Obtaining Data Values from Tourist Preferences
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Methodology
3.2. An Example of the Implementation
- Itinerary A includes a pedestrian walk in a natural environment, five natural resources and a restaurant. Of the three, this is the one that includes more nature resources (N + T), so is more adjusted to tourists with a nature profile, as is the case for Alpha. The values obtained from showed this: a nature tourism fan can achieve a relative satisfaction of 72%, compared to 16% for a social tourist.
- Itinerary B—Of the three, B is the most balanced, with four nature resources, three social resources and a restaurant. The value presents this balance in both profiles (51% and 58%). It will be a good compromise option for our tourist couple.
- Itinerary C—With four social and two nature resources and a restaurant, this is the one that would be the most suitable itinerary for tourists with a profile identical to Beta. The high value obtained (90%) is explained by the fact that this is a natural resource destination, and the itinerary included all of the resources most valued by tourists in the social category. Again, the values obtained for met what would be the expected relative value.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharpley, R. Tourism and sustainable development: Exploring the theoretical divide. J. Sustain. Tour. 2000, 8, 1–19. [Google Scholar] [CrossRef]
- Budeanu, A. Sustainable tourist behaviour—A discussion of opportunities for change. Int. J. Consum. Stud. 2007, 31, 499–508. [Google Scholar] [CrossRef]
- Nocca, F. The Role of Cultural Heritage in Sustainable Development: Multidimensional Indicators as Decision-Making Tool. Sustainability 2017, 9, 1882. [Google Scholar] [CrossRef] [Green Version]
- Souza, T.V.S.B.; Thapa, B.; Rodrigues, C.G.O.; Imori, D. Economic impacts of tourism in protected areas of Brazil. J. Sustain. Tour. 2019, 27, 735–749. [Google Scholar] [CrossRef]
- Zhuang, X.; Yao, Y.; Li, J.J. Sociocultural impacts of tourism on residents of world cultural heritage sites in China. Sustainability 2019, 11, 840. [Google Scholar] [CrossRef] [Green Version]
- Lankford, S.V. Attitudes and perceptions toward tourism and rural regional development. J. Travel Res. 1994, 32, 35–43. [Google Scholar] [CrossRef]
- Fieger, P.; Prayag, G.; Bruwer, J. ‘Pull’motivation: An activity-based typology of international visitors to New Zealand. Curr. Issues Tour. 2019, 22, 173–196. [Google Scholar] [CrossRef]
- Gretzel, U.; Sigala, M.; Xiang, Z.; Koo, C. Smart tourism: Foundations and developments. Electron. Mark. 2015, 25, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Ardito, L.; Cerchione, R.; Vecchio, P.; Raguseo, E. Big data in smart tourism: Challenges, issues and opportunities. Curr. Issues Tour. 2019, 22, 1805–1809. [Google Scholar] [CrossRef] [Green Version]
- Sorooshian, S. Implementation of an Expanded Decision-Making Technique to Comment on Sweden Readiness for Digital Tourism. Systems 2021, 9, 50. [Google Scholar] [CrossRef]
- Alrawadieh, Z.; Alrawadieh, Z.; Cetin, G. Digital transformation and revenue management: Evidence from the hotel industry. Tour. Econ. 2021, 27, 328–345. [Google Scholar] [CrossRef]
- Shehade, M.; Stylianou-Lambert, T. Revisiting Authenticity in the Age of the Digital Transformation of Cultural Tourism. In Cultural and Tourism Innovation in the Digital Era. Springer Proceedings in Business and Economics; Katsoni, V., Spyriadis, T., Eds.; Springer: Cham, Switzerland, 2020; pp. 3–16. [Google Scholar] [CrossRef]
- Vinerean, A. Consumer behavior in tourism and the influencing factors of the decision making process. Rev. Econ. 2013, 65, 186–198. [Google Scholar]
- Nikolić, T.M.; Pantić, S.P.; Paunović, I.; Filipović, S. Sustainable Travel Decision-Making of Europeans: Insights from a Household Survey. Sustainability 2021, 13, 1960. [Google Scholar] [CrossRef]
- Beerli, A.; Martín, J.D. Tourists’ characteristics and the perceived image of tourist destinations: A quantitative analysis—A case study of Lanzarote, Spain. Tour. Manag. 2004, 25, 623–636. [Google Scholar] [CrossRef]
- Valjarević, A.; Vukoičić, D.; Valjarević, D. Evaluation of the tourist potential and natural attractivity of the Lukovska Spa. Tour. Manag. Perspect. 2017, 22, 7–16. [Google Scholar] [CrossRef]
- Katsikari, C.; Hatzithomas, L.; Fotiadis, T.; Folinas, D. Push and Pull Travel Motivation: Segmentation of the Greek Market for Social Media Marketing in Tourism. Sustainability 2020, 12, 4770. [Google Scholar] [CrossRef]
- Tu, H.-M. Sustainable Heritage Management: Exploring Dimensions of Pull and Push Factors. Sustainability 2020, 12, 8219. [Google Scholar] [CrossRef]
- Bratić, M.; Marjanović, M.; Radivojević, A.R.; Pavlović, M. M-GAM method in function of tourism potential assessment: Case study of the Sokobanja basin in eastern Serbia. Open Geosci. 2020, 12, 1468–1485. [Google Scholar] [CrossRef]
- Tri Rahayuningsih, T.E.K.S.; Muntasib, E.H.; Prasetyo, L.B. Nature Based Tourism Resources Assessment Using Geographic Information System (GIS): Case Study in Bogor. Procedia Environ. Sci. 2016, 33, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Zong, C.; Cheng, K.; Lee, C.-H.; Hsu, N.-L. Capturing Tourists’ Preferences for the Management of Community-Based Ecotourism in a Forest Park. Sustainability 2017, 9, 1673. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Li, H.; Lau, C.K.M.; Isah, A.B. Preferences and Tourism Development under Uncertainty: An Empirical Study. Sustainability 2021, 13, 2534. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Antucheviciene, J.; Chatterjee, P. Multiple-Criteria Decision-Making (MCDM) Techniques for Business Processes Information Management. Information 2019, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Tian, C.; Peng, J. An integrated picture fuzzy ANP-TODIM multi-criteria decision-making approach for tourism attraction recommendation. Technol. Econ. Dev. Econ. 2020, 26, 331–354. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.-J.; Lo, H.-W.; Chao, C.-S.; Shen, C.-C.; Yang, C.-C. Establishing a Sustainable Sports Tourism Evaluation Framework with a Hybrid Multi-Criteria Decision-Making Model to Explore Potential Sports Tourism Attractions in Taiwan. Sustainability 2020, 12, 1673. [Google Scholar] [CrossRef] [Green Version]
- Warren, C.; McGraw, A.P.; Boven, L.V. Values and preferences: Defining preference construction. Wiley Interdiscip. Rev. Cogn. Sci. 2011, 2, 193–205. [Google Scholar] [CrossRef]
- Slovic, P. The construction of preference. Am. Psychol. 1995, 50, 364–371. [Google Scholar] [CrossRef]
- Dane, E.; Pratt, M.G. Exploring intuition and its role in managerial decision making. Acad. Manag. Rev. 2007, 32, 33–54. [Google Scholar] [CrossRef] [Green Version]
- Joshi, A.W.; Sharma, S. Customer knowledge development: Antecedents and impact on new product performance. J. Mark. 2004, 68, 47–59. [Google Scholar] [CrossRef]
- Balaguer, J.; Cantavella-Jorda, M. Tourism as a long-run economic growth factor: The Spanish case. Appl. Econ. 2002, 34, 877–884. [Google Scholar] [CrossRef] [Green Version]
- Brida, J.G.; Cortes-Jimenez, I.; Pulina, M. Has the tourism-led growth hypothesis been validated? A literature review. Curr. Issues Tour. 2016, 19, 394–430. [Google Scholar] [CrossRef]
- Tang, C.F.; Tan, E.C. Tourism-led growth hypothesis: A new global evidence. Cornell Hosp. Q. 2018, 59, 304–311. [Google Scholar] [CrossRef]
- Khadaroo, J.; Seetanah, B. The role of transport infrastructure in international tourism development: A gravity model approach. Tour. Manag. 2008, 29, 831–840. [Google Scholar] [CrossRef]
- Rasvanis, E.; Tselios, V. Geography as a locational determinant of foreign direct investments in tourism and transport in Greece: A comparison with domestic investments. GeoJournal 2020, 1–25. [Google Scholar] [CrossRef]
- Briedenhann, J.; Wickens, E. Tourism routes as a tool for the economic development of rural areas—vibrant hope or impossible dream? Tour. Manag. 2004, 25, 71–79. [Google Scholar] [CrossRef]
- Saarinen, J. Contradictions of rural tourism initiatives in rural development contexts: Finnish rural tourism strategy case study. Curr. Issues Tour. 2007, 10, 96–105. [Google Scholar] [CrossRef]
- Torres, R.; Momsen, J.H. Challenges and potential for linking tourism and agriculture to achieve pro-poor tourism objectives. Prog. Dev. Stud. 2004, 4, 294–318. [Google Scholar] [CrossRef]
- Goodwin, H. Reflections on 10 years of pro-poor tourism. J. Policy Res. Tour. Leis. Events. 2009, 1, 90–94. [Google Scholar] [CrossRef]
- OECD. OECD Tourism Trends and Policies 2020; Organisation for Economic Co-operation and Development (OECD) Publishing: Paris, France, 2020. [CrossRef]
- Haller, A.-P.; Butnaru, G.I.; Hârșan, G.-D.T.; Ştefănică, M. The relationship between tourism and economic growth in the EU-28. Is there a tendency towards convergence? Econ. Res-Ekon. Istraz. 2020, 1–25. [Google Scholar] [CrossRef]
- Fredman, P.; Wall-Reinius, S.; Grundén, A. The nature of nature in nature-based tourism. Scand. J. Hosp. Tour 2012, 12, 289–309. [Google Scholar] [CrossRef]
- Alegre, J.; Garau, J. Tourist satisfaction and dissatisfaction. Ann. Tour. Res. 2010, 37, 52–73. [Google Scholar] [CrossRef]
- Frias, A.; Cabral, J.; Costa, Á. Modeling Movement of Tourists: Tools and Application in São Miguel Island, Portugal. Asian J. Bus. Manag. 2015, 3, 440–448. Available online: http://repositorio.uac.pt/handle/10400.3/3599 (accessed on 1 May 2021).
- Bichler, B.F.; Peters, M. Soft adventure motivation: An exploratory study of hiking tourism. Tour. Manag. 2020, 76, 473–488. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Berezkin, V.E.; Lotov, A.V. Comparison of Two Pareto Frontier Approximations. Comput. Math. Math. Phys. 2014, 54, 1402–1410. [Google Scholar] [CrossRef]
- Mattson, C.A.; Messac, A. Concept Selection using s-Pareto Frontiers. AIAA J. 2003, 41, 1190–1198. [Google Scholar] [CrossRef]
- Zadeh, L. The concept of a linguistic variable and its application to approximate reasoning—I. J. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Zadeh, L. The concept of a linguistic variable and its application to approximate reasoning—II. J. Inf. Sci. 1975, 8, 301–357. [Google Scholar] [CrossRef]
- Wang, W.-P. A fuzzy linguistic computing approach to supplier evaluation. Appl. Math. Model. 2010, 34, 3130–3141. [Google Scholar] [CrossRef]
- Wang, H.; Olhofer, M.; Jin, Y. A mini-review on preference modeling and articulation in multi-objective optimization: Current status and challenges. Complex Intell. Syst. 2017, 3, 233–245. [Google Scholar] [CrossRef]
- Zadeh, L.A. Is there a need for fuzzy logic? Inf. Sci. 2008, 178, 2751–2779. [Google Scholar] [CrossRef]
- Frias, A. A Otimização da Gestão de Recursos em Turismo, Modelando Preferências. Ph.D. Thesis, Universidade de Lisboa, Lisboa, Portugal, 2018. Available online: http://hdl.handle.net/10400.5/17037 (accessed on 1 May 2021).
A. Tourist characteristics: 1. Time budgets; 2. Motivations, interests and group composition; 3. Destination knowledge and emotional value. |
B. Destination characteristics: 1. Trip origins or accommodation locations; 2. Trip destinations or attraction locations; 3. Transportation accessibility. |
Resource | Classification | Relevance ) | Accessibility ) | Use Time (t) | Preference ) | ||
---|---|---|---|---|---|---|---|
Alpha | Beta | Alpha | Beta | ||||
N1 | Nature/View | 4 × 4 | 4 | 0.47 | 15 | 0.1050 | 0.0750 |
N2 | Nature/Volcanic | 7 × 7 | 7 | 0.62 | 25 | 0.1575 | 0.1200 |
N3 | Nature/View | 3 × 3 | 3 | 0.71 | 15 | 0.1050 | 0.0750 |
N4 | Nature/View | 3 × 3 | 3 | 0.79 | 15 | 0.1050 | 0.0750 |
N5 | Nature/Beach or pool | 6 × 6 | 6 | 1.20 | 45 | 0.1050 | 0.0600 |
N6 | Nature/Garden | 7 × 7 | 7 | 2.58 | 60 | 0.0700 | 0.1200 |
N7 | Nature/Volcanic | 9 × 9 | 9 | 0.85 | 35 | 0.1575 | 0.1200 |
T1 | Walking trail/C3 | 4 × 4 | 4 | 0.47 | 160 | 0.0900 | 0.0200 |
T2 | Walking trail/C2 | 5 × 5 | 5 | 3.16 | 90 | 0.2250 | 0.0350 |
S1 | Social/Museum | 5 | 5 × 5 | 2.00 | 50 | 0.0400 | 0.3300 |
S2 | Social/Ethnography | 4 | 4 × 4 | 0.91 | 45 | 0.1000 | 0.0900 |
S3 | Social/Monument | 5 | 5 × 5 | 1.29 | 20 | 0.0600 | 0.1800 |
S4 | Social/Museum | 6 | 6 × 6 | 0.82 | 30 | 0.0400 | 0.3300 |
R1 | Restaurant/Familiar | 6 | 6 | 1.29 | 60 | 0.1000 | 0.0700 |
R2 | Restaurant/Familiar | 5 | 5 | 1.15 | 60 | 0.1000 | 0.0700 |
R3 | Restaurant/Gourmet | 3 | 3 | 0.95 | 90 | 0.0400 | 0.0900 |
R4 | Restaurant/Fast food | 4 | 4 | 0.95 | 40 | 0.0600 | 0.0400 |
Viable Options | Satisfaction (Ψ) | |||
---|---|---|---|---|
Individual resource selection (localization at starting node) | ||||
T2 | 17.79 | -- | 0.55 | -- |
N6 | 8.86 | -- | 2.17 | -- |
S1 | 0.40 | -- | 10.56 | -- |
S2 | 0.37 | -- | 0.74 | -- |
Itinerary selection (set of resources) | ||||
A = {T2, N2, N3, N4, N5, R1, N6} | 38.14 | 72% | 4.55 | 16% |
B = {S1, S3, S2, R1, N7, N6, N5, N4} | 26.83 | 51% | 19.25 | 68% |
C = {S1, S3, S2, R1, N7, S4, N6} | 21.76 | 41% | 25.38 | 90% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frias, A.; Raskova, E.; Costa, Á.; Cabral, J. Obtaining Data Values from Tourist Preferences. Sustainability 2021, 13, 10276. https://doi.org/10.3390/su131810276
Frias A, Raskova E, Costa Á, Cabral J. Obtaining Data Values from Tourist Preferences. Sustainability. 2021; 13(18):10276. https://doi.org/10.3390/su131810276
Chicago/Turabian StyleFrias, Armindo, Erza Raskova, Álvaro Costa, and João Cabral. 2021. "Obtaining Data Values from Tourist Preferences" Sustainability 13, no. 18: 10276. https://doi.org/10.3390/su131810276