A Scientometric Review of Smart Construction Site in Construction Engineering and Management: Analysis and Visualization
Abstract
:1. Introduction
2. Data Collection and Research Methodology
2.1. Data Collection
2.2. Analysis of Publications
2.3. Research Methodology
3. Results
3.1. Research Collaboration Network
3.1.1. Co-Authorship
3.1.2. Network of Institution Analysis
3.1.3. Network of Co-Country/Region Analysis
3.2. Network of Subject Category and Keywords
3.3. Co-Citation Analysis
3.3.1. Author Co-Citation Network
3.3.2. Document Co-Citation Network
3.3.3. Journal Co-Citation Network
4. Discussion
4.1. Collaborations among Different Researchers/Institutions Are Not Close Enough
4.2. The Leading Authors and Journals Are Beginning to Emerge
4.3. Smart Construction Site Is More Than an Application of Technology in a Site
4.4. Management Concerns Due to the Implementation of a Smart Construction Site
4.5. Smart Construction Site Is Not Widely Acknowledged
4.6. Staff’s Involvement of Smart Construction Site
4.7. Improve Productivity and Management Performance Is the Objective
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Edirisinghe, R. Digital skin of the construction site. Eng. Constr. Archit. Manag. 2019, 26, 184–223. [Google Scholar] [CrossRef] [Green Version]
- McCabe, B.Y.; Hamledari, H.; Shahi, A.; Zangenh, P.; Azar, E.R. Roles, Benefits, and Challenges of Using UAVs for Indoor Smart Construction Applications. Comput. Civ. Eng. 2017, 2017, 349–357. [Google Scholar]
- Hammad, A.; Vahdatikhaki, F.; Zhang, C. Towards the smart construction site: Improving productivity and safety of construction projects using multi-agent systems, real-time simulation and automated machine control. In Proceedings of the 2012 Winter Simulation Conference (WSC), Berlin, Germany, 9–12 December 2012. [Google Scholar]
- Kim, S.-J.; Ok, H.; Kim, T.-H. Mobile App Development for Smart Construction Site Work Processing. In Proceedings of the 9th International Conference on Information Management and Engineering; Association for Computing Machinery: New York, NY, USA, 2017. [Google Scholar]
- Rossi, A.; Vila, Y.; Lusiani, F.; Barsotti, L.; Sani, L. Embedded smart sensor device in construction site machinery. Comput. Ind. 2019, 108, 12–20. [Google Scholar] [CrossRef]
- Jin, R.; Zou, Y.; Gidado, K.; Ashton, P.; Paiting, N. Scientometric analysis of BIM-based research in construction engineering and management. Eng. Constr. Archit. Manag. 2019, 26, 1750–1776. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; O’Brien, W.; Thomas, S. Impact of information technologies on performance: Cross study comparison. J. Constr. Eng. Manag. 2008, 134, 852–863. [Google Scholar] [CrossRef]
- Hwang, S. Ultra-wide band technology experiments for real-time prevention of tower crane collisions. Autom. Constr. 2012, 22, 545–553. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Autom. Constr. 2021, 122, 103517. [Google Scholar] [CrossRef]
- Jiang, W.; Ding, L.; Zhou, C. Cyber physical system for safety management in smart construction site. Eng. Constr. Archit. Manag. 2020, 28, 788–808. [Google Scholar] [CrossRef]
- Štefanič, M.; Stankovski, V. A review of technologies and applications for smart construction. Civil Eng. 2019, 172, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Kozlovska, M.; Klosova, D.; Strukova, Z. Impact of Industry 4.0 Platform on the Formation of Construction 4.0 Concept: A Literature Review. Sustainability 2021, 13, 2683. [Google Scholar] [CrossRef]
- Boton, C.; Rivest, L.; Ghnaya, O.; Chouchen, M. What is at the Root of Construction 4.0: A systematic review of the recent research effort. Arch. Comput. Methods Eng. 2021, 28, 2331–2350. [Google Scholar] [CrossRef]
- Newman, C.; Edwards, D.; Martek, I.; Lai, J.; Thwala, W.D.; Rillie, I. Industry 4.0 deployment in the construction industry: A bibliometric literature review and UK-based case study. Smart Sustain. Built. Environ. 2020. ahead-of-print. [Google Scholar] [CrossRef]
- Zabidin, N.S.; Belayutham, S.; Ibrahim, C.K.I.C. A bibliometric and scientometric mapping of Industry 4.0 in construction. J. Inf. Technol. Constr. 2020, 25, 287–307. [Google Scholar] [CrossRef]
- Li, X.; Yi, W.; Chi, H.; Wang, X.; Chan, A. A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Autom. Constr. 2018, 86, 150–162. [Google Scholar] [CrossRef]
- Alaloul, W.S.; Liew, M.S.; Zawawi, N.A.W.A.; Kennedy, I.B. Industrial Revolution 4.0 in the construction industry: Challenges and opportunities for stakeholders. Ain Shams Eng. J. 2020, 11, 225–230. [Google Scholar] [CrossRef]
- Mehta, B.S. Trouble in the Making? The Future of Manufacturing-Led Development; World Bank Publications: Washington, DC, USA, 2017. [Google Scholar]
- Sawhney, A.; Riley, M.; Irizarry, J. Construction 4.0: Introduction and Overview. In Construction 4.0; Routledge: London, UK, 2020; pp. 3–22. [Google Scholar]
- Martinez, P.; Ai-Hussein, M.; Ahmad, R. A scientometric analysis and critical review of computer vision applications for construction. Autom. Constr. 2019, 107, 102947. [Google Scholar] [CrossRef]
- El-Sayegh, S.; Romdhane, L.; Manjikian, S. A critical review of 3D printing in construction: Benefits, challenges, and risks. Arch. Civ. Mech. Eng. 2020, 20, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X. A scientometric review of global BIM research: Analysis and visualization. Autom. Constr. 2017, 80, 37–47. [Google Scholar] [CrossRef]
- Chen, C.; Rachael, D.; Meen, C. Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014). Expert Opin. Biol. Ther. 2014, 14, 1295–1317. [Google Scholar] [CrossRef] [Green Version]
- Olawumi, T.O.; Chan, D.W. A scientometric review of global research on sustainability and sustainable development. J. Clean. Prod. 2018, 183, 231–250. [Google Scholar] [CrossRef]
- Xue, J.; Shen, G.Q.; Yang, R.J.; Wu, H.; Li, X.; Lin, X.; Xue, F. Mapping the knowledge domain of stakeholder perspective studies in construction projects: A bibliometric approach. Int. J. Proj. Manag. 2020, 38, 313–326. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace: A Practical Guide for Mapping Scientific Literature; Nova Science Publishers: Hauppauge, NY, USA, 2016. [Google Scholar]
- Hjørland, B.; Albrechtsen, H. Toward a new horizon in information science: Domain-analysis. J. Am. Soc. Inf. Sci. 1995, 46, 400–425. [Google Scholar] [CrossRef]
- Katz, J.; Martin, B. What is Research Collaboration? Res. Policy 1997, 26, 1–18. [Google Scholar] [CrossRef]
- Wuchty, S.; Jones, S.; Uzzi, B. The Increasing Dominance of Teams in Production of Knowledge. Science 2007, 316, 1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Yu, Q.; Zheng, F.; Long, C.; Lu, Z.; Duan, Z. Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. J. Assoc. Inf. Sci. Technol. 2016, 67, 967–972. [Google Scholar] [CrossRef]
- Wei, F.; Zhang, G. A Document Co-Citation Analysis Method for Investigating Emerging Trends and New Developments: A Case of Twenty-Four Leading Business Journals; University of Boras: Boras, Sweden, 2020. [Google Scholar]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Teizer, J.; Allread, B.S.; Fullerton, C.E.; Hinze, J. Autonomous pro-active real-time construction worker and equipment operator proximity safety alert system. Autom. Constr. 2010, 19, 630–640. [Google Scholar] [CrossRef]
- Li, H.; Ma, Z.; Shen, Q.; Kong, S. Virtual experiment of innovative construction operations. Autom. Constr. 2003, 12, 561–575. [Google Scholar] [CrossRef]
- Golparvar-Fard, M.; Peña-Mora, F.; Savarese, S. Integrated Sequential As-Built and As-Planned Representation with D4AR Tools in Support of Decision-Making Tasks in the AEC/FM Industry. J. Constr. Eng. Manag. 2011, 137, 1099–1116. [Google Scholar] [CrossRef]
- Navon, R.; Berkovich, O. An automated model for materials management and control. Constr. Manag. Econ. 2006, 24, 635–646. [Google Scholar] [CrossRef]
- Cheng, T.; Teizer, J. Real-time resource location data collection and visualization technology for construction safety and activity monitoring applications. Autom. Constr. 2013, 34, 3–15. [Google Scholar] [CrossRef]
- Seo, J.; Han, S.H.; Lee, S.H.; Kim, H. Computer vision techniques for construction safety and health monitoring. Adv. Eng. Inform. 2015, 29, 239–251. [Google Scholar] [CrossRef]
- Cheng, T.; Venugopal, M.; Teizer, J.; Vela, P. Performance evaluation of ultra wideband technology for construction resource location tracking in harsh environments. Autom. Constr. 2011, 20, 1173–1184. [Google Scholar] [CrossRef]
- Ergen, E.; Akinci, B.; Sacks, R. Tracking and locating components in a precast storage yard utilizing radio frequency identification technology and GPS. Autom. Constr. 2007, 16, 354–367. [Google Scholar] [CrossRef]
- Song, J.; Haas, C.T.; Caldas, C.; Ergen, E.; Akinci, B. Automating the task of tracking the delivery and receipt of fabricated pipe spools in industrial projects. Autom. Constr. 2006, 15, 166–177. [Google Scholar] [CrossRef]
- Razavi, S.N.; Haas, C.T. Multisensor data fusion for on-site materials tracking in construction. Autom. Constr. 2010, 19, 1037–1046. [Google Scholar] [CrossRef]
- Jaselskis, E.J.; El-Misalami, T. Implementing Radio Frequency Identification in the Construction Process. J. Constr. Eng. Manag. 2003, 129, 680–688. [Google Scholar] [CrossRef]
- Yagi, J.; Ariai, E.; Arai, T. Parts and packets unification radio frequency identification (RFID) application for construction. Autom. Constr. 2005, 14, 477–490. [Google Scholar] [CrossRef]
- Gong, J.; Caldas, C.H. Computer Vision-Based Video Interpretation Model for Automated Productivity Analysis of Construction Operations. J. Comput. Civ. Eng. 2010, 24, 252–263. [Google Scholar] [CrossRef]
- Dimitrov, A.; Golparvar-Fard, M. Vision-based material recognition for automated monitoring of construction progress and generating building information modeling from unordered site image collections. Adv. Eng. Inform. 2014, 28, 37–49. [Google Scholar] [CrossRef]
- Fang, Q.; Li, H.; Luo, X.; Ding, L.; Luo, H.; Rose, T.; An, W. Detecting non-hardhat-use by a deep learning method from far-field surveillance videos. Autom. Constr. 2018, 85, 1–9. [Google Scholar] [CrossRef]
- Khoury, H.M.; Kamat, V.R. Evaluation of position tracking technologies for user localization in indoor construction environments. Autom. Constr. 2009, 18, 444–457. [Google Scholar] [CrossRef]
- Kanan, R.; Elhassan, O.; Bensalem, R. An IoT-based autonomous system for workers’ safety in construction sites with real-time alarming, monitoring, and positioning strategies. Autom. Constr. 2018, 88, 73–86. [Google Scholar] [CrossRef]
- Chen, C.; Ibekwe-Sanjuan, F.; Hou, J. The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef] [Green Version]
- Tang, P.; Huber, D.; Akinci, B.; Lipman, R.; Lytle, A. Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques. Autom. Constr. 2010, 19, 829–843. [Google Scholar] [CrossRef]
- Navon, R.; Sacks, R. Assessing research issues in Automated Project Performance Control (APPC). Autom. Constr. 2007, 16, 474–484. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Peng, Y.; Xue, F.; Fang, J.; Zou, W.; Luo, H.; Huang, G.Q. Prefabricated construction enabled by the Internet-of-Things. Autom. Constr. 2017, 76, 59–70. [Google Scholar] [CrossRef]
- Rose, K.H. A Guide to the Project Management Body of Knowledge (PMBOK ® Guide)–Fifth Edition. Proj. Manag. J. 2013, 3, e1. [Google Scholar] [CrossRef]
- Oesterreich, T.D.; Teuteberg, F. Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Comput. Ind. 2016, 83, 121–139. [Google Scholar] [CrossRef]
- Zhang, S.; Teizer, J.; Pradhananga, N.; Eastman, C.M. Workforce location tracking to model, visualize and analyze workspace requirements in building information models for construction safety planning. Autom. Constr. 2015, 60, 74–86. [Google Scholar] [CrossRef]
- Son, H.; Bosché, F.; Kim, C. As-built data acquisition and its use in production monitoring and automated layout of civil infrastructure. Adv. Eng. Inform. 2015, 29, 172–183. [Google Scholar] [CrossRef]
- Rousseeuw, P. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.; Teizer, J.; Migliaccio, G.C.; Gatti, U.C. Automated task-level activity analysis through fusion of real time location sensors and worker’s thoracic posture data. Autom. Constr. 2013, 29, 24–39. [Google Scholar] [CrossRef]
- Forcael, E.; Ferrari, I.; Opazo-Vega, A.; Pulido-Arcas, J.A. Construction 4.0: A Literature Review. Sustainability 2020, 12, 9755. [Google Scholar] [CrossRef]
- You, Z.; Feng, L. Integration of industry 4.0 related technologies in construction industry: A framework of cyber-physical system. IEEE Access 2020, 8, 122908–122922. [Google Scholar] [CrossRef]
- Liu, H.; Song, J.; Wang, G. Development of a tool for measuring building information modeling (BIM) user satisfaction–method selection, scale development and case study. Eng. Constr. Archit. Manag. 2020, 27, 2409–2427. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y.; Sun, C. Emerging information technology acceptance model for the development of smart construction system. J. Civ. Eng. Manag. 2018, 24, 457–468. [Google Scholar] [CrossRef]
- Ghasemi, P.S.P.; Chong, H.-Y. Pathways for the improvement of construction productivity: A perspective on the adoption of advanced techniques. Adv. Civ. Eng. 2020, 5170759. [Google Scholar] [CrossRef]
No. | Centrality | Institutions | No. | Centrality | Institutions |
---|---|---|---|---|---|
1 | 0.11 | Hong Kong Polytech Univ | 7 | 0.04 | Purdue Univ |
2 | 0.06 | Curtin Univ | 8 | 0.03 | Dalian Univ Technol |
3 | 0.06 | Harbin Inst Technol | 9 | 0.03 | Guangzhou Univ |
4 | 0.05 | Tsinghua Univ | 10 | 0.03 | Tongji Univ |
5 | 0.04 | City Univ Hong Kong | 11 | 0.03 | Univ Illinois |
6 | 0.04 | Georgia Inst Technol | 12 | 0.03 | Univ Texas Austin |
Cluster ID | Size | Silhouette | Label (LLR) | Mean (Year) | Representative Documents |
---|---|---|---|---|---|
0 | 81 | 0.900 | Performance evaluation | 2008 | [51] |
1 | 70 | 0.926 | Construction worker | 2014 | [38] |
2 | 58 | 0.854 | Information technologies | 2012 | [37] |
3 | 56 | 0.909 | Worker safety | 2015 | [39] |
4 | 52 | 0.892 | Building information modelling education | 2011 | [40] |
5 | 28 | 0.980 | Virtual reality | 2017 | [16] |
6 | 25 | 0.996 | Flexibility approach | 2006 | [52] |
7 | 25 | 0.988 | Hybrid information | 2004 | [41] |
8 | 21 | 0.957 | On-site assembly process | 2016 | [53] |
9 | 18 | 0.985 | Measuring project management performance | 2013 | [54] |
10 | 14 | 0.994 | Hazardous pollutant | 2017 | [55] |
16 | 9 | 0.982 | IOT technologies | 2016 | [56] |
33 | 5 | 0.996 | 3D reconstruction | 2014 | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Song, J.; Wang, G. A Scientometric Review of Smart Construction Site in Construction Engineering and Management: Analysis and Visualization. Sustainability 2021, 13, 8860. https://doi.org/10.3390/su13168860
Liu H, Song J, Wang G. A Scientometric Review of Smart Construction Site in Construction Engineering and Management: Analysis and Visualization. Sustainability. 2021; 13(16):8860. https://doi.org/10.3390/su13168860
Chicago/Turabian StyleLiu, Honglei, Jiule Song, and Guangbin Wang. 2021. "A Scientometric Review of Smart Construction Site in Construction Engineering and Management: Analysis and Visualization" Sustainability 13, no. 16: 8860. https://doi.org/10.3390/su13168860
APA StyleLiu, H., Song, J., & Wang, G. (2021). A Scientometric Review of Smart Construction Site in Construction Engineering and Management: Analysis and Visualization. Sustainability, 13(16), 8860. https://doi.org/10.3390/su13168860