghiou, G.E. Social arrangements, technical designs and impacts of energy communities: A review. Renew. Energy
**2021**, 169, 1138–1156. [Google Scholar] [CrossRef] - Hewitt, R.J.; Bradley, N.; Baggio Compagnucci, A.; Barlagne, C.; Ceglarz, A.; Cremades, R.; McKeen, M.; Otto, I.M.; Slee, B. Social Innovation in Community Energy in Europe: A Review of the Evidence. Front. Energy Res.
**2019**, 7, 31. [Google Scholar] [CrossRef][Green Version] - Heras-Saizarbitoria, I.; Sáez, L.; Allur, E.; Morandeira, J. The emergence of renewable energy cooperatives in Spain: A review. Renew. Sustain. Energy Rev.
**2018**, 94, 1036–1043. [Google Scholar] [CrossRef] - Ribó-Pérez, D.; Heleno, M.; Álvarez Bel, C. The flexibility gap: Socioeconomic and geographical factors driving residential flexibility. Energy Policy
**2021**, 153, 112282. [Google Scholar] [CrossRef] - Bhuniya, S.; Pareek, S.; Sarkar, B.; Sett, B.K. A Smart Production Process for the Optimum Energy Consumption with Maintenance Policy under a Supply Chain Management. Processes
**2021**, 9, 19. [Google Scholar] [CrossRef] - Vandana; Singh, S.R.; Yadav, D.; Sarkar, B.; Sarkar, M. Impact of Energy and Carbon Emission of a Supply Chain Management with Two-Level Trade-Credit Policy. Energies
**2021**, 14, 1569. [Google Scholar] [CrossRef] - Ahmed, W.; Sarkar, B. Management of next-generation energy using a triple bottom line approach under a supply chain framework. Resour. Conserv. Recycl.
**2019**, 150, 104431. [Google Scholar] [CrossRef] - Gui, E.M.; MacGill, I. Typology of future clean energy communities: An exploratory structure, opportunities, and challenges. Energy Res. Soc. Sci.
**2018**, 35, 94–107. [Google Scholar] [CrossRef] - Vibrant Clean Energy, LLC. Why Local Solar For All Costs Less: A New Roadmap for the Lowest Cost Grid; Report; Vibrant Clean Energy: Boulder, CO, USA, 2020. [Google Scholar]
- Brummer, V. Community energy–benefits and barriers: A comparative literature review of Community Energy in the UK, Germany and the USA, the benefits it provides for society and the barriers it faces. Renew. Sustain. Energy Rev.
**2018**, 94, 187–196. [Google Scholar] [CrossRef] - Capellán-Pérez, I.; Campos-Celador, Á.; Terés-Zubiaga, J. Renewable Energy Cooperatives as an instrument towards the energy transition in Spain. Energy Policy
**2018**, 123, 215–229. [Google Scholar] [CrossRef] - Hess, D.J.; Lee, D. Energy decentralization in California and New York: Conflicts in the politics of shared solar and community choice. Renew. Sustain. Energy Rev.
**2020**, 121, 109716. [Google Scholar] [CrossRef] - Stewart, F. All for sun, sun for all: Can community energy help to overcome socioeconomic inequalities in low-carbon technology subsidies? Energy Policy
**2021**, 157, 112512. [Google Scholar] [CrossRef] - C40. Why Cities? Technical Report; C40: Madrid, Spain, 2020. [Google Scholar]
- UN Habitat. UN HABITAT Climate Change; Technical Report; UN Habitat: Nairobi, Kenya, 2021. [Google Scholar]
- BOE. Real Decreto 244/2019, de 5 de abril, por el que se regulan las condiciones administrativas, técnicas y económicas del autoconsumo de energía eléctrica; Report; Spanish Official Gazette: Madrid, Spain, 2019. [Google Scholar]
- BOE. Real Decreto-ley 23/2020, de 23 de junio, por el que se aprueban medidas en materia de energía y en otros ámbitos para la reactivación económica; Report; Spanish Official Gazette: Madrid, Spain, 2020. [Google Scholar]
- BOE. Real Decreto-ley 15/2018, de 5 de octubre, de medidas urgentes para la transición energética y la protección de los consumidores; Report; Spanish Official Gazette: Madrid, Spain, 2018. [Google Scholar]
- MITECO. Proyecto de orden por la que se modifica el anexo I del Real Decreto 244/2019, de 5 de abril, para la implementación de coeficientes de reparto dinámicos en autoconsumo colectivo; Report; MITECO: Madrid, Spain, 2021. [Google Scholar]
- European Union. Directive (EU) 2018/2001 f the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources; Report; European Union: Brussels, Belgium, 2018. [Google Scholar]
- European Union. Directive (EU) 2019/944 f the European Parliament and of the Council of 5 June 2019 on common rules for the internal market for electricity and amending Directive 2012/27/EU; Report; European Union: Brussels, Belgium, 2019. [Google Scholar]
- BOE. Orden TED/371/2021, de 19 de abril, por la que se establecen los precios de los cargos del sistema eléctrico y de los pagos por capacidad que resultan de aplicación a partir del 1 de junio de 2021; Report; Spanish Official Gazette: Madrid, Spain, 2021. [Google Scholar]
- BOE. Resolución de 18 de marzo de 2021, de la Comisión Nacional de los Mercados y la Competencia, por la que se establecen los valores de los peajes de acceso a las redes de transporte y distribución de electricidad de aplicación a partir del 1 de junio de 2021; Report; Spanish Official Gazette: Madrid, Spain, 2021. [Google Scholar]
- Ye, G.; Li, G.; Wu, D.; Chen, X.; Zhou, Y. Towards Cost Minimization With Renewable Energy Sharing in Cooperative Residential Communities. IEEE Access
**2017**, 5, 11688–11699. [Google Scholar] [CrossRef] - Leithon, J.; Werner, S.; Koivunen, V. Cooperative Renewable Energy Management with Distributed Generation. In Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 191–195. [Google Scholar]
- Leithon, J.; Werner, S.; Koivunen, V. Storage Management in a Shared Solar Environment With Time-Varying Electricity Prices. IEEE Internet Things J.
**2019**, 6, 7420–7436. [Google Scholar] [CrossRef][Green Version] - Dorotić, H.; Doračić, B.; Dobravec, V.; Pukšec, T.; Krajačić, G.; Duić, N. Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources. Renew. Sustain. Energy Rev.
**2019**, 99, 109–124. [Google Scholar] [CrossRef] - Chakraborty, P.; Baeyens, E.; Khargonekar, P.P.; Poolla, K.; Varaiya, P. Analysis of Solar Energy Aggregation Under Various Billing Mechanisms. IEEE Trans. Smart Grid
**2019**, 10, 4175–4187. [Google Scholar] [CrossRef][Green Version] - Awad, H.; Gül, M. Optimisation of community shared solar application in energy efficient communities. Sustain. Cities Soc.
**2018**, 43, 221–237. [Google Scholar] [CrossRef] - Lilla, S.; Orozco, C.; Borghetti, A.; Napolitano, F.; Tossani, F. Day-Ahead Scheduling of a Local Energy Community: An Alternating Direction Method of Multipliers Approach. IEEE Trans. Power Syst.
**2020**, 35, 1132–1142. [Google Scholar] [CrossRef] - Grzanić, M.; Morales, J.M.; Pineda, S.; Capuder, T. Electricity Cost-Sharing in Energy Communities Under Dynamic Pricing and Uncertainty. IEEE Access
**2021**, 9, 30225–30241. [Google Scholar] [CrossRef] - Gallego-Castillo, C.; Heleno, M.; Victoria, M. Self-consumption for energy communities in Spain: A regional analysis under the new legal framework. Energy Policy
**2021**, 150, 112144. [Google Scholar] [CrossRef] - Linssen, J.; Stenzel, P.; Fleer, J. Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles. Appl. Energy
**2017**, 185, 2019–2025. [Google Scholar] [CrossRef] - Fina, B.; Auer, H.; Friedl, W. Cost-optimal economic potential of shared rooftop PV in energy communities: Evidence from Austria. Renew. Energy
**2020**, 152, 217–228. [Google Scholar] [CrossRef] - Dunning, I.; Huchette, J.; Lubin, M. JuMP: A Modeling Language for Mathematical Optimization. SIAM Rev.
**2017**, 59, 295–320. [Google Scholar] [CrossRef] - Instituto Valenciano de Competitividad Empresarial. Convocatoria de ayudas destinadas al fomento de instalaciones de autoconsumo de energía eléctrica, con cargo al Fondo de Promoción previsto en el marco del Plan Eólico de la Comunitat Valenciana; Report; IVACE: València, Spain, 2018. [Google Scholar]
- Iberdrola. Iberdrola Clientes; Technical Report; Iberdrola: Bilbao, Spain, 2021. [Google Scholar]
- PV Syst Photovoltaic Software. PVSYST; Technical Report; PV Syst: Satigny, Switzerland, 2021. [Google Scholar]
- Ribó-Pérez, D.; Carrión, A.; Rodríguez García, J.; Álvarez Bel, C. Ex-post evaluation of Interruptible Load programs with a system optimisation perspective. Appl. Energy
**2021**, 303, 117643. [Google Scholar] [CrossRef]

**Figure 7.**Payback period in relation to the nominal PV power installed for static coefficients under the old and the new tariff regulation. The impact of employing the new regulation is also shown.

**Figure 8.**Payback period in relation to the nominal PV power installed using the old tariff using static and variable coefficients. The impact of employing variable coefficients is also shown.

**Figure 9.**Self-consumption degree in relation to the nominal PV power installed employing static and variable coefficients.

**Figure 10.**Sold energy to the grid in relation to the nominal PV power installed employing static and variable coefficients.

**Figure 11.**Payback period in relation to the nominal PV power installed applying static and variable coefficients under the old and new regulations.

**Table 1.**Summary of the literature review, using keywords like “Local energy communities”; “Regulatory framework”; “Variable coefficients”; “Electriciity sharing strategies”; “Electricity tariff”.

Reference | Novelty | Regulatory Framework | Sharing Strategies | Case Study | Spanish Context |
---|---|---|---|---|---|

This work | Assessment of economic implication of the new Spanish electricity tariff regulation and the implementation of variable coefficients in LEC. | X | X | X | X |

[36] | An integrated cost optimisation model of PV BESS systems including system sizing and battery ageing. | X | |||

[27] | Design of an online algorithm to tackle cost-aware energy sharing among a cooperative community. | X | X | ||

[32] | Develop a generic and systematic framework that analyses, simulates, and optimises community dwellings equipped with community shared solar PV systems. | X | |||

[28] | New energy cost minimisation strategy for cooperating households. | ||||

[31] | Conditions under cooperative energy sharing that decreases total cost, the development of allocations rules and comparative analytical of the main billing programs (feed-in-tariff, net metering, net purchase and sale). | X | X | ||

[30] | Analysis of the island system with 100% intermittent renewable energy sources. | X | |||

[29] | A mathematical framework to optimize the use of renewable energy across households and two approaches to solve the optimisation problem. | ||||

[37] | Development of a model to estimate the cost-optimal large-scale economic potential of shared rooftop PV systems based on LECs. | X | |||

[33] | Designing a specific distributed procedure based on the alternating direction method of multipliers (ADMM) to plan the day-ahead operation of a grid-connected LEC. | X | |||

[35] | Regional analysis of optimal self-consumption installations under the new legal framework recently passed in Spain. | X | X | ||

[34] | Centralised post-process sharing method by introducing a two-stage mechanism and impact of different flexible appliances on electricity cost reduction. | X | X |

Variable | Values |
---|---|

PV Nominal Power | 0 to 100 kW |

Tariff | New or Old |

Allocation coefficients | Static or Variable |

Parameter | Values |
---|---|

PV nominal power | 0 to 100 kW |

Installation lifespan | 20 years |

Storage system | None |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Manso-Burgos, Á.; Ribó-Pérez, D.; Alcázar-Ortega, M.; Gómez-Navarro, T.
Local Energy Communities in Spain: Economic Implications of the New Tariff and Variable Coefficients. *Sustainability* **2021**, *13*, 10555.
https://doi.org/10.3390/su131910555

**AMA Style**

Manso-Burgos Á, Ribó-Pérez D, Alcázar-Ortega M, Gómez-Navarro T.
Local Energy Communities in Spain: Economic Implications of the New Tariff and Variable Coefficients. *Sustainability*. 2021; 13(19):10555.
https://doi.org/10.3390/su131910555

**Chicago/Turabian Style**

Manso-Burgos, Álvaro, David Ribó-Pérez, Manuel Alcázar-Ortega, and Tomás Gómez-Navarro.
2021. "Local Energy Communities in Spain: Economic Implications of the New Tariff and Variable Coefficients" *Sustainability* 13, no. 19: 10555.
https://doi.org/10.3390/su131910555