A Win–Win Scenario for Agricultural Green Development and Farmers’ Agricultural Income: An Empirical Analysis Based on the EKC Hypothesis
Abstract
:1. Introduction
2. Literature Review
3. Methods, Indicators, and Data
3.1. Methods for Determining Agricultural Energy Consumption and ECR-GHG Emissions
3.2. Methods for Determining Agricultural GTFP
3.3. Methods for Determining the EKC Relating Agricultural GTFP and Agricultural Income
3.4. Indicators and Data
4. Empirical Analysis Results for Agricultural GTFP
4.1. Analysis of the Overall Agricultural GTFP
4.2. Analysis of the Regional Agricultural GTFP
4.3. Analysis of the Provincial Agricultural GTFP
5. Analysis of Empirical Results of the EKC
5.1. Analysis of the Overall EKC
5.2. Analysis of the Regional EKC
6. Discussion
7. Conclusions and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Year | Northeastern | Eastern | Central | Western | China | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GTFP | GEC | GTC | GTFP | GEC | GTC | GTFP | GEC | GTC | GTFP | GEC | GTC | GTFP | GEC | GTC | |
2001 | 1.18 | −4.95 | 6.61 | 3.74 | −0.24 | 4.25 | −1.28 | −4.30 | 3.16 | −0.07 | −1.63 | 1.65 | 0.89 | −2.78 | 3.92 |
2002 | 4.25 | −0.04 | 4.33 | 6.23 | −0.12 | 6.61 | 1.61 | −0.95 | 2.59 | 1.52 | −0.67 | 2.31 | 3.40 | −0.44 | 3.96 |
2003 | 4.17 | −5.12 | 10.22 | 6.87 | −0.66 | 8.18 | 1.69 | −2.30 | 4.10 | 1.83 | −0.90 | 2.90 | 3.64 | −2.24 | 6.35 |
2004 | 3.11 | 1.25 | 3.01 | 7.68 | 0.81 | 7.10 | 2.44 | −1.04 | 3.54 | 2.61 | 0.24 | 2.48 | 3.96 | 0.32 | 4.03 |
2005 | 6.49 | 2.00 | 5.04 | 6.26 | 1.97 | 4.67 | 2.95 | −0.11 | 3.14 | 2.73 | 0.93 | 1.92 | 4.61 | 1.20 | 3.69 |
2006 | 7.35 | 3.80 | 3.91 | 2.70 | 1.84 | 1.31 | 1.68 | −0.46 | 2.27 | 2.05 | 1.06 | 1.16 | 3.45 | 1.56 | 2.16 |
2007 | 6.90 | 2.03 | 5.54 | 4.62 | 1.45 | 3.88 | 4.80 | −2.32 | 7.37 | 2.94 | −0.08 | 3.20 | 4.82 | 0.27 | 5.00 |
2008 | 12.98 | 3.42 | 9.87 | 7.04 | 0.91 | 6.54 | 3.96 | −3.19 | 7.71 | 4.49 | 0.04 | 4.69 | 7.12 | 0.30 | 7.20 |
2009 | 8.20 | 0.88 | 8.00 | 6.74 | −0.64 | 7.80 | 2.90 | −3.89 | 7.43 | 4.74 | 0.81 | 4.18 | 5.65 | −0.71 | 6.85 |
2010 | 12.97 | 4.62 | 8.68 | 9.68 | 1.73 | 8.33 | 4.23 | −2.34 | 7.06 | 4.22 | 0.27 | 4.10 | 7.78 | 1.07 | 7.04 |
2011 | 17.74 | 4.48 | 13.20 | 10.65 | 2.17 | 8.77 | 5.13 | −2.35 | 8.00 | 3.98 | −0.24 | 4.43 | 9.38 | 1.02 | 8.60 |
2012 | 20.87 | 6.26 | 14.37 | 12.00 | 4.04 | 8.16 | 5.91 | −2.45 | 8.87 | 4.46 | −1.68 | 6.31 | 10.81 | 1.54 | 9.43 |
2013 | 25.62 | 7.79 | 17.09 | 14.70 | 5.01 | 9.82 | 6.05 | −2.75 | 9.44 | 5.61 | −1.26 | 7.00 | 13.00 | 2.20 | 10.84 |
2014 | 25.41 | 7.06 | 17.59 | 17.83 | 3.86 | 13.87 | 11.18 | −1.00 | 12.38 | 6.92 | −1.21 | 8.29 | 15.34 | 2.18 | 13.03 |
2015 | 29.53 | 7.33 | 20.99 | 17.95 | 3.83 | 13.85 | 10.21 | −0.63 | 11.18 | 6.83 | −1.04 | 8.04 | 16.13 | 2.37 | 13.52 |
2016 | 31.36 | 5.46 | 24.82 | 22.16 | 3.70 | 18.03 | 11.48 | −1.06 | 12.93 | 9.11 | −0.57 | 9.83 | 18.53 | 1.88 | 16.4 |
2017 | 23.59 | −1.22 | 25.27 | 24.55 | 3.56 | 20.53 | 14.11 | −0.97 | 15.43 | 11.19 | 0.66 | 10.75 | 18.36 | 0.51 | 18.00 |
2018 | 24.12 | −4.98 | 30.76 | 26.39 | 3.61 | 22.25 | 16.49 | −1.18 | 18.11 | 15.45 | 0.45 | 15.01 | 20.61 | −0.52 | 21.53 |
Region | GTFP | GEC | GTC | ||||||
---|---|---|---|---|---|---|---|---|---|
2001 | 2010 | 2018 | 2001 | 2010 | 2018 | 2001 | 2010 | 2018 | |
Liaoning (LN) | 1.0239 | 1.1304 | 1.2613 | 0.9042 | 1.0002 | 0.8992 | 1.1324 | 1.1303 | 1.4027 |
Jilin (JL) | 1.0038 | 1.1090 | 1.1322 | 0.9778 | 1.1578 | 0.9198 | 1.0265 | 0.9575 | 1.2305 |
Heilongjiang (HLJ) | 1.0078 | 1.1497 | 1.3301 | 0.9695 | 0.9807 | 1.0315 | 1.0395 | 1.1725 | 1.2895 |
Beijing (BJ) | 1.0678 | 0.9869 | 1.1663 | 1.0000 | 1.0000 | 1.0000 | 1.0678 | 0.9869 | 1.1663 |
Tianjin (TJ) | 1.1241 | 1.1241 | 1.1241 | 1.0000 | 1.0000 | 1.0000 | 1.1241 | 1.1241 | 1.1241 |
Hebei (HEB) | 1.0179 | 1.0484 | 1.2712 | 0.9703 | 1.0137 | 0.9957 | 1.0490 | 1.0342 | 1.2769 |
Shanghai (SH) | 1.0809 | 1.4345 | 1.2925 | 1.0000 | 1.0000 | 1.0000 | 1.0809 | 1.4346 | 1.2926 |
Jiangsu (JS) | 1.0299 | 1.1895 | 1.4947 | 1.0364 | 1.2202 | 1.3281 | 0.9937 | 0.9749 | 1.1255 |
Zhejiang (ZJ) | 1.0012 | 1.0571 | 1.4396 | 1.1256 | 1.1258 | 1.1258 | 0.8895 | 0.9391 | 1.2790 |
Fujian (FJ) | 1.0113 | 1.0425 | 1.3258 | 1.0000 | 0.8956 | 1.0001 | 1.0113 | 1.1641 | 1.3258 |
Shandong (SD) | 0.9932 | 1.1016 | 1.2629 | 0.9309 | 1.0000 | 1.0000 | 1.0670 | 1.1016 | 1.2629 |
Guangdong (GD) | 0.9850 | 1.0085 | 1.1308 | 0.9128 | 0.9180 | 0.9116 | 1.0790 | 1.0983 | 1.2399 |
Hainan (HN) | 1.0627 | 0.9747 | 1.1315 | 1.0000 | 1.0000 | 1.0000 | 1.0627 | 0.9747 | 1.1315 |
Shanxi (SX) | 0.9331 | 0.9460 | 1.0210 | 0.9109 | 0.8380 | 0.8344 | 1.0244 | 1.1293 | 1.2242 |
Anhui (AH) | 0.9868 | 1.0240 | 1.1110 | 0.9502 | 0.9362 | 0.9379 | 1.0385 | 1.0937 | 1.1845 |
Jiangxi (JX) | 1.0105 | 1.0436 | 1.2114 | 0.9738 | 1.0427 | 1.0825 | 1.0377 | 1.0010 | 1.1193 |
Henan (HEN) | 0.9688 | 1.1748 | 1.3225 | 0.9731 | 1.0954 | 1.0954 | 0.9956 | 1.0727 | 1.2076 |
Hubei (HUB) | 1.0155 | 1.0206 | 1.1824 | 0.9661 | 0.9186 | 0.9642 | 1.0512 | 1.1112 | 1.2265 |
Hunan (HUN) | 1.0086 | 1.0446 | 1.1410 | 0.9678 | 1.0285 | 1.0145 | 1.0422 | 1.0156 | 1.1247 |
Inner Mongolia (INN) | 0.9890 | 1.0519 | 1.2361 | 0.9526 | 1.0094 | 1.0482 | 1.0382 | 1.042 2 | 1.1794 |
Guangxi (GX) | 1.0265 | 1.0915 | 1.1629 | 1.0000 | 1.0000 | 1.0000 | 1.0265 | 1.0915 | 1.1629 |
Chongqing (CQ) | 0.9582 | 1.0855 | 1.1238 | 1.0000 | 1.0000 | 1.0000 | 0.9582 | 1.0855 | 1.1238 |
Sichuan (SC) | 0.9915 | 1.1005 | 1.2404 | 0.9713 | 1.0304 | 0.9917 | 1.0208 | 1.0681 | 1.2509 |
Guizhou (GZ) | 1.0025 | 1.0510 | 1.3079 | 0.9179 | 0.9051 | 1.0000 | 1.0921 | 1.1613 | 1.3077 |
Yunnan (YN) | 0.9978 | 0.9860 | 1.1462 | 0.9739 | 0.9065 | 0.9524 | 1.0246 | 1.0877 | 1.2033 |
Tibet (XZ) | 0.9681 | 0.8421 | 0.9413 | 1.0000 | 0.9519 | 0.9050 | 0.9681 | 0.8847 | 1.0401 |
Shaanxi (SAX) | 1.0063 | 1.0856 | 1.1444 | 0.9954 | 1.0436 | 1.0089 | 1.0110 | 1.0403 | 1.1342 |
Gansu (GS) | 1.0059 | 1.0031 | 1.0990 | 0.9877 | 0.9912 | 1.0134 | 1.0185 | 1.0122 | 1.0843 |
Qinghai (QH) | 1.0437 | 1.0877 | 1.2008 | 1.0325 | 1.1312 | 1.1277 | 1.0109 | 0.9615 | 1.0647 |
Ningxia (NX) | 1.0035 | 1.0370 | 1.1394 | 0.9869 | 1.0269 | 1.0583 | 1.0169 | 1.0099 | 1.0770 |
Xinjiang (XJ) | 0.9984 | 1.0846 | 1.1121 | 0.9864 | 1.0360 | 0.9479 | 1.0121 | 1.0468 | 1.1729 |
Explained Variable | (19) | (20) | (21) | (22) | |
---|---|---|---|---|---|
Explanatory Variable | GTFP | CD | GTFP | GTFP | |
PALF | −0.716 *** (0.042) | −8.964 *** (0.282) | −0.282 *** (0.066) | ||
CD | 0.048 *** (0.006) | 0.069 *** (0.004) | |||
Constant | 1.365 *** (0.017) | 12.653 *** (0.115) | 0.753 *** (0.077) | 0.456 *** (0.033) | |
R-squared | 0.3473 | 0.6454 | 0.4175 | 0.3984 | |
Obs | 589 | 589 | 589 | 589 | |
N | 31 | 31 | 31 | 31 |
References
- Food and Agriculture Organization (FAO). Climate Change, Agriculture and Food Security; Food and Agirculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Olivier, J.G.J.; Peters, J.A.H.W. Trends in Global CO2 and Total Greenhouse Gas Emissions; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2020. [Google Scholar]
- World Bank Data. Available online: https://data.worldbank.org/indicator/AG.LND.ARBL.HA.PC?end=2016&start=1961 (accessed on 1 July 2020).
- Yuan, S.; Peng, S. Trends in the economic return on energy use and energy use efficiency in China’s crop production. Renew. Sustain. Energy Rev. 2017, 70, 836–844. [Google Scholar] [CrossRef]
- Xu, Z.; Tang, Y.; Connor, T.; Li, D.; Li, Y.; Liu, J. Climate variability and trends at a national scale. Sci. Rep. 2017, 7, 3258. [Google Scholar] [CrossRef]
- Mallapaty, S. How China could be carbon neutral by mid-century. Nature 2020, 586, 482–483. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, J.; Zeng, H.; Zhang, T.; Chen, X. How does soil pollution risk perception affect farmers’ pro-environmental behavior? The role of income level. J. Environ. Manag. 2020, 270, 110806. [Google Scholar] [CrossRef] [PubMed]
- China Economic Net. Available online: http://paper.ce.cn/jjrb/html/2020-07/13/content_423397.htm (accessed on 13 July 2020).
- Li, M.; Wang, J.; Zhao, P.; Chen, K.; Wu, L. Factors affecting the willingness of agricultural green production from the perspective of farmers’ perceptions. Sci. Total Environ. 2020, 738, 140289. [Google Scholar] [CrossRef]
- Al-Amin, A.K.M.A.; Hossain, M.J. Impact of non-farm income on welfare in rural Bangladesh: Multilevel mixed-effects regression approach. World Dev. Perspect. 2019, 13, 95–102. [Google Scholar] [CrossRef]
- Van Wesenbeeck, C.F.A.; Keyzer, M.A.; van Veen, W.C.M.; Qiu, H. Can China’s overuse of fertilizer be reduced without threatening food security and farm incomes? Agric. Syst. 2021, 190, 103093. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental impacts of a north American free trade agreement. CEPR Discuss. Papers 1992, 8, 223–250. [Google Scholar]
- Liu, X.; Zhang, S.; Bae, J. The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries. J. Clean. Prod. 2017, 164, 1239–1247. [Google Scholar] [CrossRef]
- Ridzuan, N.H.A.M.; Marwan, N.F.; Khalid, N.; Ali, M.H.; Tseng, M.-L. Effects of agriculture, renewable energy, and economic growth on carbon dioxide emissions: Evidence of the environmental Kuznets curve. Resour. Conserv. Recycl. 2020, 160, 104879. [Google Scholar] [CrossRef]
- Haider, A.; Bashir, A.; Husnain, M.I.U. Impact of agricultural land use and economic growth on nitrous oxide emissions: Evidence from developed and developing countries. Sci. Total Environ. 2020, 741, 140421. [Google Scholar] [CrossRef]
- Luo, J.; Du, P.; Samat, A.; Xia, J.; Che, M.; Xue, Z. Spatiotemporal pattern of PM2.5 concentrations in mainland China and analysis of its influencing factors using geographically weighted regression. Sci. Rep. 2017, 7, 40607. [Google Scholar] [CrossRef] [PubMed]
- Awaworyi Churchill, S.; Inekwe, J.; Ivanovski, K.; Smyth, R. The environmental Kuznets curve in the OECD: 1870–2014. Energy Econ. 2018, 75, 389–399. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Changes in urban air quality during urbanization in China. J. Clean. Prod. 2018, 188, 312–321. [Google Scholar] [CrossRef]
- Rashid Gill, A.; Viswanathan, K.K.; Hassan, S. The environmental Kuznets curve (EKC) and the environmental problem of the day. Renew. Sustain. Energy Rev. 2018, 81, 1636–1642. [Google Scholar] [CrossRef]
- Guo, H.; Liu, X. Time-space evolution of China’s agricultural green total factor productivity. Chin. J. Manag. Sci. 2020, 28, 66–75. [Google Scholar]
- Zaim, O.; Taskin, F. A Kuznets curve in environmental efficiency: An application on OECD countries. Environ. Resour. Econ. 2000, 17, 21–36. [Google Scholar] [CrossRef]
- Solow, R.M. Technical change and the aggregate production function. Rev. Econ. Stat. 1957, 39, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Baležentis, T.; Ferrier, G.D. Agricultural productivity evolution in China: A generalized decomposition of the Luenberger-Hicks-Moorsteen productivity indicator. China Econ. Rev. 2019, 57, 101315. [Google Scholar] [CrossRef]
- Yan, Q.; Yin, J.; Baležentis, T.; Makutėnienė, D.; Štreimikienė, D. Energy-related GHG emission in agriculture of the European countries: An application of the Generalized Divisia Index. J. Clean. Prod. 2017, 164, 686–694. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Zhang, X.; Yu, X.; Zou, Z. The increasing effects in energy and GHG emission caused by groundwater level declines in north China’s main food production plain. Agric. Water Manag. 2018, 203, 138–150. [Google Scholar] [CrossRef]
- Ma, X.; Wang, C.; Dong, B.; Gu, G.; Chen, R.; Li, Y.; Zou, H.; Zhang, W.; Li, Q. Carbon emissions from energy consumption in China: Its measurement and driving factors. Sci. Total Environ. 2019, 648, 1411–1420. [Google Scholar] [CrossRef]
- Li, M.; Fu, Q.; Singh, V.P.; Liu, D.; Li, T. Stochastic multi-objective modeling for optimization of water-food-energy nexus of irrigated agriculture. Agric. Water Manag. 2019, 127, 209–224. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, W.; Liu, G.; Ding, Y.; Cao, X.; Chen, D.; Engel, B.A. Towards quantification of the national water footprint in rice production of China: A first assessment from the perspectives of single-double rice. Sci. Total Environ. 2020, 739, 140032. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). The State of Food and Agriculture 2020. Overcoming Water Challenges in Agriculture; Food and Agriculture Organization (FAO): Rome, Italy, 2020. [Google Scholar]
- Chen, J.; Cheng, S.; Song, M. Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013. Renew. Sustain. Energy Rev. 2018, 94, 748–761. [Google Scholar] [CrossRef]
- Wang, G.; Qian, L. Grain security strategy in the 70 years since the founding of new China: Evolution path and internal logic. Chin. Rural Econ. 2019, 9, 15–29. [Google Scholar]
- Zhang, X.; Pan, H.; Cao, J.; Li, J. Energy consumption of China’s crop production system and the related emissions. Renew. Sustain. Energy Rev. 2015, 43, 111–125. [Google Scholar] [CrossRef]
- Zhen, W.; Qin, Q.; Wei, Y.-M. Spatio-temporal patterns of energy consumption-related GHG emissions in China’s crop production systems. Energy Policy 2017, 104, 274–284. [Google Scholar] [CrossRef]
- Yin, J.; Gao, Z.; Zhang, B.; Zheng, Y. A study of the energy conversion system in farming. J. Shanxi Agric. Univ. Nat. Sci. Ed. 1998, 2, 95–98. [Google Scholar]
- Xu, J. A Study on the Energy Use and Energy Efficiency of Grain Production: Empirical Analyse Based on DEA; Zhejiang University: Hangzhou, China, 2011. [Google Scholar]
- Hu, L.; Niu, S.; Ma, L.; Zhang, X.; Ding, Y. Relationship between agricultural energy consumption and economic growth based on panel data model in China. Trans. CSAE 2011, 27, 1–6. [Google Scholar]
- Wang, J.; Rothausen, S.G.S.A.; Conway, D.; Zhang, L.; Xiong, W.; Holman, I.P.; Li, Y. China’s water-energy nexus: Greenhouse-gas emissions from groundwater use for agriculture. Environ. Res. Lett. 2012, 7. [Google Scholar] [CrossRef]
- Department of Energy Statistics, National Bureau of Statistics. The China Energy Statistics Yearbook; China Statistics Press: Beijing, China, 2018. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Greenhouse Gas Inventory: 2006 IPCC Guidelines for National Greenhouse Gas Inventories; United Kingdom Meteorological Office: Bracknell, UK, 2006. [Google Scholar]
- Yuan, B.; Lie, Z.; Di, X.; Zuo, T. Life cycle inventories of fossil fuels in China (II): Final life cycle inventories. Mod. Chem. Ind. 2006, 4, 59–61. [Google Scholar]
- Kaltsas, A.M.; Mamolos, A.P.; Tsatsarelis, C.A.; Nanos, G.D.; Kalburtji, K.L. Energy budget in organic and conventional olive groves. Agric. Ecosyst. Environ. 2007, 122, 243–251. [Google Scholar] [CrossRef]
- Zhi, J.; Gao, J. Analysis of carbon emission caused by food consumption in urban and rural inhabitants in China. Prog. Geogr. 2009, 28, 429–434. [Google Scholar]
- Tian, Y.; Li, B.; Li, J. Research on stage characteristics and factor decomposition of cultivated land carbon emission in China. J. China Univ. Geosci. Soc. Sci. Ed. 2011, 11, 59–63. [Google Scholar]
- Liu, Z.; Xin, L. Has China’s Belt and Road Initiative promoted its green total factor productivity? Evidence from primary provinces along the route. Energy Policy 2019, 129, 360–369. [Google Scholar] [CrossRef]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Oh, D.-H. A global Malmquist-Luenberger productivity index. J. Prod. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Introductory Econometrics: A Modern Approach, 6th ed.; Cengage Learning: Boston, MA, USA, 2016. [Google Scholar]
- Jiang, Y.; Wang, H.; Liu, Z. The impact of the free trade zone on green total factor productivity: Evidence from the Shanghai pilot free trade zone. Energy Policy 2021, 148, 112000. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, G.; Zhang, J. The estimation of China’s provincial capital stock: 1952–2000. Econ. Res. J. 2004, 10, 35–44. [Google Scholar]
- Zong, Z.; Liao, Z. Estimates of fixed capital stock by sector and region: 1978–2011. J. Guizhou Univ. Financ. Econ. 2014, 3, 8–16. [Google Scholar]
- Hausman, J.A. Specification tests in econometrics. Econometrica 1978, 46, 1251–1271. [Google Scholar] [CrossRef] [Green Version]
- Shuai, S.; Fan, Z. Modeling the role of environmental regulations in regional green economy efficiency of China: Empirical evidence from super efficiency DEA-Tobit model. J. Environ. Manag. 2020, 261, 110227. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. Environmentally sensitive productivity growth: A global analysis using Malmquist–Luenberger index. Ecol. Econ. 2006, 56, 280–293. [Google Scholar] [CrossRef]
- Choi, Y.; Oh, D.-H.; Zhang, N. Environmentally sensitive productivity growth and its decompositions in China: A metafrontier Malmquist-Luenberger productivity index approach. Empir. Econ. 2015, 49, 1017–1043. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, C. What drives the fluctuations of “green” productivity in China’s agricultural sector? A weighted Russell directional distance approach. Resour. Conserv. Recycl. 2019, 147, 201–213. [Google Scholar] [CrossRef]
- Trujillo-Barrera, A.; Pennings, J.M.E.; Hofenk, D. Understanding producers’ motives for adopting sustainable practices: The role of expected rewards, risk perception and risk tolerance. Eur. Rev. Agric. Econ. 2016, 43, 359–382. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Ding, J.; Wang, J.; Zhang, B.; Zhang, L. Key factors affecting the adoption willingness, behavior, and willingness-behavior consistency of farmers regarding photovoltaic agriculture in China. Energy Policy 2021, 149, 112101. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Q.; Wang, X.; Yu, M. Spatially differentiated trends in urbanization, agricultural land abandonment and reclamation, and woodland recovery in Northern China. Sci. Rep. 2016, 6, 37658. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.; Ye, B. Analyses of mediating effects: The development of methods and models. Adv. Psychol. Sci. 2014, 22, 731–745. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Zhou, X. Agricultural mechanization, labor transfer and the growth of farmer’s income: A re-examination of causality. Chin. Rural Econ. 2018, 11, 112–127. [Google Scholar]
- Adetutu, M.O.; Ajayi, V. The impact of domestic and foreign R&D on agricultural productivity in sub-Saharan Africa. World Dev. 2020, 125, 104690. [Google Scholar]
- Yang, Z.; Cai, J.; Qi, W.; Liu, S.; Deng, Y. The Influence of income, lifestyle, and green spaces on interregional migration: Policy implications for China. Popul. Space Place 2017, 23, e1996. [Google Scholar] [CrossRef]
- Xu, B.; Chen, W.; Zhang, G.; Wang, J.; Ping, W.; Luo, L.; Chen, J. How to achieve green growth in China’s agricultural sector. J. Clean. Prod. 2020, 271, 122770. [Google Scholar] [CrossRef]
- Zhan, J.; Xu, Y. Environmental regulation, agricultural green TFP and grain security. China Popul. Resour. Environ. 2019, 29, 167–176. [Google Scholar]
- Wang, X.; Shen, Y. The effect of China’s agricultural tax abolition on rural families’ incomes and production. China Econ. Rev. 2014, 29, 185–199. [Google Scholar] [CrossRef]
- Li, Z.; Jin, M.; Cheng, J. Economic growth of green agriculture and its influencing factors in China: Based on emergy theory and spatial econometric model. Environ. Dev. Sustain. 2021. [Google Scholar] [CrossRef]
- Xu, C.; Holly Wang, H.; Shi, Q. Farmers’ income and production responses to rural taxation reform in three regions in China. J. Agric. Econ. 2012, 63, 291–309. [Google Scholar] [CrossRef]
Control Variable | Symbol | Description |
---|---|---|
Industrial structure | IS | The proportion of the added value of the secondary and tertiary industries to regional GDP. |
Proportion of agricultural labor force | PALF | The proportion of agricultural labor force to the total labor force. |
Capital deepening | CD | The logarithm of the proportion of agricultural real capital stock to the agricultural labor force; the calculation of agricultural real capital stock is based on Zhang et al., (2004) [50] and Zong et al., (2014) [51]. |
Educational level | EL | The proportion of the population with a high school degree and above among the population aged 6 years and above to total population. |
R&D | RD | The proportion of R&D internal expenditure to regional GDP. |
Governmental financial support | GFS | The proportion of agricultural financial expenditure to total financial expenditure. |
Relative price | RP | The proportion of the price index of agricultural means of production to the price index of agricultural products. |
Environmental regulation | ER | The number of environmental regulations issued. |
Agriculture tax | AT | A dummy variable—the timing of the abolition of agricultural tax varies from province to province. When the agricultural tax was completely abolished, AT = 1; otherwise, AT = 0. |
External dependence | ED | The proportion of total import and export of agriculture products to regional GDP. |
Natural disaster ratio | NDR | The proportion of sown area affected by natural disaster to the total sown area of agriculture products. |
Indicator | Description | |
---|---|---|
Input | Energy | Direct and indirect energy consumption |
Water | Water for irrigation | |
Land | Sown area of agriculture products | |
Labor | Agricultural labor force | |
Desirable output | Agricultural products | Output of agricultural products |
Added value of agriculture | Added value of agriculture (reference year: 2000) | |
Undesirable output | ECR-GHG | Direct and indirect ECR-GHG emissions |
Variable | Unit | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|
Energy | 104 tce | 589 | 4170.025 | 3473.415 | 88.010 | 14,690.959 |
Water | 108 m3 | 589 | 734.812 | 561.307 | 36.390 | 2681.190 |
Land | 104 hm2 | 589 | 399.283 | 306.031 | 9.604 | 1329.025 |
Labor | 104 people | 589 | 120.044 | 100.031 | 4.200 | 561.750 |
Agricultural products | 104 t | 589 | 513.067 | 370.701 | 10.379 | 1490.272 |
Added value of agriculture | 108 CNY | 589 | 968.570 | 739.538 | 37.090 | 3564.000 |
ECR-GHG | 104 t CO2 eq | 589 | 2369.603 | 1795.009 | 49.902 | 7757.566 |
Agriculture GTFP | 1 | 589 | 1.078 | 0.106 | 0.782 | 1.495 |
Agricultural income per capita | CNY | 589 | 2645.844 | 1441.147 | 544.510 | 7579.670 |
Industrial structure | 1 | 589 | 0.878 | 0.065 | 0.635 | 0.997 |
Proportion of agricultural labor force | 1 | 589 | 0.401 | 0.160 | 0.030 | 0.883 |
Capital deepening | CNY per person | 589 | 13,366.334 | 15,168.976 | 868.504 | 140,739.980 |
Educational level | 1 | 589 | 0.241 | 0.104 | 0.029 | 0.686 |
R&D | 1 | 589 | 1.282 | 1.058 | 0.140 | 6.170 |
Governmental financial support | 1 | 589 | 0.096 | 0.035 | 0.021 | 0.190 |
Relative price | 1 | 589 | 0.712 | 0.117 | 0.392 | 1.000 |
Environmental regulation | 1 | 589 | 1.003 | 1.717 | 0.000 | 18.000 |
Agriculture tax | 1 | 589 | 0.745 | 0.436 | 0.000 | 1.000 |
External dependence | 1 | 589 | 0.014 | 0.014 | 0.001 | 0.091 |
Natural disaster ratio | 1 | 589 | 0.241 | 0.161 | 0.000 | 0.936 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
FE | RE | Tobit | FE | RE | Tobit | |
AIPC | −1.354 *** (0.139) | −1.403 *** (0.138) | −1.398 *** (0.138) | −1.442 *** (0.144) | −1.458 *** (0.141) | −1.450 *** (0.139) |
AIPC2 | 0.094 *** (0.009) | 0.097 *** (0.009) | 0.097 *** (0.009) | 0.094 *** (0.009) | 0.095 *** (0.009) | 0.095 *** (0.009) |
IS | −0.566 *** (0.133) | −0.538 *** (0.117) | −0.558 *** (0.119) | |||
PALF | −0.281 *** (0.077) | −0.245 *** (0.066) | −0.252 *** (0.067) | |||
CD | 0.028 *** (0.008) | 0.022 *** (0.008) | 0.024 *** (0.008) | |||
EL | −0.030 (0.105) | −0.026 (0.097) | −0.035 (0.097) | |||
RD | 0.031 *** (0.010) | 0.023 *** (0.009) | 0.025 *** (0.009) | |||
GFS | 0.011 (0.150) | 0.024 (0.144) | 0.022 (0.143) | |||
RP | −0.089 ** (0.036) | −0.084 ** (0.035) | −0.087 ** (0.034) | |||
ER | 0.003 * (0.002) | 0.003 * (0.002) | 0.003 * (0.001) | |||
AT | 0.015 * (0.008) | 0.018 ** (0.008) | 0.017 ** (0.008) | |||
ED | 0.401 (0.494) | 0.104 (0.441) | 0.169 (0.448) | |||
NDR | −0.063 *** (0.021) | −0.065 *** (0.021) | −0.064 *** (0.020) | |||
Constant | 5.902 *** (0.541) | 6.100 *** (0.538) | 6.077 *** (0.537) | 6.989 *** (0.575) | 7.023 *** (0.567) | 7.003 *** (0.558) |
R-squared | 0.4804 | 0.4802 | 0.5681 | 0.5661 | ||
Hausman Test | 7.11 *** | 21.57 ** | ||||
Obs | 589 | 589 | 589 | 589 | 589 | 589 |
N | 31 | 31 | 31 | 31 | 31 | 31 |
Variable | Northeastern | Eastern | Central | Western | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (16) | (17) | (18) | |
FE | RE | Tobit | FE | RE | Tobit | FE | RE | Tobit | FE | RE | Tobit | |
AIPC | −0.794 * (0.517) | −0.384 * (0.514) | −0.384 (0.446) | −1.457 *** (0.377) | −2.713 *** (0.348) | −1.681 *** (0.366) | −1.664 *** (0.383) | −1.166 *** (0.422) | −1.608 *** (0.361) | −0.935 *** (0.186) | −0.031 (0.241) | −0.838 *** (0.180) |
AIPC2 | 0.055 * (0.032) | 0.032 (0.032) | 0.032 (0.027) | 0.090 *** (0.025) | 0.173 *** (0.023) | 0.110 *** (0.024) | 0.113 *** (0.024) | 0.089 *** (0.026) | 0.111 *** (0.023) | 0.057 *** (0.011) | 0.005 (0.015) | 0.052 *** (0.011) |
IS | −0.562 ** (0.248) | −0.886 *** (0.175) | −0.886 *** (0.152) | −0.467 (0.758) | −0.284 (0.263) | −0.998 ** (0.501) | 0.227 (0.303) | 0.367 (0.145) | 0.094 (0.252) | −0.595 *** (0.144) | −0.415 *** (0.146) | −0.570 *** (0.137) |
PALF | −1.128 *** (0.184) | −0.910 *** (0.159) | −0.910 *** (0.138) | −1.159 *** (0.347) | −0.376 ** (0.177) | −0.816 *** (0.307) | −0.539 *** (0.159) | −0.205 ** (0.097) | −0.429 *** (0.159) | 0.028 (0.067) | 0.008 (0.067) | 0.033 (0.064) |
CD | −0.006 (0.032) | −0.005 (0.032) | −0.005 (0.028) | 0.028 (0.019) | 0.014 (0.014) | 0.021 (0.017) | 0.005 * (0.013) | 0.014 (0.013) | 0.001 (0.012) | 0.059 *** (0.012) | 0.024 ** (0.009) | 0.050 *** (0.011) |
EL | −0.187 (0.286) | −0.131 (0.269) | −0.131 (0.234) | −0.103 (0.240) | −0.438 ** (0.176) | −0.200 (0.222) | −0.211 (0.170) | −0.496 *** (0.156) | −0.304 * (0.161) | 0.107 (0.124) | 0.813 (0.107) | 0.182 (0.120) |
RD | 0.018 (0.037) | 0.025 (0.032) | 0.025 (0.028) | 0.060 ** (0.029) | 0.029 ** (0.014) | 0.023 (0.020) | 0.084 *** (0.029) | 0.107 *** (0.020) | 0.078 *** (0.026) | 0.009 (0.017) | 0.004 (0.010) | 0.016 (0.015) |
GFS | 0.351 (0.427) | 0.288 (0.447) | 0.288 (0.388) | 0.198 (0.433) | 1.343 *** (0.376) | 0.612 (0.400) | 0.022 (0.286) | −0.342 (0.316) | −0.031 (0.270) | 0.142 (0.139) | −0.243 (0.173) | 0.112 (0.134) |
RP | −0.142 * (0.071) | −0.101 ** (0.051) | −0.101 ** (0.044) | −0.081 (0.097) | −0.366 *** (0.095) | −0.215 ** (0.094) | −0.051 (0.059) | −0.166 *** (0.049) | −0.094 * (0.056) | 0.016 (0.041) | 0.098 ** (0.043) | 0.003 (0.040) |
ER | 0.008 * (0.005) | 0.009 ** (0.005) | 0.009 ** (0.004) | 0.002 (0.003) | 0.003 (0.003) | 0.004 (0.003) | 0.001 (0.002) | 0.000 (0.002) | 0.001 (0.002) | 0.000 (0.002) | 0.001 (0.004) | −0.000 (0.002) |
AT | −0.026 (0.021) | −0.026 (0.022) | −0.026 (0.019) | −0.098 (0.023) | −0.032 (0.020) | −0.058 (0.020) | 0.005 (0.014) | 0.009 (0.016) | 0.000 (0.013) | 0.053 *** (0.009) | 0.039 *** (0.013) | 0.052 *** (0.008) |
ED | 1.845 * (1.085) | 0.589 (1.008) | 0.589 (0.875) | 0.226 (0.866) | 0.660 (0.626) | 0.004 (0.801) | 4.332 (3.461) | 0.440 (3.100) | 2.593 (3.241) | −0.709 (0.809) | −0.729 (0.731) | 0.596 (0.759) |
NDR | −0.090 *** (0.027) | −0.100 *** (0.028) | −0.100 *** (0.025) | −0.003 (0.046) | −0.121 ** (0.051) | −0.020 (0.045) | −0.062 * (0.036) | −0.028 (0.042) | −0.057 * (0.034) | −0.064 *** (0.024) | −0.042 (0.030) | −0.064 *** (0.023) |
Constant | 5.009 ** (2.189) | 3.462 * (2.181) | 3.462 * (1.895) | 7.430 *** (1.753) | 12.247 *** (1.351) | 8.609 *** (1.534) | 7.431 *** (1.584) | 4.576 *** (1.688) | 7.190 *** (1.490) | 4.758 *** (0.725) | 1.376 * (0.960) | 4.390 *** (0.703) |
R-squared | 0.9485 | 0.9424 | 0.5939 | 0.4852 | 0.7580 | 0.6751 | 0.6078 | 0.4584 | ||||
Hausman Test | 5.75 *** | 58.04 *** | 33.76 *** | 133.26 *** | ||||||||
Obs | 57 | 57 | 57 | 190 | 190 | 190 | 114 | 114 | 114 | 228 | 228 | 228 |
N | 3 | 3 | 3 | 10 | 10 | 10 | 6 | 6 | 6 | 12 | 12 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, Y.; Xu, Y.; Wang, X.; Jin, F.; Li, J. A Win–Win Scenario for Agricultural Green Development and Farmers’ Agricultural Income: An Empirical Analysis Based on the EKC Hypothesis. Sustainability 2021, 13, 8278. https://doi.org/10.3390/su13158278
Chi Y, Xu Y, Wang X, Jin F, Li J. A Win–Win Scenario for Agricultural Green Development and Farmers’ Agricultural Income: An Empirical Analysis Based on the EKC Hypothesis. Sustainability. 2021; 13(15):8278. https://doi.org/10.3390/su13158278
Chicago/Turabian StyleChi, Yuanying, Yangmei Xu, Xu Wang, Feng Jin, and Jialin Li. 2021. "A Win–Win Scenario for Agricultural Green Development and Farmers’ Agricultural Income: An Empirical Analysis Based on the EKC Hypothesis" Sustainability 13, no. 15: 8278. https://doi.org/10.3390/su13158278
APA StyleChi, Y., Xu, Y., Wang, X., Jin, F., & Li, J. (2021). A Win–Win Scenario for Agricultural Green Development and Farmers’ Agricultural Income: An Empirical Analysis Based on the EKC Hypothesis. Sustainability, 13(15), 8278. https://doi.org/10.3390/su13158278