A Method to Include Life Cycle Assessment Results in Choosing by Advantage (CBA) Multicriteria Decision Analysis. A Case Study for Seismic Retrofit in Peruvian Primary Schools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Case Study
2.1.1. Reinforcement of Columns and Infill Masonry Walls with Steel Mesh (MARM)
2.1.2. Incorporation of Steel Bracings (ACMAC)
2.1.3. Frame Reinforcement and Incorporation of Reinforced Concrete Walls (IMACA)
2.2. Methodological Framework
2.3. BIM Modelling
2.4. Life Cycle Assessment
2.4.1. Goal and Scope
2.4.2. Data Collection and Life Cycle Inventory
2.4.3. Life Cycle Impact Assessment
2.5. Choosing by Advantages
2.6. Sensitivity and Uncertainty Analysis
3. Results and Discussion
3.1. Environmental Impacts of the Three Retrofit Techniques
3.2. Integrating Environmental Impacts in CBA
3.3. Comparison of the Two Decision-Making Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Azhar, S. Building information modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry. Leadersh. Manag. Eng. 2011, 11, 241–252. [Google Scholar] [CrossRef]
- Zhao, X. A scientometric review of global BIM research: Analysis and visualization. Autom. Constr. 2017, 80, 37–47. [Google Scholar] [CrossRef]
- Calderón-Hernández, C.; Brioso, X. Lean, BIM and augmented reality applied in the design and construction phase: A literature review. Int. J. Innov. Manag. Technol. 2018, 9, 60–63. [Google Scholar] [CrossRef]
- Doumbouya, L.; Gao, G.; Guan, C. Adoption of the Building Information Modeling (BIM) for construction project effectiveness: The review of BIM benefits. Am. J. Civ. Eng. Archit. 2016, 4, 74–79. [Google Scholar]
- Ghaffarianhoseini, A.; Tookey, J.; Ghaffarianhoseini, A.; Naismith, N.; Azhar, S.; Efimova, O.; Raahemifar, K. Building information modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges. Renew. Sustain. Energy Rev. 2017, 75, 1046–1053. [Google Scholar] [CrossRef]
- Wang, X.; Love, P.E.; Kim, M.J.; Park, C.S.; Sing, C.P.; Hou, L. A conceptual framework for integrating building information modeling with augmented reality. Autom. Constr. 2013, 34, 37–44. [Google Scholar] [CrossRef]
- Arroyo, P.; Mourgues, C.; Flager, F.; Correa, M.G. A new method for applying choosing by advantages (CBA) multi-criteria decision to a large number of design alternatives. Energy Build. 2018, 167, 30–37. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Castillo-López, E.; Rodríguez-Hernández, J.; Canteras-Jordana, J.C. A review of application of mul-ti-criteria decision making methods in construction. Autom. Constr. 2014, 45, 151–162. [Google Scholar] [CrossRef]
- Arroyo, P.; Fuenzalida, C.; Albert, A.; Hallowell, M.R. Collaborating in decision making of sustainable building design: An experimental study comparing CBA and WRC methods. Energy Build. 2016, 128, 132–142. [Google Scholar] [CrossRef]
- Kpamma, Z.; Adjei-Kumi, T.; Ayarkwa, J.; Adinyira, E. Choosing by advantages incorporated framework for a user-involved design process. Arch. Eng. Des. Manag. 2018, 14, 194–217. [Google Scholar] [CrossRef]
- Suhr, J. The Choosing by Advantages Decision Making System. Greenwood Publishing Group, 1999. Available online: https://products.abc-clio.com/ABC-CLIOCorporate/product.aspx?pc=C3865C (accessed on 1 June 2021).
- Schöttle, A.; Arroyo, P.; Georgiev, C.H. Applying choosing by advantages in the public tendering procedure. In Proceedings of the 25th Annual Conference of the International Group for Lean Construction, Heraklion, Greece, 9–12 July 2017; pp. 45–52. [Google Scholar]
- Arroyo, P.; Tommelein, I.D.; Ballard, G. Selecting globally sustainable materials: A case study using choosing by ad-vantages. J. Constr. Eng. Manag. 2015, 142, 05015015. [Google Scholar] [CrossRef]
- Pérez, C.; Arroyo, P.; Richards, C.; Mourgues, C. Residential curbside waste collection programs design: A multicriteria and participatory approach using choosing by advantages. Waste Manag. 2021, 119, 267–274. [Google Scholar] [CrossRef]
- Jung, W.; Lee, G. The status of BIM adoption on six continents. Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 2015, 9, 444–448. [Google Scholar]
- Ermolli, S.R.; De Toro, P. Process innovations for the digitalization of public procurement: Synergies between BIM and multi-criteria analysis. J. Technol. Archit. Environ. 2017, 13, 313–321. [Google Scholar]
- Tran, V.; Tookey, J.E.; Roberti, J. Shaving BIM: Establishing a framework for future BIM research in New Zealand. Int. J. Constr. Supply Chain Manag. 2012, 2, 66–79. [Google Scholar] [CrossRef]
- Eadie, R.; Browne, M.; Odeyinka, H.; McKeown, C.; McNiff, S. BIM implementation throughout the UK construction project lifecycle: An analysis. Autom. Constr. 2013, 36, 145–151. [Google Scholar] [CrossRef]
- Machado, F.A.; Delatorre, J.P.M.; Ruschel, R.C. BIM in Latin American Countries: An Analysis of Regulation Evolution. In International Conference on Computing in Civil and Building Engineering; Springer: Cham, Switzerland, 2020; Volume 98, pp. 425–451. [Google Scholar] [CrossRef]
- Decreto supremo No. 289-2019-EF: Aprueban disposiciones para la incorporación progresiva de BIM en la inversión pública. El Peruano, 8 September 2019. (In Spanish)
- International Organization for Standardization: ISO 14040—Environmental Management: Life Cycle Assessment; Principles and Framework. 2006. Available online: http://www.cscses.com/uploads/2016328/20160328110518251825.pdf (accessed on 20 June 2020).
- International Organization for Standardization: ISO 14044—Environmental Management: Life Cycle Assessment: Requirements and Guidelines. 2006. Available online: https://www.iso.org/obp/ui/#iso:std:iso:14044:ed-1:v1:en (accessed on 20 June 2020).
- Basbagill, J.; Flager, F.; Lepech, M.; Fischer, M. Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Build. Environ. 2013, 60, 81–92. [Google Scholar] [CrossRef]
- Cavalliere, C.; Dell’Osso, G.R.; Pierucci, A.; Iannone, F. Life cycle assessment data structure for building information modelling. J. Clean. Prod. 2018, 199, 193–204. [Google Scholar] [CrossRef]
- Panteli, C.; Kylili, A.; Fokaides, P.A. Building information modelling applications in smart buildings: From design to commissioning and beyond: A critical review. J. Clean. Prod. 2020, 265, 121766. [Google Scholar] [CrossRef]
- Röck, M.; Hollberg, A.; Habert, G.; Passer, A. LCA and BIM: Integrated assessment and visualization of building ele-ments’ embodied impacts for design guidance in early stages. Procedia CIRP 2018, 69, 218–223. [Google Scholar] [CrossRef]
- Sharif, S.A.; Hammad, A. Developing surrogate ANN for selecting near-optimal building energy renovation methods considering energy consumption, LCC and LCA. J. Build. Eng. 2019, 25, 100790. [Google Scholar] [CrossRef]
- Arroyo, P.; Herrera, R.; Salazar, L.; Giménez, Z.; Martínez, J.; Calahorra, M. A new approach for integrating environmental, social and economic factors to evaluate asphalt mixtures with and without waste tires. Rev. Ing. De Construcción 2019, 33, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, P.; Molinos-Senante, M. Selecting appropriate wastewater treatment technologies using a choosing-by-advantages approach. Sci. Total Environ. 2018, 625, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Reza, B.; Sadiq, R.; Hewage, K. Sustainability assessment of flooring systems in the city of Tehran: An AHP-based life cycle analysis. Constr. Build. Mater. 2011, 25, 2053–2066. [Google Scholar] [CrossRef]
- Hu, M. Building impact assessment—A combined life cycle assessment and multi-criteria decision analysis framework. Resour. Conserv. Recycl. 2019, 150, 104410. [Google Scholar] [CrossRef]
- Mutch, C. The role of schools in disaster settings: Learning from the 2010–2011 New Zealand earthquakes. Int. J. Educ. Dev. 2015, 41, 283–291. [Google Scholar] [CrossRef]
- Somoza, R.; Ghidella, M.E. Late cretaceous to recent plate motions in western South America revisited. Earth Planet. Sci. Lett. 2012, 331–332, 152–163. [Google Scholar] [CrossRef]
- Decreto supremo No. 003-2016-VIVIENDA: Decreto supremo que modifica la norma técnica E.030 “Diseño Sismorresistente” del reglamento naxcional de edificiaciones, aprobada por decreto supremo No. 011-2006-VIVIENDA, modificada con decreto supremo No. 002-2014-VIVIENDA. El Peruano, 24 January 2016. (In Spanish)
- Buytaert, W.; De Bièvre, B. Water for cities: The impact of climate change and demographic growth in the tropical Andes. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- INEI. Provincia de Lima. Compendio Estadístico 2017. Available online: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1477/libro.pdf (accessed on 25 November 2018). (In Spanish)
- Paxson, C.; Schady, N.R. The allocation and impact of social funds: Spending on school infrastructure in Peru. World Bank Econ. Rev. 2002, 16, 297–319. [Google Scholar] [CrossRef]
- Loa, G.; Munñoz, A.; Santa-Cruz, S. Seismic evaluation of incremental seismic retrofitting techniques for typical Peruvian schools. In Proceedings of the Structures Congress 2017, Denver, CO, USA, 6–8 April 2017; pp. 101–110. [Google Scholar]
- Promis, G.; Ferrier, E.; Hamelin, P. Effect of external FRP retrofitting on reinforced concrete short columns for seismic strengthening. Compos. Struct. 2009, 88, 367–379. [Google Scholar] [CrossRef]
- Muñoz, A.; Quiun, D.; Tinman, M. Repair and seismic retrofitting of hospital and school buildings in Peru. In Proceedings of the Thirteenth World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- Irfanoglu, A. Performance of template school buildings during earthquakes in Turkey and Peru. J. Perform. Constr. Facil. 2009, 23, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Santa-Cruz, S.; Córdova-Arias, C.; Brioso, X.; Vázquez-Rowe, I. Transparency-based protocol for decision-making regarding seismic rehabilitation projects of public buildings. Int. J. Disaster Risk Reduct. 2021, 55, 102116. [Google Scholar] [CrossRef]
- Building Seismic Safety Council (BSSC). Engineering Guideline for Incremental Seismic Rehabilitation; FEMA P-420; Federal Emergency Management Agency: Washington, DC, USA, 2009; Available online: https://wbdg.org/ffc/dhs/criteria/femap420 (accessed on 1 June 2021).
- Di Ludovico, M.; Digrisolo, A.; Moroni, C.; Graziotti, F.; Manfredi, V.; Prota, A.; Dolce, M.; Manfredi, G. Remarks on damage and response of school buildings after the Central Italy earthquake sequence. Bull. Earthq. Eng. 2018, 17, 5679–5700. [Google Scholar] [CrossRef]
- Volk, R.; Stengel, J.; Schultmann, F. Building information modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Sacks, R.; Eastman, C.; Lee, G.; Teicholz, P. BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Project Management Institute. Construction extension to the PMBOK® guide (2016). In Project Management Institute, 3rd ed.; Project Management Institute: Newtown Square, PA, USA, 2016. [Google Scholar]
- Steuer, J. Defining virtual reality: Dimensions determining telepresence. J. Commun. 1992, 42, 73–93. [Google Scholar] [CrossRef]
- Paes, D.; Arantes, E.; Irizarry, J. Immersive environment for improving the understanding of architectural 3D models: Comparing user spatial perception between immersive and traditional virtual reality systems. Autom. Constr. 2017, 84, 292–303. [Google Scholar] [CrossRef]
- Calderon-Hernandez, C.; Paes, D.; Irizarry, J.; Brioso, X. Comparing virtual reality and 2-Dimensional drawings for the visualization of a construction project. In Proceedings of the ASCE International Conference on Computing in Civil Engineering 2019, Atlanta, GA, USA, 17–19 June 2019; pp. 17–24. [Google Scholar]
- Murguia, D.; Brioso, X. Using “choosing by advantages” and 4D models to select the best construction-flow option in a residential building. Procedia Eng. 2017, 196, 470–477. [Google Scholar] [CrossRef]
- Suarez, J.C.; Zapata, J.; Brioso, X. Using 5D models and Cba for planning the foundations and concrete structure stages of a complex office building. In Proceedings of the 28th Annual Conference of the International Group for Lean Construction (IGLC), Berkeley, CA, USA, 6–10 July 2020; pp. 913–924. [Google Scholar]
- Brioso, X.; Calderón, C.; Aguilar, R.; Pando, M.A. Preliminary Methodology for the Integration of Lean Construction, BIM and Virtual Reality in the Planning Phase of Structural Intervention in Heritage Structures; RILEM Bookseries; Springer: Berlin, Germany, 2019; Volume 18, pp. 484–492. [Google Scholar]
- Brioso, X.; Calderon-Hernandez, C.; Irizarry, J.; Paes, D. Using immersive virtual reality to improve choosing by advantages system for the selection of fall protection measures. In Proceedings of the ASCE International Conference on Computing in Civil Engineering 2019, Atlanta, GA, USA, 17–19 June 2019; pp. 146–153. [Google Scholar]
- Carvalho, J.; Alecrim, I.; Bragança, L.; Mateus, R. Integrating BIM-based LCA and building sustainability assessment. Sustainability 2020, 12, 7468. [Google Scholar] [CrossRef]
- Potrč Obrecht, T.; Röck, M.; Hoxha, E.; Passer, A. BIM and LCA integration: A systematic literature review. Sustainability 2020, 12, 5534. [Google Scholar] [CrossRef]
- Safari, K.; AzariJafari, H. Challenges and opportunities for integrating BIM and LCA: Methodological choices and framework development. Sustain. Cities Soc. 2021, 67, 102728. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Rincón, L.; Vilariño, V.; Pérez, G.; Castell, A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renew. Sustain. Energy Rev. 2014, 29, 394–416. [Google Scholar] [CrossRef]
- Vilches, A.; Garcia-Martinez, A.; Sanchez-Montanes, B. Life cycle assessment (LCA) of building refurbishment: A lite-rature review. Energy Build. 2017, 135, 286–301. [Google Scholar] [CrossRef]
- Ingrao, C.; Messineo, A.; Beltramo, R.; Yigitcanlar, T.; Ioppolo, G. How can life cycle thinking support sustainability of buildings? Investigating life cycle assessment applications for energy efficiency and environmental performance. J. Clean. Prod. 2018, 201, 556–569. [Google Scholar] [CrossRef]
- Säynäjoki, A.; Heinonen, J.; Junnila, S.; Horvath, A. Can life-cycle assessment produce reliable policy guidelines in the building sector? Environ. Res. Lett. 2017, 12, 013001. [Google Scholar] [CrossRef] [Green Version]
- United States Environment Protection Agency. Air Emissions Factors and Quantification. Blasting Caps, Demolition Charges, and Detonators. Available online: https://www3.epa.gov/ttnchie1/ap42/ch15/related/c15s09.html (accessed on 14 January 2020).
- Ecoinvent. Ecoinvent v3 Database. Available online: https://www.ecoinvent.org/ (accessed on 2 June 2021).
- Vázquez-Rowe, I.; Ziegler, K.; Laso, J.; Quispe, I.; Aldaco, R.; Kahhat, R. Production of cement in Peru: Understanding carbon-related environmental impacts and their policy implications. Resour. Conserv. Recycl. 2019, 142, 283–292. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Kahhat, R.; Sánchez, I. Perú LCA: Launching the Peruvian national life cycle database. Int. J. Life Cycle Assess. 2019, 24, 2089–2090. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Reyna, J.L.; García-Torres, S.; Kahhat, R. Is climate change-centrism an optimal policy making strategy to set national electricity mixes? Appl. Energy 2015, 159, 108–116. [Google Scholar] [CrossRef]
- Weidema, B.P.; Thrane, M.; Christensen, P.; Schmidt, J.; Løkke, S. Carbon footprint: A catalyst for life cycle assessment? J. Ind. Ecol. 2008, 12, 3–6. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Kahhat, R.; Larrea-Gallegos, G.; Ziegler-Rodriguez, K. Peru’s road to climate action: Are we on the right path? The role of life cycle methods to improve Peruvian national contributions. Sci. Total Environ. 2019, 659, 249–266. [Google Scholar] [CrossRef] [PubMed]
- Servicio Nacional de Meteorología e Hidrología—SENAMHI. Mapa de Clasificación Climática del Perú. Servicio Nacional de Meteorología e Hidrología—Senamhi. Available online: https://idesep.senamhi.gob.pe/geonetwork/srv/spa/catalog.search#/metadata/9f18b911-64af-4e6b-bbef-272bb20195e4 (accessed on 28 April 2021). (In Spanish).
- Huijbregts, M.A.J.; Steinmann, Z.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- PRé Sustainability. SimaPro Software. Available online: https://simapro.com/global-partner-network/pre-consultants/ (accessed on 1 June 2021).
- Weidema, B.P. Multi-user test of the data quality matrix for product life cycle inventory data. Int. J. Life Cycle Assess. 1998, 3, 259–265. [Google Scholar] [CrossRef]
- Ciroth, A.; Muller, S.; Weidema, B.; Lesage, P. Empirically based uncertainty factors for the pedigree matrix in ecoinvent. Int. J. Life Cycle Assess. 2016, 21, 1338–1348. [Google Scholar] [CrossRef]
- Tollefson, J. US pledges to dramatically slash greenhouse emissions over next decade. Nat. Cell Biol. 2021, 592, 673. [Google Scholar] [CrossRef]
- Fantke, P.; Jolliet, O.; Apte, J.S.; Cohen, A.J.; Evans, J.S.; Hänninen, O.O.; Hurley, F.; Jantunen, M.J.; Jerrett, M.; Levy, J.I.; et al. Health effects of fine particulate matter in life cycle impact assessment: Conclusions from the Basel guidance workshop. Int. J. Life Cycle Assess 2015, 20, 276–288. [Google Scholar] [CrossRef]
- Jolliet, O.; Antón, A.; Boulay, A.-M.; Cherubini, F.; Fantke, P.; Levasseur, A.; McKone, T.E.; Michelsen, O.; Canals, L.M.I.; Motoshita, M.; et al. Global guidance on environmental life cycle impact assessment indicators: Impacts of climate change, fine particulate matter formation, water consumption and land use. Int. J. Life Cycle Assess. 2018, 23, 2189–2207. [Google Scholar] [CrossRef] [Green Version]
- Biberos-Bendezú, K.; Cárdenas-Mamani, U.; Kahhat, R.; Vázquez-Rowe, I. Introducing environmental decision-making criteria to foster green public procurement in Peru. Integr. Environ. Assess. Manag. 2021. [Google Scholar] [CrossRef]
- Cheng, W.; Appolloni, A.; D’Amato, A.; Zhu, Q. Green Public Procurement, missing concepts and future trends–A critical review. J. Clean. Prod. 2018, 176, 770–784. [Google Scholar] [CrossRef]
- Tarantini, M.; Loprieno, A.D.; Porta, P.L. A life cycle approach to Green Public Procurement of building materials and elements: A case study on windows. Energy 2011, 36, 2473–2482. [Google Scholar] [CrossRef]
- Ministerio del Ambiente—MINAM. Proyecto “Estimulación de la Oferta y Demanda de Productos Sostenibles a Través de la Compras Públicas Sostenibles y Ecoetiquetado”—Proyecto SPPEL en Perú. Directorio de Proyectos y Centros de Atención. 2017. Available online: http://proyectos.minam.gob.pe/proyectos/proyecto-estimulacion-de-la-oferta-y-demanda-de-productos-sostenibles-a-traves-de-la-compras-publicas-sostenibles-y-ecoetiquetado-proyecto-sppel-en-peru/ (accessed on 9 April 2020).
- Delmonico, D.; Jabbour, C.J.C.; Pereira, S.C.F.; de Sousa Jabbour, A.B.L.; Renwick, D.W.S.; Thomé, A.M.T. Unveiling barriers to sustainable public procurement in emerging economies: Evidence from a leading sustainable supply chain initiative in Latin America. Resour. Conserv. Recycl. 2018, 134, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Rigby, A. Spurring Innovation-Led Growth in Latin America and the Caribbean through Public Procurement PPI and PCP in Developed Economies: United States; Discussion Papers, No. IDB-DP-488; InterAmerican Development Bank: Washington, DC, USA, 2016. [Google Scholar]
- Wang, X.; Liu, Y.; Ju, Y. Sustainable public procurement policies on promoting scientific and technological innovation in China: Comparisons with the US, the UK, Japan, Germany, France, and South Korea. Sustainability 2018, 10, 2134. [Google Scholar] [CrossRef] [Green Version]
- Suikkanen, J.; Nissinen, A. Product Environmental Footprint (PEF) Method—Use for Evaluating the Climate Impacts of Public Procurement; Reports of the Finnish Environment Institute 15en/2020; Finnish Environment Institute: Helsinki, Finland, 2020. [Google Scholar]
- European Commission. Official Journal of the European Union: Commission Recommendation of 9 April 2013 on the Use of Common Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations (2013/179/EU, 9.4.2013); European Commission: Brussels, Belgium, 2013; Volume 124, pp. 1–210. [Google Scholar]
- European Commission. PEFCR Guidance Document—Guidance for the Development of Product Environmental Footprint Category Rules (PEFCRs), Version 6.3, December 2017. Available online: https://eplca.jrc.ec.europa.eu/permalink/PEFCR_guidance_v6.3–2.pdf (accessed on 1 June 2021).
- Zampori, L.; Pant, R. Suggestions for Updating the Product Environmental Footprint (PEF) Method. Available online: https://ec.europa.eu/jrc/en/publication/suggestions-updating-product-environmental-footprint-pef-method (accessed on 1 June 2020).
- Santa-Cruz, S.; De Córdova, G.F.; Rivera-Holguin, M.; Vilela, M.; Arana, V.; Palomino, J. Social sustainability dimensions in the seismic risk reduction of public schools: A case study of Lima, Peru. Sustain. Sci. Pract. Policy 2016, 12, 34–46. [Google Scholar] [CrossRef]
Unit | MARM | ACMAC | IMACA | |
---|---|---|---|---|
Demolition stage | ||||
Machinery | p | 8.99 × 10−3 | 4.64 × 10−3 | 1.80 × 10−2 |
Diesel | kg | 543.8 | 271.9 | 543.8 |
Electricity | MWh | 13.30 | 10.88 | 16.92 |
PM2.5 (demolition) | kg | 3.79 × 10−3 | 2.10 × 10−3 | 4.69 × 10−3 |
PM2.5 (loading and unloading) | kg | 6.86 × 10−2 | 3.80 × 10−2 | 8.48 × 10−2 |
PM2.5 (transport–full load) | kg | 1.84 × 10−1 | 1.84 × 10−1 | 1.84 × 10−1 |
PM2.5 (transport–full load) | kg | 4.10 × 10−1 | 4.10 × 10−1 | 4.10 × 10−1 |
Retrofit stage | ||||
Concrete | m3 | 22.90 | 22.89 | 66.42 |
Bricks | kg | 11,464 | 394.2 | 4043 |
Reinforced steel | kg | 1375 | 34,453 | 3870 |
Glass | kg | 191.4 | 5.80 | 105.5 |
Wood | m3 | 6.40 | 0.94 | 8.19 |
Water | m3 | 100.9 | 6.12 | 12.09 |
Epoxy resin | kg | 156.5 | 299.8 | 113.6 |
Diesel | kg | 64.83 | 59.33 | 146.9 |
Lubricant oil | kg | 1.07 | 0.94 | 2.83 |
Factors | Criteria | Unit | |
---|---|---|---|
Economic/social | Execution costs—C1 | Lower costs are better | PEN |
Execution time—C2 | Lower time for executing operations is better | days | |
Transparency | Level of modulation—C3 | Higher modulation is better | % |
Level of standardization—C4 | Higher standardization is better | % | |
Level of industrialization—C5 | Higher industrialization is better | % | |
Environment | Global Warming Potential—C6 | Lower greenhouse gas (GHG) emissions is better | t CO2eq |
Fine particulate Matter Formation—C7 | Lower PM2.5 emissions is better | kg PM2.5eq | |
Damage to Human Health—C8 | Lower damage to human health is better | DALYs |
Working Groups | Profile | Interests | Most Valued Factors |
---|---|---|---|
1 | Environmental | Priority is given to human health and wellbeing | Environmental factors |
2 | Engineering | Technical aspects, such as efficiency and productivity, are prioritized | Execution costs Execution time Transparency |
3 | Environmental | Priority is given to human health and wellbeing | Environmental factors |
4 | Holistic | Hierarchist perspective, which aims to present an equilibrium among factors | Execution costs Execution time Transparency Environmental factors |
Scenarios | Environmental Metrics Included | ||
---|---|---|---|
Baseline scenario | GWP | FPMF | HH |
Scenario 1 | GWP | FPMF | HH |
Scenario 2 | GWP | FPMF | HH |
Scenario 3 | GWP | FPMF | HH |
GWP(t CO2eq) | FPMF(kg PM2.5eq) | HH(DALYs) | |
---|---|---|---|
Demolition | 7.15 | 7.83 | 3.7 × 10−2 |
Retrofit | 17.18 | 20.17 | 1.27 × 10−2 |
MARM | 24.33 | 28.01 | 5.01 × 10−2 |
Demolition | 4.72 | 5.44 | 8.58 × 10−3 |
Retrofit | 96.47 | 162.01 | 3.16 × 10−1 |
ACMAC | 101.2 | 167.5 | 3.25 × 10−1 |
Demolition | 8.74 | 9.03 | 1.55 × 10−2 |
Retrofit | 38.89 | 45.49 | 8.70 × 10−2 |
IMACA | 47.63 | 54.51 | 1.03 × 10−1 |
Group 1 | Group 2 | Group 3 | Group 4 | |
---|---|---|---|---|
Economic factor | ||||
C2 | 17% | 43% | 19% | 29% |
Transparency factors | ||||
C3 | 13% | 13% | 10% | 13% |
C4 | 13% | 13% | 9% | 15% |
C5 | 15% | 13% | 11% | 13% |
Subtotal | 41% | 39% | 30% | 41% |
Environmental factors | ||||
C6 | 11% | 7% | 16% | 10% |
C7 | 9% | 7% | 15% | 8% |
C8 | 22% | 4% | 21% | 11% |
Subtotal | 42% | 18% | 52% | 29% |
MARM | IMACA | ACMAC | |
---|---|---|---|
Group 1 | 275 | 180 | 270 |
Group 2 | 110 | 44 | 190 |
Group 3 | 320 | 185 | 225 |
Group 4 | 188 | 105 | 241 |
Group 1 | Group 2 | Group 3 | Group 4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MARM | IMACA | ACMAC | MARM | IMACA | ACMAC | MARM | IMACA | ACMAC | MARM | IMACA | ACMAC | |
IoA based on the evaluation of workshop participants | ||||||||||||
Baseline scenario | 275 | 180 | 270 | 110 | 44 | 190 | 320 | 185 | 225 | 188 | 105 | 241 |
Scenario 1 | 185 | 125 | 270 | 80 | 26 | 190 | 175 | 80 | 225 | 125 | 65 | 241 |
Scenario 2 | 225 | 155 | 270 | 95 | 36 | 190 | 245 | 130 | 225 | 152 | 86 | 241 |
Scenario 3 | 235 | 150 | 270 | 95 | 34 | 190 | 250 | 135 | 225 | 161 | 84 | 241 |
IoA based on aggregating factors into categories | ||||||||||||
Baseline scenario | 275 | 180 | 270 | 110 | 44 | 190 | 320 | 185 | 225 | 188 | 105 | 241 |
Scenario 1 | 185 | 125 | 270 | 80 | 26 | 190 | 175 | 80 | 225 | 125 | 65 | 241 |
Scenario 2 | 225 | 155 | 270 | 95 | 36 | 190 | 245 | 130 | 225 | 152 | 86 | 241 |
Scenario 3 | 235 | 140 | 270 | 95 | 34 | 190 | 250 | 135 | 225 | 161 | 84 | 241 |
IoA based on applying a linearity principle of the advantages | ||||||||||||
Baseline scenario | 274 | 177 | 270 | 108 | 50 | 190 | 317 | 203 | 225 | 188 | 102 | 241 |
Scenario 1 | 184 | 116 | 270 | 78 | 29 | 190 | 172 | 104 | 225 | 125 | 60 | 241 |
Scenario 2 | 224 | 147 | 270 | 93 | 41 | 190 | 242 | 158 | 225 | 152 | 80 | 241 |
Scenario 3 | 234 | 147 | 270 | 93 | 38 | 190 | 259 | 162 | 270 | 159 | 96 | 270 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Rowe, I.; Córdova-Arias, C.; Brioso, X.; Santa-Cruz, S. A Method to Include Life Cycle Assessment Results in Choosing by Advantage (CBA) Multicriteria Decision Analysis. A Case Study for Seismic Retrofit in Peruvian Primary Schools. Sustainability 2021, 13, 8139. https://doi.org/10.3390/su13158139
Vázquez-Rowe I, Córdova-Arias C, Brioso X, Santa-Cruz S. A Method to Include Life Cycle Assessment Results in Choosing by Advantage (CBA) Multicriteria Decision Analysis. A Case Study for Seismic Retrofit in Peruvian Primary Schools. Sustainability. 2021; 13(15):8139. https://doi.org/10.3390/su13158139
Chicago/Turabian StyleVázquez-Rowe, Ian, Cristina Córdova-Arias, Xavier Brioso, and Sandra Santa-Cruz. 2021. "A Method to Include Life Cycle Assessment Results in Choosing by Advantage (CBA) Multicriteria Decision Analysis. A Case Study for Seismic Retrofit in Peruvian Primary Schools" Sustainability 13, no. 15: 8139. https://doi.org/10.3390/su13158139
APA StyleVázquez-Rowe, I., Córdova-Arias, C., Brioso, X., & Santa-Cruz, S. (2021). A Method to Include Life Cycle Assessment Results in Choosing by Advantage (CBA) Multicriteria Decision Analysis. A Case Study for Seismic Retrofit in Peruvian Primary Schools. Sustainability, 13(15), 8139. https://doi.org/10.3390/su13158139