Feeding Strategies to Increase Nitrogen Retention and Improve Rumen Fermentation and Rumen Microbial Population in Beef Steers Fed with Tropical Forages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Animals and Experimental Design
2.3. Dry Matter Intake
2.3.1. Dry Matter Intake Measured Using Titanium Dioxide (TiO2) as External Marker
2.3.2. INDF Determination
2.4. Forage Quality Parameters
2.5. Urine Volume and Nitrogen Balance
2.6. Rumen Fermentation Parameters
2.7. Microbial Analyzes
2.7.1. DNA Extraction from Rumen Digesta
2.7.2. Quantitation of Microbial Populations
2.8. Statistical Analysis
- yijk = response of steer k under diet i during period j
- μ = the general mean
- δi = effect of the i-th diet (I = Cayman, Cayman + L. leucocephala, B. decumbens, B. decumbens + T. diversifolia)
- Pj = effect of the j-th period (j = 1…, 4)
- βk = effect of the k-th steer (k = 1…, 4),
- εij = experimental error
- yijk = response of the steer k, under diet i and day j
- μ = the general mean
- δi = effect of the i-th diet (I = Cayman, Cayman + L. leucocephala, B. decumbens, B. decumbens + T. diversifolia)
- βk/i = effect associated with the steer k within the diet i
- Dj = day effect j (j = 0, 7, 15)
- (δD)ij = effect of diet i interaction and day j
- εijk = experimental error
3. Results
3.1. Dry Matter Intake and Nitrogen Excretion
3.2. Fermentation Parameters and Microbial Populations
4. Discussion
4.1. Dry Matter Intake
4.2. Ruminal Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pezo, D. Intensificación Sostenible de los Sistemas Ganaderos Frente al Cambio Climático en América Latina y el Caribe: Estado del Arte; Inter-American Development Bank: Washington, DC, USA, 2019. [Google Scholar]
- Soltan, Y.A.; Morsy, A.S.; Sallam, S.M.; Lucas, R.C.; Louvandini, H.; Kreuzer, M.; Abdalla, A.L. Contribution of condensed tannins and mimosine to the methane mitigation caused by feedingLeucaena leucocephala. Arch. Anim. Nutr. 2013, 67, 169–184. [Google Scholar] [CrossRef]
- Reynal, S.; Broderick, G.; Bearzi, C. Comparison of Four Markers for Quantifying Microbial Protein Flow from the Rumen of Lactating Dairy Cows. J. Dairy Sci. 2005, 88, 4065–4082. [Google Scholar] [CrossRef]
- Rodriguez, C.A.; Gonzalez, J.; Alvir, M.R.; Redondo, R.; Cajarville, C. Effects of feed intake on composition of sheep rumen contents and their microbial population size. Br. J. Nutr. 2003, 89, 97–103. [Google Scholar] [CrossRef]
- Kelliher, F.; Cox, N.; van der Weerden, T.; De Klein, C.; Luo, J.; Cameron, K.; Di, H.; Giltrap, D.; Rys, G. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand. Environ. Pollut. 2014, 186, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Rao, D.L.N.; Batra, L. Ammonia volatilization from applied nitrogen in alkali soils. Plant. Soil 1983, 70, 219–228. [Google Scholar] [CrossRef]
- Hess, H.D.; Monsalve, L.M.; Lascano, C.E.; Carulla, J.E.; Díaz, T.E.; Kreuzer, M. Supplementation of a tropical grass diet with for age legumes and Sapindus saponaria fruits: Effects on in vitro ruminal nitrogen turnover and methanogenesis. Aust. J. Agric. Res. 2003, 54, 703. [Google Scholar] [CrossRef]
- Phelan, P.; Moloney, A.P.; McGeough, E.J.; Humphreys, J.; Bertilsson, J.; O’Riordan, E.G.; O’Kiely, P. Forage Legumes for Grazing and Conserving in Ruminant Production Systems. Crit. Rev. Plant. Sci. 2014, 34, 281–326. [Google Scholar] [CrossRef]
- Restrepo, E.M.; Rosales, R.B.; Estrada, M.X.F.; Orozco, J.D.C.; Herrera, J.E.R. Es Posible Enfrentar el Cambio Climático y Producir más Leche y Carne con Sistemas Silvopastoriles Intensivos. Ceiba 2016, 54, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Rivera, J.E.; Chará, J.; Murgueitio, E.; Molina, J.J.; Barahona, R. Feeding leucaena to dairy cows in intensive silvopastoral systems in Colombia and Mexico. Trop. Grassl.-Forrajes Trop. 2019, 7, 370–374. [Google Scholar] [CrossRef] [Green Version]
- Dalzell, S.A.; Burnett, D.J.; Dowsett, J.E.; Forbes, V.E.; Shelton, H.M. Prevalence of mimosine and DHP toxicity in cattle grazing Leucaena leucocephala pastures in Queensland, Australia. Anim. Prod. Sci. 2012, 52, 365–372. [Google Scholar] [CrossRef]
- Sierra, J.; Nygren, P. Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biol. Biochem. 2006, 38, 1893–1903. [Google Scholar] [CrossRef]
- Mahecha, L.; Escobar, J.P.; Suárez, J.F.; Restrepo, L.F. Tithonia diversifolia (hemsl.) Gray (botón de oro) como suplemento forrajero de vacas F1 (Holstein por Cebú). Livest. Res. Rural. Dev. 2007, 19, 1–6. [Google Scholar]
- Rivera, J.E.; Cuartas, C.A.; Naranjo, J.F.; Tafur, O.; Hurtado, E.A.; Arenas, F.A.; Chará, J.; Murgueitio, E. Efecto de la oferta y el consumo de Tithonia diversifolia en un sistema silvopastoril intensivo (SSPi), en la calidad y productividad de leche bovina en el piedemonte Amazónico colombiano. Livest. Res. Rural. Dev. 2015, 27, 1–13. [Google Scholar]
- Rivera, J.E.; Chará, J.; Gómez-Leyva, J.F.; Ruíz, T.; Barahona, R. Phenotypic variability and phytochemical composition of Tithonia diversifolia A. Gray for sustainable animal production. Livest. Res. Rural. Dev. 2018, 30, 200. [Google Scholar]
- Diaz, E.M.; Ledesma, L.M.; Arizala, J.A. Consumo de materia seca en un sistema silvopastoril de Tithonia diversifolia en trópico alto. Agron. Mesoam. 2017, 28, 389–403. [Google Scholar] [CrossRef] [Green Version]
- Londoño, C.; Mahecha, L.; Angulo, J. Desempeño agronómico y valor nutritivo de Tithonia diversifolia (Hemsl.) A Gray para la alimentación de bovinos. Rev. Colomb. Cienc. Anim. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Quintero-Anzueta, S.; Molina, I.C.; Ramirez-Navas, J.S.; Barahona, R.; Arango, J. Calidad nutricional de forrajes usados en la intensificación ganadera sostenible en el trópico bajo de Colombia. J. Abbr. 2017. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- IDEAM. Ecosistemas-IDEAM. 2015. Available online: http://www.siac.gov.co/ecosistemas (accessed on 3 October 2019).
- Clima Cali: Temperatura, Climograma y Tabla climática para Cali-Climate-Data.org, 2018. Available online: https://es.climate-data.org/america-del-sur/colombia/valle-del-cauca/cali-3426/ (accessed on 6 December 2019).
- Oliveira, P.P.A. Protocolo recomendado para avaliação do consumo voluntário de animais em pastejo. Embrapa Pecuária Sudeste-Doc. 2014, 115, 10–14. [Google Scholar] [CrossRef]
- Sampaio, C.B.; Detmann, E.; Valente, T.N.P.; De Souza, M.A.; Filho, S.V.; Paulino, M.F. Evaluation of fecal recovering and long term bias of internal and external markers in a digestion assay with cattle. Rev. Bras. Zootec. 2011, 40, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Titgemeyer, E.C.; Armendariz, C.K.; Bindel, D.J.; Greenwood, R.H.; Loest, C. Evaluation of titanium dioxide as a digestibility marker for cattle. J. Anim. Sci. 2001, 79, 1059–1063. [Google Scholar] [CrossRef]
- Cochran, R.C.; Adams, D.C.; Wallace, J.D.; Galyean, M.L. Predicting Digestibility of Different Diets with Internal Markers: Evaluation of Four Potential Markers. J. Anim. Sci. 1986, 63, 1476–1483. [Google Scholar] [CrossRef]
- Smith, A.; Reid, J. Use of Chromic Oxide as an Indicator of Fecal Output for the Purpose of Determining the Intake of Pasture Herbage by Grazing Cows. J. Dairy Sci. 1955, 38, 515–524. [Google Scholar] [CrossRef]
- Detmann, E.; Paulino, M.F.; Zervoudakis, J.T.; Filho, S.D.C.V.; Euclydes, R.F.; Lana, R.D.P.; de Queiroz, D.S. Cromo e indicadores internos na determinação do consumo de novilhos mestiços, suplementados, a pasto. Rev. Bras. Zootec. 2001, 30, 1600–1609. [Google Scholar] [CrossRef] [Green Version]
- Haydock, K.; Shaw, N. The comparative yield method for estimating dry matter yield of pasture. Aust. J. Exp. Agric. 1975, 15, 663–670. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Determination of ash in animal feed: AOAC official method 942.05 revisited. In Official Methods of Analysis, 18th ed.; Oxford University Press: Gaithersburg, MD, USA, 2005. [Google Scholar]
- AOAC. Protein (Crude) Determination in Animal Feed: Copper Catalyst Kjeldahl Method 984.13. In Official Methods of Analysis, 15th ed.; Oxford University Press: Gaithersburg, MD, USA, 1990. [Google Scholar]
- van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Goering, H.K.; van Soest, P.J. Forage Fiber Analyses: Apparatus, Reagents, Procedures, and Some Applications; US Agricultural Research Service: Gaithersburg, MD, USA, 1970.
- Escobar, L.; Bolivar, D.; Espinoza, D. Uso de la excreción de creatinina como método alternativoa la colecta total de orina en vacas Holstein. Fac. Nac. Agron. 2010, 63, 5567–5576. [Google Scholar]
- Islam, M.R.; Ishida, M.; Ando, S.; Nishida, T.; Yamada, T. A Method for Determination of Nitrogen in Ruminant Feedstuffs and Products. Asian-Australas. J. Anim. Sci. 2003, 16, 1438–1442. [Google Scholar] [CrossRef]
- Alonso, J. Los sistemas silvopastoriles y su contribución al medio ambiente. Rev. Cuba. De Cienc. Agrícola 2011, 45, 107–115. [Google Scholar]
- Jahromi, M.F.; Liang, J.B.; Mohamad, R.; Goh, Y.M.; Shokryazdan, P.; Ho, Y.W. Lovastatin-Enriched Rice Straw Enhances Biomass Quality and Suppresses Ruminal Methanogenesis. BioMed Res. Int. 2013, 2013, 397934. [Google Scholar] [CrossRef] [Green Version]
- Tajima, K.; Aminov, R.I.; Nagamine, T.; Matsui, H.; Nakamura, M.; Benno, Y. Diet-Dependent Shifts in the Bacterial Population of the Rumen Revealed with Real-Time PCR. Appl. Environ. Microbiol. 2001, 67, 2766–2774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 2007, 75, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, J.T.; Karnati, S.K.R.; Yu, Z.; Morrison, M.; Firkins, J.L. Development of an Assay to Quantify Rumen Ciliate Protozoal Biomass in Cows Using Real-Time PCR. J. Nutr. 2004, 134, 3378–3384. [Google Scholar] [CrossRef] [Green Version]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Pardo, O.; Carulla, J.E.; Hess, H.D. Efecto de la relación proteína y energía sobre los niveles de amonio ruminal y nitrógeno ureico en sangre y leche, de vacas doble propósito del piedemonte llanero, Colombia. Rev. Colomb. Cienc. Pecu. 2008, 21, 387–397. [Google Scholar]
- Cuartas Cardona, C.A.; Naranjo Ramírez, J.F.; Tarazona Morales, A.M.; Murgueitio Restrepo, E.; Chará Orozco, J.D.; Ku Vera, J.; Solorio Sánchez, F.J.; Flores Estrada, M.X.; Sánchez, B.S.; Barahona Rosales, R. Contribution of intensive silvopastoral systems to animal performance and to adaptation and mitigation of climate change. Rev. Colomb. Cienc. Pecu. 2014, 27, 76–94. [Google Scholar]
- Gaviria-Uribe, X.; Naranjo-Ramírez, J.F.; Bolívar-Vergara, D.M.; Barahona-Rosales, R. Consumo y digestibilidad en novillos cebuínos en un sistema silvopastoril intensivo. Arch. Zootec. 2015, 64, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Gallego-Castro, L.A.; Mahecha-Ledesma, L.; Angulo-Arizala, J. Calidad nutricional de Tithonia diversifolia Hemsl. A Gray bajo tres sistemas de siembra en el trópico alto. Agron. Mesoam. 2016, 28, 213. [Google Scholar] [CrossRef] [Green Version]
- Guatusmal-Gelpud, C.; Escobar-Pachajoa, L.D.; Meneses-Buitrago, D.H.; Cardona-Iglesias, J.L.; Castro-Rincón, E. Producción y calidad de Tithonia diversifolia y Sambucus nigra en trópico altoandino colombiano. Agron. Mesoam. 2020, 31, 193–208. [Google Scholar] [CrossRef] [Green Version]
- La, O.; González, H.; Orozco, A.; Castillo, Y.; Ruíz, O.; Estrada, A.; Ríos, F.; Gutiérrez, E.; Bernal, H.; Valenciaga, D.; et al. Composición química, degradabilidad ruminal in situ y digestibilidad in vitro de ecotipos de Tithonia diversifolia de interés para la alimentación de rumiantes O. Rev. Cuba. Cienc. Agrícola 2012, 46, 47–53. [Google Scholar]
- Piñeiro-Vázquez, A.T.; Jiménez-Ferrer, G.O.; Chay-Canul, A.J.; Casanova-Lugo, F.; Díaz-Echeverría, V.F.; Ayala, A.; Solorio-Sánchez, F.J.; Aguilar-Pérez, C.; Ku-Vera, J. Intake, digestibility, nitrogen balance and energy utilization in heifers fed low-quality forage and Leucaena leucocephala. Anim. Feed. Sci. Technol. 2017, 228, 194–201. [Google Scholar] [CrossRef]
- Brewbaker, J.L. Leucaena: A multipurpose tree genus for tropical agroforestry. Exp. Agric. 1987, 24, 393. [Google Scholar]
- Martínez Hernández, P.A.; Cortés Díaz, E.; Purroy Vásquez, R.; Palma García, J.; del Pozo Rodríguez, P.P.; Vite, C. Leucaena leucocephala (lam.) de wit especie clave para una producción bovina sostenible en el trópico. Trop. Subtrop. Agroecosyst. 2019, 22, 331–357. [Google Scholar]
- Molina Botero, I.C.; Cantet, J.M.; Montoya, S.; Correa Londoño, G.A.; Barahona Rosales, R. In vitro methane production from two tropical grasses alone or in combination with Leucaena leucocephala or Gliricidia sepium. Rev. CES Med. Vet. Zootec. 2013, 8, 15–31. [Google Scholar]
- Barahona, R.; Sanchez, S. Limitaciones fìsicas y quìmicas de la digestibilidad de pastos tropicales. Rev. Corpoica 2005, 6, 69–82. [Google Scholar]
- Sandoval González, L.; Miranda Romero, L.A.; Lara Bueno, A.; Huerta Bravo, M.; Uribe Gómez, M.; Martínez Martínez, M. Fermentación in vitro y la correlación del contenido nutrimental de leucaena asociada con pasto estrella. Rev. Mex. Cienc. Agrícolas 2016, 16, 3185–3196. [Google Scholar]
- Conrad, K.A.; Dalal, R.; Dalzell, S.A.; Allen, D.E.; Fujinuma, R.; Menzies, N. Soil nitrogen status and turnover in subtropical leucaena-grass pastures as quantified by δ15N natural abundance. Geoderma 2018, 313, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, T.; Lamela, L.; López, O. Efecto de la suplementación con residuos de destilería del maíz en el comportamiento de novillas en una asociación de gra-mínea y leucaena. Pastos Forrajes 2010, 33. Available online: https://www.researchgate.net/publication/262629564_Efecto_de_la_suplementacion_con_residuos_de_destileria_del_maiz_en_el_comportamiento_de_novillas_en_una_asociacion_de_graminea_y_leucaena (accessed on 1 September 2021).
- Conrad, K.A.; Dalal, R.; Dalzell, S.A.; Allen, D.E.; Menzies, N. The sequestration and turnover of soil organic carbon in subtropical leucaena-grass pastures. Agric. Ecosyst. Environ. 2017, 248, 38–47. [Google Scholar] [CrossRef]
- Osorio, N.W. Como Interpretar Los Resultados Del Analisis De Fertilidad Del Suelo. Boletín Manejo Integral Suelo Nutr. Veg-Univ. Nac. Colomb. 2012, 1, 1–3. [Google Scholar]
- Teutscherová, N.; Vázquez, E.; Sotelo, M.; Villegas, D.; Velásquez, N.; Baquero, D.; Pulleman, M.; Arango, J. Intensive short-duration rotational grazing is associated with improved soil quality within one year after establishment in Colombia. Appl. Soil Ecol. 2021, 159, 103835. [Google Scholar] [CrossRef]
- Radrizzani, A.; Shelton, H.M.; Dalzell, S.A. Response of Leucaena leucocephala pastures to phosphorus and sulfur application in Queensland. Anim. Prod. Sci. 2010, 50, 961–975. [Google Scholar] [CrossRef]
- Dijkstra, J.; Oenema, O.; Van Groenigen, J.W.; Spek, J.; van Vuuren, A.; Bannink, A. Diet effects on urine composition of cattle and N2O emissions. Animal 2013, 7, 292–302. [Google Scholar] [CrossRef] [Green Version]
- Shelton, M.; Dalzell, S. Production, economic and environmental benefits of leucaena pastures. Trop. Grassl. 2007, 41, 174–190. [Google Scholar]
- Gaviria, X.; Sossa, C.P.; Montoya, C.; Chará, J.; Lopera, J.J.; Córdoba, C.P.; Barahona, R. Producción de Carne Bovina en Sistemas Silvopastoriles Intensivos en el Trópico Bajo Colombiano. In Proceedings of the VII Congreso Latinoamericano de Sistemas Agroforestales para la Producción Animal Sostenible, Belén, Brasil, 8 October 2012. [Google Scholar]
- Castillo, A.R.; Kebreab, E.; Beever, D.E.; Barbi, J.H.; Sutton, J.D.; Kirby, H.C.; France, J. The effect of protein supplementation on nitrogen utilization in lactating dairy cows fed grass silage diets. J. Anim. Sci. 2001, 79, 247. [Google Scholar] [CrossRef] [PubMed]
- Cole, N.A.; Clark, R.N.; Todd, R.W.; Richardson, C.R.; Gueye, A.; Greene, L.W.; McBride, K. Influence of Dietary Crude Protein Concentration and Source on Potential Ammonia Emissions from Beef Cattle Manure Potential Ammonia Emissions from Beef Cattle Manure. J. Anim. Sci. 2005, 83, 722–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanchone, A.; Nozière, P.; Portelli, J.; Duriot, B.; Largeau, V.; Doreau, M. Effects of nitrogen underfeeding and energy source on nitrogen ruminal metabolism, digestion, and nitrogen partitioning in dairy cows1. J. Anim. Sci. 2013, 91, 895–906. [Google Scholar] [CrossRef] [Green Version]
- Tas, B.; Taweel, H.; Smit, H.; Elgersma, A.; Dijkstra, J.; Tamminga, S. Effects of Perennial Ryegrass Cultivars on Milk Yield and Nitrogen Utilization in Grazing Dairy Cows. J. Dairy Sci. 2006, 89, 3494–3500. [Google Scholar] [CrossRef]
- Tamminga, S. The effect of the supply of rumen degradable protein and metabolisable protein on negative energy balance and fertility in dairy cows. Anim. Reprod. Sci. 2006, 96, 227–239. [Google Scholar] [CrossRef]
- Pelster, D.E.; Gisore, B.; Goopy, J.; Korir, D.; Koske, J.K.; Rufino, M.; Butterbach-Bahl, K. Methane and Nitrous Oxide Emissions from Cattle Excreta on an East African Grassland. J. Environ. Qual. 2016, 45, 1531–1539. [Google Scholar] [CrossRef]
- Ramírez-Rivera, U.; Sanginés-García, J.R.; Escobedo-Mex, J.G.; Cen-Chuc, F.; Rivera-Lorca, J.A.; Lara-Lara, P.E. Effect of diet inclusion of Tithonia diversifolia on feed intake, digestibility and nitrogen balance in tropical sheep. Agrofor. Syst. 2010, 80, 295–302. [Google Scholar] [CrossRef]
- Colmenero, J.J.O.; Broderick, G.A. Effect of Dietary Crude Protein Concentration on Milk Production and Nitrogen Utilization in Lactating Dairy Cows. J. Dairy Sci. 2006, 89, 1704–1712. [Google Scholar] [CrossRef] [Green Version]
- Kolver, E.; De Veth, M. Prediction of Ruminal pH from Pasture-Based Diets. J. Dairy Sci. 2002, 85, 1255–1266. [Google Scholar] [CrossRef]
- Kang, S.; Wanapat, M.; Pakdee, P.; Pilajun, R.; Cherdthong, A. Effects of energy level and Leucaena leucocephala leaf meal as a protein source on rumen fermentation efficiency and digestibility in swamp buffalo. Anim. Feed. Sci. Technol. 2012, 174, 131–139. [Google Scholar] [CrossRef]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Firkins, J.; Yu, Z.; Morrison, M. Ruminal Nitrogen Metabolism: Perspectives for Integration of Microbiology and Nutrition for Dairy. J. Dairy Sci. 2007, 90, E1–E16. [Google Scholar] [CrossRef]
- Chanthakhoun, V.; Wanapat, M.; Berg, J. Level of crude protein in concentrate supplements influenced rumen characteristics, microbial protein synthesis and digestibility in swamp buffaloes (Bubalus bubalis). Livest. Sci. 2012, 144, 197–204. [Google Scholar] [CrossRef]
- Soltan, Y.A.; Morsy, A.S.; Lucas, R.C.; Abdalla, A.L. Potential of mimosine of Leucaena leucocephala for modulating ruminal nutrient degradability and methanogenesis. Anim. Feed Sci. Technol. 2017, 223, 30–41. [Google Scholar] [CrossRef]
- Ouyang, Y.; Norton, J.M.; Stark, J.M.; Reeve, J.R.; Habteselassie, M.Y. Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biol. Biochem. 2016, 96, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Vinh, N.; Wanapat, M.; Khejornsar, P.; Kongmun, P. Studies of Diversity of Rumen Microorganisms and Fermentation in Swamp Buffalo Fed Different Diets. J. Anim. Veter-Adv. 2011, 10, 406–414. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Si, B.; Diao, Q.; Jin, H.; Zeng, S.; Tu, Y. Rumen fermentation and bacterial communities in weaned Chahaer lambs on diets with different protein levels. J. Integr. Agricul. 2016, 15, 1564–1574. [Google Scholar] [CrossRef]
- Hook, S.E.; Wright, A.-D.G.; McBride, B.W. Methanogens: Methane Producers of the Rumen and Mitigation Strategies. Archaea 2010, 2010, 945785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanthakhoun, V.; Wanapat, M. Effect of legume (Phaseolus calcaratus) Hay supplementation on rumen cellulolytic bacterial populations in swamp buffaloes investigated by the real-time PCR technique. J. Anim. Vet. Adv. 2010, 9, 1654–1659. [Google Scholar]
- Delgado, D.C.; Galindo, J.; González, R.; González, N.; Scull, I.; Dihigo, L.; Cairo, J.; Aldama, A.I.; Moreira, O. Feeding of tropical trees and shrub foliages as a strategy to reduce ruminal methanogenesis: Studies conducted in Cuba. Trop. Anim. Health Prod. 2011, 44, 1097–1104. [Google Scholar] [CrossRef]
- Galindo, J.L.; Rodríguez, I.; González, N.; García, R. Silvopastoral system with Tithonia diversifolia (Hemsl.) A. Gray: Effect on the rumen microbial population of cows. Pastos Forrajes 2018, 41, 244–251. [Google Scholar]
- Galindo, J.; Delgado, D.; Pedraza, R.; García, D.E. Impacto de los árboles, los arbustos y otras leguminosas en la ecología ruminal de animales que consumen dietas fibrosas. Pastos Forrajes 2005, 28, 59–68. [Google Scholar]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Jayanegara, A.; Wina, E.; Soliva, C.; Marquardt, S.; Kreuzer, M.; Leiber, F. Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Anim. Feed. Sci. Technol. 2010, 163, 231–243. [Google Scholar] [CrossRef]
- Lezcano, Y.; Soca, M.; Sánchez, L.M.; Ojeda, F.; Olivera, Y.; Fontes, D.; Montejo, I.; Santana, H. Caracterización cualitativa del contenido de metabolitos secundarios en la fracción comestible de Tithonia diversifolia (Hemsl.) A. Gray. Pastos Forrajes 2012, 35, 283–291. [Google Scholar]
- Landau, S.; Silanikove, N.; Nitsan, Z.; Barkai, D.; Baram, H.; Provenza, F.; Perevolotsky, A. Short-term changes in eating patterns explain the effects of condensed tannins on feed intake in heifers. Appl. Anim. Behav. Sci. 2000, 69, 199–213. [Google Scholar] [CrossRef]
- Lettat, A.; Hassanat, F.; Benchaar, C. Corn silage in dairy cow diets to reduce ruminal methanogenesis: Effects on the rumen metabolically active microbial communities. J. Dairy Sci. 2013, 96, 5237–5248. [Google Scholar] [CrossRef]
- Newbold, C.J.; De La Fuente, G.; Belanche, A.; Ramos-Morales, E.; McEwan, N.R. The Role of Ciliate Protozoa in the Rumen. Front. Microbiol. 2015, 6, 1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotta, M. Amylolytic activity of selected species of ruminal bacteria. Appl. Environ. Microbiol. 1988, 54, 772–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galindo, J.; Torres, V.; Ana, I. Efecto de la composición del pastizal de Leucaena leucocephala con gramíneas en la población microbiana ruminal de toros. Rev. Cuba. Cienc. Agrícola 2007, 41, 145–148. [Google Scholar]
- Animut, G.; Puchala, R.; Goetsch, A.; Patra, A.; Sahlu, T.; Varel, V.; Wells, J. Methane emission by goats consuming different sources of condensed tannins. Anim. Feed. Sci. Technol. 2008, 144, 228–241. [Google Scholar] [CrossRef]
- Hans, C.E.; Gómez, D.H.; Lascano, Q.J. Segundo Taller Taninos en la Nutrición de Rumiantes en; CIAT-Centro Internacional de Agricultura Tropical: Cali, Colombia, 2006. [Google Scholar]
Item | Bd | Bd * | Td | Cy | Cy * | Ll | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
DM % | 33.9 | 0.8 | 34.1 | 2.7 | 21.2 | 0.10 | 24.1 | 4.0 | 27.0 | 0.3 | 30.5 | 2.1 |
IVDDM % | 66.45 | 1.2 | 66.71 | 1.8 | 50.64 | 2.1 | 62.25 | 1.3 | 65.13 | 1.0 | 56.33 | 1.6 |
CP % | 5.0 | 0.8 | 7.1 | 0.7 | 18.5 | 1.3 | 11 | 0.9 | 12.1 | 0.9 | 27.0 | 0.7 |
NDF % | 71.4 | 3.7 | 72.1 | 4.4 | 46.2 | 4.0 | 68.6 | 0.9 | 67.7 | 0.3 | 48.05 | 1.3 |
IVDFDN % | 73.6 | 2.4 | 73.5 | 2.7 | 68.16 | 1.4 | 78.43 | 3.1 | 76.53 | 1.2 | 64.14 | 1.0 |
ADF % | 35.3 | 3.6 | 35.6 | 5.7 | 34.3 | 1.0 | 33.8 | 1.3 | 31.7 | 1.0 | 34.6 | 5.2 |
Ash % | 9.5 | 1.1 | 9.5 | 1.3 | 14.6 | 0.9 | 14.6 | 1.0 | 14.0 | 0.1 | 7.1 | 0.6 |
Lignin % | 6.1 | 0.1 | 6.4 | 0.5 | 10.3 | 2.1 | 7.6 | 0.5 | 7.1 | 0.3 | 9.3 | 1.2 |
Target Species | Primer Set | Primer Sequences (5′–3′) | Process | T(°C) | Time | Cycle | Product Size (bp) | Reference |
---|---|---|---|---|---|---|---|---|
Fibrobacter succinogenes | Fibro_succ_1F | GGTATGGGATGAGCTTGC | - | 95 | 10′ | - | 446 | [37] |
Denaturation | 95 | 15″ | 45 | |||||
Fibro_succ_2R | GCCTGCCCCTGAACTATC | Annealing | 62 | 15″ | - | |||
Extension | 72 | 35″ | - | |||||
Prevotella ruminicola | P1prevo_rum | GGTTATCTTGAGTGAGTT | - | 95 | 3′ | - | 484 | [38] |
Denaturation | 95 | 30″ | 35 | |||||
P2prevo_rum | CTGATGGCAACTAAAGAA | Annealing | 53 | 30″ | - | |||
Extension | 72 | 1′ | - | |||||
Selenomona ruminantium | SelRum2F | CAATAAGCATTCCGCCTGGG | - | 94 | 4′ | - | 71 | [38] |
Denaturation | 94 | 30″ | 40 | |||||
SelRum2R | TTCACTCAATGTCAAGCCCTGG | Annealing | 58 | 60″ | - | |||
Extension | 72 | 90″ | - | |||||
Total Protozoa | P-SSU-316F | GCTTTCGWTGGTAGTGTATT | - | 94 | 4′ | - | 223 | [39] |
Denaturation | 94 | 30″ | 40 | |||||
P-SSU-539R | CTTGCCCTCYAATCGTWCT | Annealing | 55 | 30″ | ||||
Extension | 72 | 2′ | - | |||||
Domain Bacteria | BAC338F | GCTTTCGWTGGTAGTGTATT | - | 94 | 4′ | - | 130 | [38] |
Denaturation | 94 | 30″ | 40 | |||||
BAC805R | CTTGCCCTCYAATCGTWCT | Annealing | 55 | 30″ | ||||
Extension | 72 | 2′ | - |
Item | Bd | Bd + Td | Cy | Cy + Ll | SE |
---|---|---|---|---|---|
Dry matter intake (kg d−1) | 6.52b | 8.40a | 7.05b | 9.69a | 0.22 *** |
Dung (kg DM d−1) | 2.84b | 2.96b | 3.35a | 3.4a | 0.07 *** |
Urine (L d−1) | 8.24b | 8.83a | 8.30b | 9.07a | 0.09 *** |
N intake (g d−1) | 63.23c | 113.48b | 116.93b | 228.40a | 3.8 *** |
N urine (g d−1) | 22.45c | 30.26b | 32.74b | 55.56a | 1.02 *** |
Ratio N urine: N intake | 0.35 | 0.26 | 0.27 | 0.24 | |
N dung (g d−1) | 30.94c | 39.03b | 59.24a | 42.37b | 1.9 *** |
Ratio N dung: N intake | 0.48 | 0.34 | 0.50 | 0.18 | |
Ratio N excretion: N intake | 0.84 | 0.61 | 0.78 | 0.42 | |
N Balance (g d−1) | 9.83d | 44.19b | 24.94c | 130.46a | 1.76 ** |
Variable | DMI kg d−1 | N Intake g d−1 | Urine L d−1 | Dung kg DM d−1 | N Urine g d−1 | N Dung g d−1 |
---|---|---|---|---|---|---|
DMI kg d−1 | _______ | |||||
N intake g d−1 | 0.76 *** | _______ | ||||
Urine Lt d−1 | 0.79 *** | 0.77 *** | _______ | |||
Dung kg DM d−1 | 0.23 | 0.65 * | 0.29 | _______ | ||
N urine g d−1 | 0.60 * | 0.95 *** | 0.64 * | 0.68 * | _______ | |
N dung g d−1 | −0.17 | 0.20 | −0.1 | 0.60 * | 0.22 | _______ |
Balance g d−1 | 0.84 *** | 0.96 *** | 0.82 *** | 0.49 | 0.87 *** | −0.06 |
Bd | Bd + Td | Cy | Cy + Ll | p-Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day | |||||||||||||||
Item | 0 | 7 | 15 | 0 | 7 | 15 | 0 | 7 | 15 | 0 | 7 | 15 | Diet | Day | Diet * Day |
Rumen pH | 6.3 | 6.3 | 6.5 | 6.5 | 6.6 | 6.6 | 6.7 | 6.6 | 6.6 | 6.6 | 6.6 | 6.6 | 0.247 | 0.939 | 0.138 |
N-NH3 mg L−1 | 33.6 aB | 24.5 bC | 19.6 cC | 26.1 bC | 47.2 aB | 48.6 aB | 28.3 bC | 45.3 aB | 49.5 aB | 38.9 cA | 75.9 bA | 91.2 aA | 0.002 | 0.001 | 0.001 |
Acetic acid (mmol L−1) | 48.3 cA | 64.1 bA | 75.0 aB | 47.2 bA | 55.1 aB | 57.7 aC | 48.8 A | 49.3 B | 52.8 C | 47.2 cA | 61.1 bA | 86.1 aA | 0.011 | 0.045 | 0.032 |
Propionic acid (mmol L−1) | 15.7 | 18.2 | 19.3 | 14.7 | 21.2 | 24.2 | 13.4 | 15.8 | 14.8 | 15.3 | 27.4 | 25.7 | 0.053 | 0.075 | 0.438 |
Butyric acid (mmol L−1) | 8.3 B | 10.3 A | 11.1 B | 8.8 B | 9.5 B | 10.1 B | 9.2 bA | 11.2 bA | 13.9 aA | 8.1 B | 11.6 A | 10.8 B | 0.947 | 0.049 | 0.095 |
Isobutyric acid (mmol L−1) | 0.1 | 0.3 | 0.3 | 0.1 | 0.6 | 0.3 | 0.1 | 0.2 | 0.2 | 0.1 | 0.3 | 0.5 | 0.546 | 0.764 | 0.999 |
Acetic:propionic | 3.0 B | 3.5 A | 3.8 A | 3.2 B | 2.6 B | 2.3 B | 5.8 aA | 2.9 bB | 2.5 bB | 3.3 aB | 2.2 bB | 3.3 aA | 0.001 | 0.060 | 0.072 |
Microbial Species | |||||
---|---|---|---|---|---|
F. succinogenes | P. ruminicola | Protozoa | S. ruminantium | Total bacteria | |
Diet | 0.136 | 0.855 | 0.825 | 0.996 | 0.833 |
Day | 0.629 | * | *** | 0.112 | *** |
Diet × day | 0.297 | *** | 0.258 | 0.189 | *** |
SE | 1179.25 | 213.96 | 1254.45 | 1345.36 | 111,134.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durango, S.G.; Barahona, R.; Bolívar, D.; Chirinda, N.; Arango, J. Feeding Strategies to Increase Nitrogen Retention and Improve Rumen Fermentation and Rumen Microbial Population in Beef Steers Fed with Tropical Forages. Sustainability 2021, 13, 10312. https://doi.org/10.3390/su131810312
Durango SG, Barahona R, Bolívar D, Chirinda N, Arango J. Feeding Strategies to Increase Nitrogen Retention and Improve Rumen Fermentation and Rumen Microbial Population in Beef Steers Fed with Tropical Forages. Sustainability. 2021; 13(18):10312. https://doi.org/10.3390/su131810312
Chicago/Turabian StyleDurango, Sandra Guisela, Rolando Barahona, Diana Bolívar, Ngonidzashe Chirinda, and Jacobo Arango. 2021. "Feeding Strategies to Increase Nitrogen Retention and Improve Rumen Fermentation and Rumen Microbial Population in Beef Steers Fed with Tropical Forages" Sustainability 13, no. 18: 10312. https://doi.org/10.3390/su131810312
APA StyleDurango, S. G., Barahona, R., Bolívar, D., Chirinda, N., & Arango, J. (2021). Feeding Strategies to Increase Nitrogen Retention and Improve Rumen Fermentation and Rumen Microbial Population in Beef Steers Fed with Tropical Forages. Sustainability, 13(18), 10312. https://doi.org/10.3390/su131810312