Ecological Risk Assessment of Heavy Metals in Adjoining Sediment of River Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sediment Collection and Processing
2.3. Sediment Sample Analysis
2.4. Different Pollution Indices for Assessing Metal Contamination
2.4.1. Geo-Accumulation Index (Igeo)
2.4.2. Enrichment Factor (EF)
2.4.3. Contamination Factor (CF)
2.4.4. Contamination Degree (CD)
2.4.5. Pollution Load Index (PLI)
2.4.6. Ecological Risk Index (RI)
2.4.7. Data Analysis
3. Results and Discussion
3.1. Major Elements Spatial Distribution in Sediments
3.2. Heavy Metals Spatial Distribution in Sediments
3.3. Correlation and PCA Analysis of Studied Metal Levels
3.4. Heavy Metal Pollution Level Assessment by Indices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAS | Atomic Absorption Spectroscopy |
CF | Contamination factor |
CD | Contamination degree |
ASV | Average shale values |
EF | Enrichment factor |
IRS | Indian River System |
MLD | Minimal liquid discharge |
PLI | Pollution load index |
RI | Ecological risk index |
TRV | Toxicity reference values |
WRS | World River system |
References
- Al Obaidy, A.H.M.J.; Talib, A.H.; Zaki, S.R. Environmental assessment of heavy metal distribution in sediments of Tigris River within Baghdad city. Int. J. Adv. Res. 2014, 2, 947–952. [Google Scholar]
- Ashraf, S.; Naveed, M.; Afzal, M.; Seleiman, M.F.; Al-Suhaibani, N.A.; Zahir, Z.A.; Mustafa, A.; Refay, Y.; Alhammad, B.A.; Ashraf, S.; et al. Unveiling the potential of novel macrophytes for the treatment of tannery effluent in vertical flow pilot constructed wetlands. Water 2020, 12, 549. [Google Scholar] [CrossRef] [Green Version]
- Kamboj, N.; Choudhury, M. Impact of solid waste disposal on ground water quality near Gazipur dumping site, Delhi, India. J. Appl. Natural Sci. 2013, 5, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Chen, H.; Song, L.; Yao, Z.; Meng, F.; Teng, Y. Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils. Sci. Total Environ. 2019, 694, 133819. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, J.; Chen, H.; Li, Q.; Yu, C.; Huang, X.; Guo, H. Water environment in the Tibetan Plateau: Heavy metal distribution analysis of surface sediments in the Yarlung Tsangpo River Basin. Environ. Geochem. Health 2019, 42, 2451–2469. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Santanen, A.; Mäkelä, P.S. Recycling sludge on cropland as fertilizer–advantages and risks. Conserv. Recycl. 2020, 155, 104647. [Google Scholar] [CrossRef]
- Choudhury, M.; Jyethi, D.S.; Dutta, J.; Purkayastha, S.P.; Deb, D.; Das, R.; Roy, G.; Sen, T.; Bhattacharyya, K.G. Investigation of groundwater and soil quality near to a municipal waste disposal site in Silchar, Assam, India. Int. J. Energy Water Res. 2021. [Google Scholar] [CrossRef]
- Singh, H.; Singh, D.; Singh, S.K.; Shukla, D.N. Assessment of river water quality and ecological diversity through multivariate statistical techniques, and earth observation dataset of rivers Ghaghara and Gandak, India. Int. J. River Basin Manag. 2017, 15, 1–14. [Google Scholar] [CrossRef]
- Shahid, M.J.; Ali, S.; Shabir, G.; Siddique, M.; Rizwan, M.; Seleiman, M.F.; Afzal, M. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water. Chemosphere 2020, 243, 125353. [Google Scholar] [CrossRef]
- Sharma, R.; Kumar, A.; Singh, N.; Sharma, K. Impact of seasonal variation on water quality of Hindon River: Physicochemical and biological analysis. SN Appl. Sci. 2021, 3, 28. [Google Scholar] [CrossRef]
- Purkayastha, S.P.; Choudhury, M.; Paul, C.D.D. Arsenic contamination in ground water is a serious threat in the North Karimganj block of Karimganj district, Southern part of Assam, India. J. Chem. Pharmaceut. Res. 2015, 7, 371–378. [Google Scholar]
- Huang, Z.; Liu, C.; Zhao, X.; Dong, J.; Zheng, B. Risk assessment of heavy metals in the surface-sediment at the drinking water source of the Xiangjiang River in South China. Environ. Sci. Eur. 2020, 32, 23. [Google Scholar] [CrossRef]
- Shylesh Chandran, M.N.; Mohan, M.; Ramasamy, E.V. Risk assessment of heavy metals in Vembanad Lake sediments (south-west coast of India), based on acid-volatile sulfide (AVS)-simultaneously extracted metal (SEM) approach. Environ. Sci. Pollut. Res. 2018, 25, 7333–7345. [Google Scholar] [CrossRef]
- Liang, A.; Wang, Y.; Guo, H.; Bo, L.; Zhang, S.; Bai, Y. Assessment of pollution and identification of sources of heavy metals in the sediments of Changshou Lake in a branch of the three gorges reservoir. Environ. Sci. Pollut. Res. 2015, 22, 16067–16076. [Google Scholar] [CrossRef] [PubMed]
- Kouidri, M.; Youcef, N.D.; Benabdellah, I.; Ghoubali, R.; Bernoussi, A.; Lagha, A. Enrichment and geoaccumulation of heavy metals and risk assessment of sediments from coast of Ain Temouchent (Algeria). Arab. J. Geosci. 2016, 9, 354. [Google Scholar] [CrossRef]
- Fu, J.; Zhao, C.; Luo, Y.; Liu, C.; Kyzas, G.Z.; Luo, Y.; Zhao, D.; An, S.; Zhu, H. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. J. Hazard. Mater. 2014, 270, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Lara-Martín, P.A.; Renfro, A.A.; Cochran, J.K.; Brownawell, B.J. Geochronologies of pharmaceuticals in a sewage-impacted estuarine urban setting (Jamaica Bay, New York). Environ. Sci. Technol. 2015, 49, 5948–5955. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Kumar, A.; Shukla, P. Study of water quality in Hindon River using pollution index and environmetrics. Desalin. Water Treat. 2015, 57, 19121–19130. [Google Scholar] [CrossRef]
- Uttar Pradesh Pollution Control Board. Action Plan for Restoration of Polluted Stretch of River Hindon from District Saharanpur to District Ghaziabad. 2019. Available online: http://www.uppcb.com/pdf/PRIORITY-I/RIVER-HINDON-5july19.pdf (accessed on 30 June 2019).
- Kumar, D.; Kumar, V.; Kumari, S. Study on water quality of Hindon river (tributary of Yamuna River). Rasayan J. Chem. 2018, 11, 1477–1484. [Google Scholar] [CrossRef]
- Singh, B.P.; Kumar, Y. Physicochemical Characteristic of Hindon River, Uttar Pradesh (India). IOSR J. Environ. Sci. Toxicol. Food Technol. 2016, 10, 35–38. [Google Scholar]
- Singh, A.; Pandey, R.; Singh, S.K.; Shukla, D.N. Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India. Appl. Water. Sci. 2017, 7, 4133–4149. [Google Scholar] [CrossRef]
- Robin, R.S.; Muduli, P.R.; Vishnu Vardhan, V.B.K.; Ganguly, D.; Abhilash, K.R.; Balasubramanian, T. Heavy metal contamination and risk assessment in the marine environment of Arabian sea, along the southwest coast of India. Am. J. Chem. 2012, 2, 191–208. [Google Scholar]
- Müller, G. Index of Geoaccumulation in Sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Loska, K.; Wiechuya, D. Application of principle component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 2003, 51, 723–733. [Google Scholar] [CrossRef]
- Hakanson, L. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Mohiuddin, K.M.; Zakir, H.M.; Otomo, K.; Sharmin, S.; Shikazono, N. Geochemical distribution of trace metal pollutants in water and sediments of downstream of an urban river. Int. J. Environ. Sci. Technol. 2010, 7, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Teng, Y.; Wu, J.; Lu, S.; Wang, Y.; Jiao, X.; Song, L. Soil and soil environmental quality monitoring in China: A review. Environ. Int. 2014, 69, 177–199. [Google Scholar] [CrossRef]
- Khan, M.Z.H.; Hasan, M.R.; Khan, M.; Aktar, S.; Fatema, K. Distribution of heavy metals in surface sediments of the Bay of Bengal Coast. J. Toxicol. 2017, 2017, 9235764. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Shi, X.; Liu, Y.; Zhu, Z.; Yang, G.; Zhu, A.; Gao, J. Concentration distribution and assessment of heavy metals in sediments of mud area from inner continental shelf of the East China Sea. Environ. Earth Sci. 2011, 64, 567–579. [Google Scholar] [CrossRef]
- Waldichuk, M. Biological availability of metals to marine organisms. Mar. Pollut. Bull. 1985, 16, 7–11. [Google Scholar] [CrossRef]
- Higgins, S.A.; Jaffe, B.E.; Fuller, C.C. Reconstructing sediment age profiles from historical bathymetry change in San Pablo bay, California. Estuar. Coast. Shelf Sci. 2007, 73, 165–174. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, J.; Xiong, K.; Huang, X.; Duan, S. Distribution of heavy metals in core sediments from Baihua Lake. Procedia Environ. Sci. 2012, 16, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Malaviya, P.; Choudhury, M.; Paul, C. Performance of germination, development, yield, and pigment on irrigation with untreated paint industry wastewater on Tagetes erecta L. var Pusa basanti. Ann. Romanian Soc. Cell Biol. 2021, 25, 2103–2115. [Google Scholar]
- Partha, V.; Murthya, N.N.; Saxena, P.R. Assessment of heavy metal contamination in soil around hazardous waste disposal sites in Hyderabad city (India): Natural and anthropogenic implications. E3 J. Environ. Res. Manag. 2011, 2, 27–34. [Google Scholar]
- Seleiman, M.F.; Al-Suhaibani, N.; El-Hendawy, S.; Abdella, K.; Alotaibi, M.; Alderfasi, A. Impacts of long- and short-term of irrigation with treated wastewater and synthetic fertilizers on the growth, biomass, heavy metal content, and energy traits of three potential bioenergy crops in arid regions. Energies 2021, 14, 3037. [Google Scholar] [CrossRef]
- Ali, S.; Abbas, Z.; Seleiman, M.F.; Rizwan, M.; YAVAŞ, İ.; Alhammad, B.A.; Shami, A.; Hasanuzzaman, M.; Kalderis, D. Glycine betaine accumulation, significance and interests for heavy metal tolerance in plants. Plants 2020, 9, 896. [Google Scholar] [CrossRef] [PubMed]
- IISc. IISc Environmental Handbook—Documentation on Monitoring and Evaluating Environmental Impacts, Compendium of Environmental Standards. Centre for Ecological Sciences–Indian Institute of Science. 2001. Available online: http://bis.ces.iisc.ernet.in/energy/HC270799/HDL/ENV/START.HTM (accessed on 11 May 2021).
- USEPA. National Recommended Water Quality Criteria-Correction—United State Environmental Protection Agency EPA 822-Z-99-001. 1999. Available online: http://www.epa.gov./ostwater/pci/revcom (accessed on 11 May 2021).
- Suresh, G.; Ramasamy, V.; Meenakshisundaram, V.; Venkatachalapathy, R.; Ponnusamy, V. Influence of mineralogical and heavy metal composition on natural radionuclide contents in the river sediments. Appl. Radiat. Isot. 2011, 69, 1466–1474. [Google Scholar] [CrossRef]
- Jain, C.K.; Singhal, D.C.; Sharma, M.K. Metal pollution assessment of sediment and water in the river Hindon, India. Environ. Monit. Assess. 2005, 105, 193–207. [Google Scholar] [CrossRef]
- Jumbe, A.S.; Nandini, N. Heavy Metals analysis and sediment quality values in urban lakes. Am. J. Environ. Sci. 2009, 5, 678–687. [Google Scholar] [CrossRef]
- Nayek, S.; Gupta, S.; Saha, R.N. Heavy metal distribution and chemical fractionation in water, suspended solids and bed sediments of industrial discharge channel: An implication to ecological risk. Res. J. Chem. Environ. 2013, 17, 26–33. [Google Scholar]
Heavy Metals | Sediment Heavy Metal Standard Values | ||||
---|---|---|---|---|---|
IRS (mg kg−1) | USEPA (mg kg−1) | WRS (mg kg−1) | ASV (mg kg−1) | TRV (mg kg−1) | |
Lead | 2–200 | 35.8 | − | 20 | 31 |
Copper | 28 | 31.6 | 100 | 45 | 16 |
Zinc | 16 | 121 | 350 | 95 | 110 |
Nickel | 37 | 22.7 | 90 | 68 | 16 |
Cadmium | 0.01–0.7 | 0.99 | − | 0.3 | 0.6 |
Pb | Cu | Zn | Ni | Cd | Fe | Al | Na | K | |
---|---|---|---|---|---|---|---|---|---|
Pb | 1 | ||||||||
Cu | 0.955 ** | 1 | |||||||
Zn | 0.972 ** | 0.974 ** | 1 | ||||||
Ni | 0.695 | 0.828 | 0.861 | 1 | |||||
Cd | 0.624 | 0.826 | 0.687 | 0.708 | 1 | ||||
Fe | −0.231 | 0.045 | −0.070 | −0.035 | −0.289 | 1 | |||
Al | 0.921 ** | 0.978 ** | 0.963 ** | 0.929 * | 0.748 | 0.070 | 1 | ||
Na | 0.833 * | 0.784 | 0.775 | 0.247 | 0.930 | −0.288 | 0.659 | 1 | |
K | 0.950 ** | 0.997 ** | 0.973 ** | 0.852 | 0.834 | 0.025 | 0.986 ** | 0.773 | 1 |
Variables | PC1 | PC2 |
---|---|---|
Cu | 0.993 | 0.077 |
Zn | 0.988 | 0.051 |
K | 0.987 | 0.095 |
Pb | 0.976 | −0.155 |
Al | 0.959 | 0.221 |
Ni | 0.894 | 0.347 |
Na | 0.826 | −0.458 |
Fe | −0.033 | 0.778 |
Cd | 0.273 | −0.686 |
Eigenvalue | 6.366 | 1.497 |
Variability (%) | 70.378 | 16.632 |
Cumulative (%) | 70.378 | 87.370 |
Geo-Accumulation Index | |||||||
---|---|---|---|---|---|---|---|
Parameters | Atali A | Atali B | Budhana A | Budhana B | Titavi A | Titavi B | |
Lead | 8.27 | 3.05 | 1.61 | 0.69 | −0.55 | −0.87 | |
Copper | 8.78 | 3.13 | 1.65 | 0.72 | −0.47 | −1.08 | |
Zinc | 11.42 | 3.51 | 1.81 | 0.86 | −0.22 | −2.18 | |
Nickel | 5.05 | 2.34 | 1.22 | 0.29 | −1.78 | 0.83 | |
Cadmium | 1.94 | 0.96 | −0.06 | −3.98 | 2.59 | 2.07 | |
Total | 7.09 | 2.59 | 1.25 | −0.28 | −0.09 | −0.25 | |
Enrichment Factor | |||||||
Atali A | Atali B | Budhana A | Budhana B | Titavi A | Titavi B | Total | |
Lead | 10568.46 | 112.43 | 205.22 | 227.85 | 142.23 | 378.39 | 1939.09 |
Copper | 3858.01 | 30.02 | 51.93 | 50.10 | 55.15 | 45.12 | 681.72 |
Zinc | 4030.41 | 29.97 | 67.51 | 61.38 | 54.81 | 67.11 | 718.53 |
Nickel | 28373.46 | 254.25 | 617.47 | 503.71 | 522.50 | − | 6054.28 |
Cadmium | 741.88 | 9.28 | − | 15.42 | − | − | 255.52 |
Average | 9514.45 | 87.19 | 235.53 | 171.69 | 193.67 | 163.54 |
Sites | Contamination Factor (CF) | Contamination Degree (CD) | Pollution Load Index (PLI) | ||||
---|---|---|---|---|---|---|---|
Lead | Copper | Zinc | Nickel | Cadmium | |||
Atali A | 3.56 | 1.30 | 1.36 | 9.56 | 0.25 | 16.03 | 1.72 |
Atali B | 2.85 | 0.76 | 0.76 | 6.45 | 0.24 | 11.06 | 1.20 |
Budhana A | 2.97 | 0.75 | 0.98 | 8.95 | − | 13.65 | 1.81 |
Budhana B | 2.96 | 0.65 | 0.79 | 6.54 | 0.2 | 11.14 | 1.15 |
Titavi A | 3.31 | 1.28 | 1.27 | 12.15 | − | 18.01 | 2.31 |
Titavi B | 2.61 | 0.31 | 0.46 | − | − | 3.39 | 0.82 |
Average | 3.04 | 0.84 | 0.94 | 8.73 | 0.23 | 12.21 | 1.50 |
Sites | Eir | RI | ||||
---|---|---|---|---|---|---|
Lead | Copper | Zinc | Nickel | Cadmium | ||
Atali A | 17.81 | 6.50 | 1.36 | 47.81 | 7.50 | 80.97 |
Atali B | 14.25 | 3.81 | 0.76 | 32.24 | 7.06 | 58.12 |
Budhana A | 14.87 | 3.76 | 0.98 | 44.74 | − | 64.35 |
Budhana B | 14.78 | 3.25 | 0.79 | 32.68 | 6.00 | 57.50 |
Titavi A | 16.54 | 6.41 | 1.27 | 60.75 | − | 84.97 |
Titavi B | 13.07 | 1.56 | 0.46 | − | − | 15.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, B.P.; Choudhury, M.; Samanta, P.; Gaur, M.; Kumar, M. Ecological Risk Assessment of Heavy Metals in Adjoining Sediment of River Ecosystem. Sustainability 2021, 13, 10330. https://doi.org/10.3390/su131810330
Singh BP, Choudhury M, Samanta P, Gaur M, Kumar M. Ecological Risk Assessment of Heavy Metals in Adjoining Sediment of River Ecosystem. Sustainability. 2021; 13(18):10330. https://doi.org/10.3390/su131810330
Chicago/Turabian StyleSingh, Bhanu Pratap, Moharana Choudhury, Palas Samanta, Monu Gaur, and Maniram Kumar. 2021. "Ecological Risk Assessment of Heavy Metals in Adjoining Sediment of River Ecosystem" Sustainability 13, no. 18: 10330. https://doi.org/10.3390/su131810330
APA StyleSingh, B. P., Choudhury, M., Samanta, P., Gaur, M., & Kumar, M. (2021). Ecological Risk Assessment of Heavy Metals in Adjoining Sediment of River Ecosystem. Sustainability, 13(18), 10330. https://doi.org/10.3390/su131810330