# Re-Recognition of Ride-Sourcing Service: From the Perspective of Operational Efficiency and Social Welfare

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Modeling Structure

#### 2.1. Mobility Network Presentation

#### 2.2. Mobility Demand Description

#### 2.3. Mobility Vacant Trips Analysis

#### 2.3.1. TCTS Vacant Trips

#### 2.3.2. AES Vacant Trips

#### 2.3.3. ECS Vacant Trips

## 3. Social Welfare and Loading Rate Analysis

#### 3.1. Social Welfare Analysis Model

#### 3.2. Loading Rate Analysis Model

## 4. Numerical Analysis

#### 4.1. Network and Key Parameters

#### 4.2. Network and Key Parameters

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Ma, J.; Xu, M.; Meng, Q.; Cheng, L. Ridesharing user equilibrium problem under OD-based surge pricing strategy. Transp. Res. Part B Methodol.
**2020**, 134, 1–24. [Google Scholar] [CrossRef] - Wang, J.-P.; Ban, X.; Huang, H.-J. Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute. Transp. Res. Part B Methodol.
**2019**, 122, 390–415. [Google Scholar] [CrossRef] - Xu, M.; Meng, Q. Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile. Transp. Res. Part B Methodol.
**2019**, 128, 23–49. [Google Scholar] [CrossRef] - Dingil, A.E.; Schweizer, J.; Rupi, F.; Stasiskiene, Z. Updated Models of Passenger Transport Related Energy Consumption of Urban Areas. Sustainability
**2019**, 11, 4060. [Google Scholar] [CrossRef] [Green Version] - Brownstone, D.; Golob, T.F. The impact of residential density on vehicle usage and energy consumption. J. Urban Econ.
**2009**, 65, 91–98. [Google Scholar] [CrossRef] [Green Version] - Douglas, G.W. Price regulation and optimal service standards: The taxi cab industry. J. Transp. Econ. Policy
**1972**, 6, 116–117. [Google Scholar] - Tirachini, A.; Chaniotakis, E.; Abouelela, M.; Antoniou, C. The sustainability of shared mobility: Can a platform for shared rides reduce motorized traffic in cities? Transp. Res. Part C Emerg. Technol.
**2020**, 117, 102707. [Google Scholar] [CrossRef] - Li, Y.; Liu, Y. Optimizing flexible one-to-two matching in ride-hailing systems with boundedly rational users. Transp. Res. Part E Logist. Transp. Rev.
**2021**, 150, 102329. [Google Scholar] [CrossRef] - Zha, L.; Yin, Y.; Xu, Z. Geometric matching and spatial pricing in ride-sourcing markets. Transp. Res. Part C Emerg. Technol.
**2018**, 92, 58–75. [Google Scholar] [CrossRef] - Yang, H.; Qin, X.; Ke, J.; Ye, J. Optimizing matching time interval and matching radius in on-demand ride-sourcing markets. Transp. Res. Part B Methodol.
**2020**, 131, 84–105. [Google Scholar] [CrossRef] - Beojone, C.V.; Geroliminis, N. On the inefficiency of ride-sourcing services towards urban congestion. Transp. Res. Part C Emerg. Technol.
**2021**, 124, 102890. [Google Scholar] [CrossRef] - Dong, T.; Xu, Z.; Luo, Q.; Yin, Y.; Wang, J.; Ye, J. Optimal contract design for ride-sourcing services under dual sourcing. Transp. Res. Part B Methodol.
**2021**, 146, 289–313. [Google Scholar] [CrossRef] - Li, Y.; Li, X.; Zhang, S. Optimal pricing of customized bus services and ride-sharing based on a competitive game model. Omega
**2021**, 103, 102413. [Google Scholar] [CrossRef] - Wong, K.; Wong, S.; Yang, H.; Wong, K.; Wong, S.; Yang, H. Modeling urban taxi services in congested road networks with elastic demand. Transp. Res. Part B Methodol.
**2001**, 35, 819–842. [Google Scholar] [CrossRef] - Yang, H.; Ye, M.; Tang, W.H.; Wong, S.C. Regulating taxi services in the presence of congestion externality. Transp. Res. Part A Policy Pract.
**2005**, 39, 17–40. [Google Scholar] [CrossRef] - Zhou, T.; Shi, W.; Liu, X.; Tao, F.; Qian, Z.; Zhang, R. A Novel Approach for Online Car-Hailing Monitoring Using Spatiotemporal Big Data. IEEE Access
**2019**, 7, 128936–128947. [Google Scholar] [CrossRef] - Wang, D.; Cao, W.; Li, J.; Ye, J. DeepSD: Supply-Demand Prediction for Online Car-Hailing Services Using Deep Neural Networks. In Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, 19–22 April 2017. [Google Scholar]
- Zhang, Z.; Zhang, N. The Morning Commute Problem with Ridesharing When Meet Stochastic Bottleneck. Sustainability
**2021**, 13, 6040. [Google Scholar] [CrossRef] - Erhardt, G.D.; Roy, S.; Cooper, D.; Sana, B.; Chen, M.; Castiglione, J. Do transportation network companies decrease or increase congestion? Sci. Adv.
**2019**, 5, eaau2670. [Google Scholar] [CrossRef] [Green Version] - Li, B.; Szeto, W. Modeling and analyzing a taxi market with a monopsony taxi owner and multiple rentee-drivers. Transp. Res. Part B Methodol.
**2021**, 143, 1–22. [Google Scholar] [CrossRef] - Sun, L.; Teunter, R.H.; Babai, M.Z.; Hua, G. Optimal pricing for ride-sourcing platforms. Eur. J. Oper. Res.
**2019**, 278, 783–795. [Google Scholar] [CrossRef] - Wang, X.; Liu, W.; Yang, H.; Wang, D.; Ye, J. Customer behavioural modelling of order cancellation in coupled ride-sourcing and taxi markets. Transp. Res. Procedia
**2019**, 38, 853–873. [Google Scholar] [CrossRef] - Ramezani, M.; Nourinejad, M. Dynamic modeling and control of taxi services in large-scale urban networks: A macroscopic approach. Transp. Res. Part C Emerg. Technol.
**2018**, 94, 203–219. [Google Scholar] [CrossRef] - Djavadian, S.; Chow, J. An agent-based day-to-day adjustment process for modeling ‘Mobility as a Service’ with a two-sided flexible transport market. Transp. Res. Part B Methodol.
**2017**, 104, 36–57. [Google Scholar] [CrossRef]

Zone | A | B | C | D | E | F |
---|---|---|---|---|---|---|

A | 0 | 19 | 25 | 33 | 27 | 31 |

B | 20 | 0 | 15 | 23 | 17 | 21 |

C | 28 | 16 | 0 | 17 | 24 | 28 |

D | 36 | 24 | 17 | 0 | 16 | 23 |

E | 33 | 18 | 24 | 17 | 0 | 0 |

F | 20 | 21 | 27 | 30 | 22 | 26 |

Zone | A | B | C | D | E | F |
---|---|---|---|---|---|---|

A | 0 | 12 | 40 | 30 | 20 | 30 |

B | 12 | 0 | 30 | 35 | 15 | 25 |

C | 40 | 30 | 0 | 25 | 40 | 30 |

D | 30 | 35 | 25 | 0 | 35 | 20 |

E | 20 | 15 | 40 | 35 | 0 | 20 |

F | 30 | 25 | 30 | 20 | 20 | 0 |

Zone | A | B | C | D | E | F |
---|---|---|---|---|---|---|

A | 0 | 0.480 | 0.081 | 0.007 | 0.043 | 0.024 |

B | 0.104 | 0 | 0.468 | 0.042 | 0.245 | 0.137 |

C | 0.020 | 0.517 | 0 | 0.389 | 0.048 | 0.026 |

D | 0.002 | 0.048 | 0.401 | 0 | 0.534 | 0.015 |

E | 0.021 | 0.341 | 0.056 | 0.447 | 0 | 0.133 |

F | 0.015 | 0.411 | 0.069 | 0.028 | 0.304 | 0 |

Zone | A | B | C | D | E | F |
---|---|---|---|---|---|---|

A | 0 | 0.730 | 0.002 | 0.000 | 0.000 | 0.000 |

B | 0.006 | 0 | 0.862 | 0.000 | 0.117 | 0.016 |

C | 0.000 | 0.731 | 0 | 0.269 | 0.000 | 0.000 |

D | 0.000 | 0.000 | 0.269 | 0 | 0.731 | 0.000 |

E | 0.000 | 0.265 | 0.001 | 0.721 | 0 | 0.013 |

F | 0.000 | 0.704 | 0.002 | 0.000 | 0.259 | 0 |

Zone | A | B | C | D | E | F |
---|---|---|---|---|---|---|

A | 0 | 0.890 | 0.000 | 0.000 | 0.000 | 0.000 |

B | 0.006 | 0 | 0.572 | 0.000 | 0.117 | 0.000 |

C | 0.000 | 0.700 | 0 | 0.269 | 0.000 | 0.000 |

D | 0.000 | 0.000 | 0.269 | 0 | 0.031 | 0.000 |

E | 0.000 | 0.265 | 0.001 | 0.721 | 0 | 0.013 |

F | 0.000 | 0.704 | 0.002 | 0.000 | 0.059 | 0 |

Parameters | $\omega $ | $\xi $ | $\alpha $ | $\beta $ | $\gamma $ |

45,060 | 1586 | −1.3 | −0.2 | −1 | |

Parameters | $\kappa $ | $\lambda $ | ${c}_{1}$ | ${c}_{2}$ | ${c}_{3}$ |

5 | 0.01 | 4.0 | 3.0 | 5.0 | |

Parameters | ${f}_{1}$ | ${f}_{2}$ | ${f}_{3}$ | ||

7.0 | 6.2 | 2.0 |

Surplus | Production Surplus ${\mathit{S}}^{\mathit{p}}$ | Consumer Surplus ${\mathit{S}}^{\mathit{c}}$ | Producer-Consumer Surplus $\mathit{S}$ |
---|---|---|---|

TCTS | 7840 | 38,569 | 46,409 |

AES | 9561 | 164,352 | 173,913 |

ECS | 8100 | 159,001 | 167,101 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, Z.; Zhang, N.
Re-Recognition of Ride-Sourcing Service: From the Perspective of Operational Efficiency and Social Welfare. *Sustainability* **2021**, *13*, 8198.
https://doi.org/10.3390/su13158198

**AMA Style**

Zhang Z, Zhang N.
Re-Recognition of Ride-Sourcing Service: From the Perspective of Operational Efficiency and Social Welfare. *Sustainability*. 2021; 13(15):8198.
https://doi.org/10.3390/su13158198

**Chicago/Turabian Style**

Zhang, Zipeng, and Ning Zhang.
2021. "Re-Recognition of Ride-Sourcing Service: From the Perspective of Operational Efficiency and Social Welfare" *Sustainability* 13, no. 15: 8198.
https://doi.org/10.3390/su13158198