Urban Form and Natural Hazards: Exploring the Dual Aspect Concept of Urban Forms on Flood Damage
Abstract
:1. Introduction
2. Literature Review
2.1. Debates and Questions on Urban Form
2.2. Impact of Urban Form on Flood Damage
3. Research Design
3.1. Research Rationale
3.1.1. City Size and Density
3.1.2. Degree of Distribution
3.1.3. Degree of Clustering
3.2. Study Area
3.3. Method and Data
4. Results
4.1. Exploring the Spatial Characteristics of Variables and Model Suitability
4.2. Analysis Results
4.3. Spatial Interpretation of Analysis Results
5. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- OECD. Cites in the World: A New Perspective on Urbanization; OECD Urban Studies: Paris, France, 2020; pp. 1–171. [Google Scholar]
- Gordon, P.; Richardson, H.W. Are Compact Cities a Desirable Planning Goal? J. Am. Plan. Assoc. 1997, 63, 95–106. [Google Scholar] [CrossRef]
- Ewing, R. Is Los Angeles-Style Sprawl Desirable? J. Am. Plan. Assoc. 1997, 63, 107–126. [Google Scholar] [CrossRef]
- Ewing, R.; Hamidi, S. Compactness versus sprawl: A review of recent evidence from the United States. J. Plan. Lit. 2015, 30, 413–432. [Google Scholar] [CrossRef]
- Federal Emergency Management Agency (FEMA). The Natural Beneficial Functions of Floodplains: Reducing Flood Losses by Protecting and Restoring the Floodplain Environment; FEMA Report no. 409; FEMA: Washington, DC, USA, 2002.
- Berke, P.R.; Song, Y.; Stevens, M. Integrating Hazard Mitigation into New Urban and Conventional Developments. J. Plan. Educ. Res. 2009, 28, 441–455. [Google Scholar] [CrossRef]
- Brody, S.D.; Gunn, J.; Peacock, W.; Highfield, W.E. Examining the Influence of Development Patterns on Flood Damages along the Gulf of Mexico. J. Plan. Educ. Res. 2011, 31, 438–448. [Google Scholar] [CrossRef]
- Brody, S.; Kim, H.; Gunn, J. Examining the Impacts of Development Patterns on Flooding on the Gulf of Mexico Coast. Urban Stud. 2012, 50, 789–806. [Google Scholar] [CrossRef]
- Xu, C.; Rahman, M.; Haase, D.; Wu, Y.; Su, M.; Pauleit, S. Surface runoff in urban areas: The role of residential cover and urban growth form. J. Clean. Prod. 2020, 262, 121421. [Google Scholar] [CrossRef]
- Im, E.S.; Lee, J.Y.; Lee, H.Y. Measurement of Urban Form in Urban Growth Management: Urban Sprawl versus Compactness. Korea Spat. Plan. Rev. 2006, 51, 223–247. [Google Scholar]
- Jang, C.H.; Song, J.M. Do High-Density Cities Have Better Proximity?: Global Comparative Study on Urban Compactness Using Nighttime Light Data and POI BIG Data. J. Korea Plan. Assoc. 2020, 54, 148–158. [Google Scholar] [CrossRef]
- Lee, S.-C. Exploring Compatibility of Density and Safety: An Inquiry on Spatial Planning Shift in COVID-19 Era. J. Korea Plan. Assoc. 2020, 55, 134–150. [Google Scholar] [CrossRef]
- Garcia, D.; Riera, P. Expansion versus Density in Barcelona: A Valuation Exercise. Urban Stud. 2003, 40, 1925–1936. [Google Scholar] [CrossRef]
- OECD. Compact City Policies: A Comparative Assessment; OECD Green Growth Studies: Paris, France, 2012; pp. 1–287. [Google Scholar]
- Kotharkar, R.; Bahadure, P.; Sarda, N. Measuring Compact Urban Form: A Case of Nagpur City, India. Sustainability 2014, 6, 4246–4272. [Google Scholar] [CrossRef] [Green Version]
- Ewing, R.H. Characteristics, Causes, and Effects of Sprawl: A Literature Review. Urban Ecol. 2008, 21, 519–535. [Google Scholar] [CrossRef]
- Hamidi, S.; Sabouri, S.; Ewing, R. Does Density Aggravate the COVID-19 Pandemic? Early Findings and Lessons for Planners. J. Am. Plan. Assoc. 2020, 86, 495–509. [Google Scholar] [CrossRef]
- Dye, C. Health and Urban Living. Science 2008, 319, 766–769. [Google Scholar] [CrossRef]
- Glaeser, E. Cities, Productivity, and Quality of Life. Science 2011, 333, 592–594. [Google Scholar] [CrossRef] [PubMed]
- Yeom, J.; Kang, S.; Ha, D.; Jung, J. The Impact of Urban Form on the Spread of Infectious Diseases: Focusing on COVID-19 Outbreak in the Seoul Metropolitan Area. J. Environ. Policy Adm. 2020, 28, 73–95. [Google Scholar] [CrossRef]
- Yang, J.; Song, H.; Kang, K.; Gwon, M.; Shin, H.-S. Metropolitan Sprawl Measures Using Multi-Facility Accessibility: A Case Study of Gwangju Metropolitan Area. J. Korean Urban Geogr. Soc. 2008, 21, 77–91. [Google Scholar] [CrossRef]
- Creutzig, F.; Lohrey, S.; Bai, X.; Baklanov, A.; Dawson, R.; Dhakal, S.; Lamb, W.F.; McPhearson, T.; Minx, J.C.; Munoz, E.; et al. Upscaling urban data science for global climate solutions. Glob. Sustain. 2019, 2, 1–25. [Google Scholar] [CrossRef]
- Gleeson, B. Critical commentary. The urban age: Paradox and prospect. Urban Stud. 2012, 49, 931–943. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: New York, NY, USA, 2015; Volume 3. [Google Scholar]
- Lundgren, L.W. Environmental Geology; Prentice Hall, Inc.: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Armson, D.; Stringer, P.; Ennos, A. The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK. Urban For. Urban Green. 2013, 12, 282–286. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Anderson, M.; Zhang, C.; Rötzer, T.; Pauleit, S. Comparing the infiltration potentials of soils beneath the canopies of two contrasting urban tree species. Urban For. Urban Green. 2019, 38, 22–32. [Google Scholar] [CrossRef]
- Schoener, G. Urban Runoff in the U.S. Southwest: Importance of Impervious Surfaces for Small-Storm Hydrology. J. Hydrol. Eng. 2018, 23, 05017033. [Google Scholar] [CrossRef]
- Brody, S.D.; Highfield, W.E.; Blessing, R.; Makino, T.; Shepard, C.C. Evaluating the effects of open space configurations in reducing flood damage along the Gulf of Mexico coast. Landsc. Urban Plan. 2017, 167, 225–231. [Google Scholar] [CrossRef]
- Kang, S.; Lee, D.; Jung, J. The Impact of Urban Development Patterns on Natural Disaster Damages. J. Environ. Policy Adm. 2019, 27, 189–210. [Google Scholar] [CrossRef]
- Irajifar, L.; Sipe, N.; Alizadeh, T. The impact of urban form on disaster resiliency: A case study of Brisbane and Ipswich, Australia. Int. J. Disaster Resil. Built Environ. 2016, 7, 259–275. [Google Scholar] [CrossRef]
- Sharifi, A. Resilient urban forms: A macro-scale analysis. Cities 2019, 85, 1–14. [Google Scholar] [CrossRef]
- Galster, G.; Hanson, R.; Ratcliffe, M.R.; Wolman, H.; Coleman, S.; Freihage, J. Wrestling Sprawl to the Ground: Defining and measuring an elusive concept. Hous. Policy Debate 2001, 12, 681–717. [Google Scholar] [CrossRef]
- Louf, R.; Barthelemy, M. How congestion shapes cities: From mobility patterns to scaling. Sci. Rep. 2015, 4, 5561. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.H. Changes in urban density: Its implications on the sustainable development of Australian cities. In Proceedings of the State of Australian Cities National Conference, Adelaide, Australia, 28–30 November 2007; pp. 720–739. [Google Scholar]
- Barros, M.T.L.; Brandão, J.L.B.; Silva, O.F.; Ono, S. The Impact of Urban Sprawl on Flood Risk Areas. Manag. Watersheds Hum. Nat. Impacts 2005, 1–12. [Google Scholar] [CrossRef]
- Mbow, C.; Diop, A.; Diaw, A.T.; Niang, C.I. Urban sprawl development and flooding at Yeumbeul suburb (Dakar-Senegal). Afr. J. Environ. Sci. Technol. 2008, 2, 075–088. [Google Scholar]
- Franci, F.; Mandanici, E.; Bitelli, G. Remote sensing analysis for flood risk management in urban sprawl contexts. Geomat. Nat. Hazards Risk 2014, 6, 583–599. [Google Scholar] [CrossRef]
- Faccini, F.; Luino, F.; Paliaga, G.; Sacchini, A.; Turconi, L.; de Jong, C. Role of rainfall intensity and urban sprawl in the 2014 flash flood in Genoa City, Bisagno catchment (Liguria, Italy). Appl. Geogr. 2018, 98, 224–241. [Google Scholar] [CrossRef]
- Devi, N.N.; Sridharan, B.; Kuiry, S.N. Impact of urban sprawl on future flooding in Chennai city, India. J. Hydrol. 2019, 574, 486–496. [Google Scholar] [CrossRef]
- Tsai, Y.-H. Quantifying Urban Form: Compactness versus ‘Sprawl’. Urban Stud. 2005, 42, 141–161. [Google Scholar] [CrossRef]
- Smith, D.M. Patterns in Human Geography; David and Charles: Newton Abbot, UK, 1975. [Google Scholar]
- Ha, S.K. Future tasks and challenges of urban planning and urban policy. J. Environ. Stud. 2013, 52, 19–26. [Google Scholar]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publishers: Boston, MA, USA, 1988. [Google Scholar]
- Lee, H.Y.; Shim, J.H. GIS Geographical Information; Bubmunsa: Seoul, Korea, 2011. [Google Scholar]
- Yoon, D.; Kang, J.E.; Brody, S.D. A measurement of community disaster resilience in Korea. J. Environ. Plan. Manag. 2015, 59, 436–460. [Google Scholar] [CrossRef]
- Jeong, S.; Yoon, D.K. Examining Vulnerability Factors to Natural Disasters with a Spatial Autoregressive Model: The Case of South Korea. Sustainability 2018, 10, 1651. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.E.; Lee, M.J.; Koo, Y.S.; Cho, Y.H. Development and Application of Green Infrastructure Planning Framework for Improving Urban Water Cycle: Focused on Yeonje-Gu and Nam-Gu in Busan. J. Environ. Policy Adm. 2014, 13, 43–73. [Google Scholar]
- Kim, Y.G.; Son, Y.H. Study on the Green Infrastructure Application with Planning System—Focused on Green Infrastructure Planning and Policy in the UK. J. Korea Plan. Assoc. 2012, 47, 69–86. [Google Scholar]
Towns Growing into Cities | City Expansion | City Densification | Total | |
---|---|---|---|---|
Population change (%) | ||||
1975–1990 | 23.9 | 26.4 | 49.7 | 100 |
1990–2000 | 18.3 | 29.3 | 52.4 | 100 |
2000–2015 | 15.5 | 24.8 | 59.7 | 100 |
Area change (%) | ||||
1975–1990 | 30.5 | 69.5 | 0.0 | 100 |
1990–2000 | 22.8 | 77.2 | 0.0 | 100 |
2000–2015 | 22.6 | 77.4 | 0.0 | 100 |
Data Type | Land Use Pattern of Galster et al. (2001) |
---|---|
City size and density | Density |
Degree of distribution | Centrality and concentration |
Degree of clustering | Clustering and nuclearity |
Data Type | Variables | Mean | SD | Min | Max |
---|---|---|---|---|---|
Flood damage | Flood damage | 746,736.4 | 1,382,617 | 947.4 | 10,705,164 |
Size and Density | Population Density | 1063.423 | 2485.485 | 19.76088 | 16,573.99 |
Area | 661,606,281.1 | 358,619,789.7 | 33,292,051 | 2,050,269,165 | |
Urban Area | 110,090,932.9 | 156,279,894.1 | 3,710,000 | 941,729,711.6 | |
Urban Density | 0.248858 | 0.314619 | 0.00533 | 1 | |
Distribution | Entropy Index | 0.095351 | 0.122145 | 0.010552 | 1.056198 |
Gini Index | 0.610305 | 0.157531 | 0.245934 | 0.871855 | |
Clustering | Moran’s I index | 0.078961 | 0.114103 | −0.13054 | 0.984742 |
Self-sufficiency | Tax Burden | 16,434.78 | 44,986.54 | 367.395 | 196,483.3 |
Precipitation | Precipitation | 1291.857 | 134.149 | 990.2328 | 1817.393 |
Data | Formula |
---|---|
Entropy Index | where is the population ratio of sub-area of I jurisdiction |
Gini Coefficient | where N is the number of sub-areas; is the proportion of land area in sub-area i; and is the proportion of population or employment in sub-area i |
Global Moran’s I index | where N is the number of sub-areas; is the weight of I, j sub-area; is the population of I sub-area; is the population of j sub-area; is average population |
Error Type | Test | Value & Prob |
---|---|---|
Normality | Jarque−Bera test | 568.62 *** |
Heteroskedasticity | Breusch−Pagan test | 249.84 *** |
Koenker−Bassett test | 49.64 *** | |
White test | 94.05 *** | |
Spatial Autocorrelation | Moran’s I (error) | 6.61 *** |
Lagrange Multiplier (lag) | 31.21 *** | |
Robust LM (lag) | 0.325 | |
Lagrange Multiplier (error) | 33.82 *** | |
Robust LM (error) | 2.94 * |
Data Type | Variables | OLS | SLM | SEM |
---|---|---|---|---|
Size & Density | Population Density | 146.712 ** | 149.961 ** | 130.922 ** |
Area | −0.00023 | −0.00016 | −0.0003 | |
Urban Area | 0.0044 *** | 0.0044 *** | 0.0046 *** | |
Urban Density | −1.99 × 106 ** | −2.16 × 106 *** | −2.24 × 106 *** | |
Distribution | Entropy Index | −1.67 × 106 * | −1.21 × 106 | −1.40 × 106 * |
Gini Index | 204753 | −382678 | −1.03E+06 | |
Clustering | Moran’s I index | −727719 | −814801 | −754333 |
Self-sufficiency | Tax Burden | −4.76012 * | −5.26298 ** | −7.25814 ** |
Precipitation | Precipitation | 2510.18 *** | 2226.49 *** | 2603.35 *** |
0.419966 *** | ||||
λ | 0.532659 *** | |||
Constant | −2.32 × 106 * | −1.99 × 106 * | −1.69 × 106 | |
0.239 | 0.363 | 0.403 | ||
Log likelihood | −2467.5 | −2456.28 | 2453.11 | |
AIC | 4955 | 4934.57 | 4926.23 | |
SC | 4985.75 | 4968.4 | 4956.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.; Yeom, J.; Jung, J. Urban Form and Natural Hazards: Exploring the Dual Aspect Concept of Urban Forms on Flood Damage. Sustainability 2021, 13, 9007. https://doi.org/10.3390/su13169007
Kang S, Yeom J, Jung J. Urban Form and Natural Hazards: Exploring the Dual Aspect Concept of Urban Forms on Flood Damage. Sustainability. 2021; 13(16):9007. https://doi.org/10.3390/su13169007
Chicago/Turabian StyleKang, Seungwon, Jaeweon Yeom, and Juchul Jung. 2021. "Urban Form and Natural Hazards: Exploring the Dual Aspect Concept of Urban Forms on Flood Damage" Sustainability 13, no. 16: 9007. https://doi.org/10.3390/su13169007
APA StyleKang, S., Yeom, J., & Jung, J. (2021). Urban Form and Natural Hazards: Exploring the Dual Aspect Concept of Urban Forms on Flood Damage. Sustainability, 13(16), 9007. https://doi.org/10.3390/su13169007