Removing of Anionic Dye from Aqueous Solutions by Adsorption Using of Multiwalled Carbon Nanotubes and Poly (Acrylonitrile-styrene) Impregnated with Activated Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Reactive Red 35 Solution
2.2. Preparation of the MWCNT and P(AN-co-ST) Adsorbents
2.2.1. Synthesis of MWCNTs
2.2.2. Purification and Functionalization of MWCNTs
2.2.3. Synthesis of P(AN-co-ST) and Activated Carbon Copolymer Nanoparticles
2.3. Adsorption Experiments
2.4. Characterization of MWNT and P (AN-co-St)/AC
2.5. Dye Removal Efficiency
2.6. Adsorption Equilibrium Isotherm
2.6.1. Langmuir Model
2.6.2. Freundlich Model
2.6.3. Tempkin Isotherm
2.6.4. The Halsey Model
3. Results and Discussion
3.1. Characterization of the MWCNTs and Modified P (AN-co-St)/AC
3.1.1. FTIR Examination
3.1.2. Particle Size Distribution Analysis (PSD)
3.1.3. SEM Examination
3.1.4. Raman Spectral Analysis
3.1.5. XRD Analysis of MWCNTs
3.1.6. BET Analysis
3.2. Effect of Adsorption Conditions on RR35 Dye Adsorption
3.2.1. Influence of pH on Dye Adsorption
3.2.2. Effect of MWCNT and P (AN-co-St)/AC Composite Dosage
3.2.3. Influence of Initial Dye Concentration
3.2.4. Effect of Adsorption Time
3.2.5. Influence of Temperature
3.2.6. Adsorption Thermodynamics
3.2.7. Regeneration Experiment
3.3. Adsorption Isotherm Study
3.4. Kinetic Studies
3.5. Comparison of MWCNT with Other Adsorbents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Moselhy, K.M.; Abdel-Azzem, M.; Amer, A.; Al-Prol, A.E. Adsorption of Cu (II) and Cd (II) from aqueous solution by using rice husk adsorbent. Phys. Chem. Indian J. 2017, 12, 109. [Google Scholar]
- Rao, M.M.; Liu, J.S.; Li, W.S.; Liang, Y.; Liao, Y.H.; Zhao, L.Z. Performance improvement of poly(acrylonitrile-vinyl acetate) by activation of poly(methyl methacrylate). J. Power Sources 2009, 189, 711–715. [Google Scholar] [CrossRef]
- Ashour, M.; Abo-Taleb, H.; Abou-Mahmoud, M.; El-Feky, M.M.M. Effect of the integration between plankton natural productivity and environmental assessment of irrigation water, El-Mahmoudia Canal, on aquaculture potential of Oreochromis niloticus. Turk. J. Fish. Aquat. Sci. 2018, 18, 1163–1175. [Google Scholar] [CrossRef]
- De Oliveira, G.A.R.; Leme, D.M.; De Lapuente, J.; Brito, L.B.; Porredón, C.; Rodrigues, L.D.B.; Brull, N.; Serret, J.T.; Borràs, M.; Disner, G.R.; et al. A test battery for assessing the ecotoxic effects of textile dyes. Chem. Biol. Interact. 2018, 291, 171–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Prol, A.E. Study of Environmental Concerns of Dyes and Recent Textile Effluents Treatment Technology: A Review. Asian J. Fish. Aquat. Res. 2019, 3, 1–18. [Google Scholar] [CrossRef]
- Abo-Taleb, H.; Ashour, M.; El-Shafei, A.; Alataway, A.; Maaty, M.M. Biodiversity of Calanoida copepoda in Different Habitats of the North-Western Red Sea (Hurghada Shelf). Water 2020, 12, 656. [Google Scholar] [CrossRef] [Green Version]
- Alprol, A.E.; Heneash, A.M.M.; Soliman, A.M.; Ashour, M.; Alsanie, W.F.; Gaber, A.; Mansour, A.T. Assessment of Water Quality, Eutrophication, and Zooplankton Community in Lake Burullus, Egypt. Diversity 2021, 13, 268. [Google Scholar] [CrossRef]
- Zaki, M.A.; Ashour, M.; Heneash, A.M.M.; Mabrouk, M.M.; Alprol, A.E.; Khairy, H.M.; Nour, A.M.; Mansour, A.T.; Hassanien, H.A.; Gaber, A. Potential Applications of Native Cyanobacterium Isolate (Arthrospira platensis NIOF17/003) for Biodiesel Production and Utilization of Its Byproduct in Marine Rotifer (Brachionus plicatilis) Production. Sustainability 2021, 13, 1769. [Google Scholar] [CrossRef]
- Ashour, M.; Elshobary, M.E.; El-Shenody, R.; Kamil, A.W.; Abomohra, A.E.F. Evaluation of a native oleaginous marine microalga Nannochloropsis oceanica for dual use in biodiesel production and aquaculture feed. Biomass Bioenergy 2019, 120, 439–447. [Google Scholar] [CrossRef]
- Prol, A.; Azzem, M.; Amer, A.; El-Metwally, M.; El-Hamid, H.; El-Moselhy, K. Adsorption of Cadmium (II) Ions (II) from Aqueous Solution onto Mango Leaves. Asian J. Phys. Chem. Sci. 2017, 2, 1–11. [Google Scholar] [CrossRef]
- Yang, K.; Xing, B. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environ. Pollut. 2007, 145, 529–537. [Google Scholar] [CrossRef]
- Mashkoor, F.; Nasar, A.; Inamuddin. Carbon nanotube-based adsorbents for the removal of dyes from waters: A review. Environ. Chem. Lett. 2020, 18, 605–629. [Google Scholar] [CrossRef]
- Mishra, A.K. Application of Nanotechnology in Water Research; Scrivener Publishing: Beverly, MA, USA, 2014; ISBN 9781118939314. [Google Scholar]
- Bahgat, M.; Farghali, A.A.; El Rouby, W.M.A.; Khedr, M.H. Synthesis and modification of multi-walled carbon nano-tubes (MWCNTs) for water treatment applications. J. Anal. Appl. Pyrolysis 2011, 92, 307–313. [Google Scholar] [CrossRef]
- Yao, Y.; Bing, H.; Feifei, X.; Xiaofeng, C. Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chem. Eng. J. 2011, 170, 82–89. [Google Scholar] [CrossRef]
- Mohammadi, A.; Veisi, P. High adsorption performance of β-cyclodextrin-functionalized multi-walled carbon nanotubes for the removal of organic dyes from water and industrial wastewater. J. Environ. Chem. Eng. 2018, 6, 4634–4643. [Google Scholar] [CrossRef]
- Zare, K.; Sadegh, H.; Shahryari-Ghoshekandi, R.; Maazinejad, B.; Ali, V.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Enhanced removal of toxic Congo red dye using multi walled carbon nanotubes: Kinetic, equilibrium studies and its comparison with other adsorbents. J. Mol. Liq. 2015, 212, 266–271. [Google Scholar] [CrossRef]
- El-Aassar, M.R.; Hassan, H.S.; Elkady, M.F.; Masoud, M.S.; Elzain, A.A. Isothermal, kinetic, and thermodynamic studies on copper adsorption on modified styrene acrylonitrile copolymer. Int. J. Environ. Sci. Technol. 2019, 16, 7037–7048. [Google Scholar] [CrossRef]
- Elzain, A.A.; El-Aassar, M.R.; Hashem, F.S.; Mohamed, F.M.; Ali, A.S.M. Removal of methylene dye using composites of poly(styrene-co-acrylonitrile) nanofibers impregnated with adsorbent materials. J. Mol. Liq. 2019, 291, 111335. [Google Scholar] [CrossRef]
- Tanyol, M.; Kavak, N.; Torğut, G. Synthesis of Poly(AN-co-VP)/Zeolite Composite and Its Application for the Removal of Brilliant Green by Adsorption Process: Kinetics, Isotherms, and Experimental Design. Adv. Polym. Technol. 2019, 2019, 8482975. [Google Scholar] [CrossRef]
- Cheenmatchaya, A.; Kungwankunakorn, S. Preparation of Activated Carbon Derived from Rice Husk by Simple Carbonization and Chemical Activation for Using as Gasoline Adsorbent. Int. J. Environ. Sci. Dev. 2014, 5, 171–175. [Google Scholar] [CrossRef] [Green Version]
- Geçgel, Ü.; Üner, O.; Gökara, G.; Bayrak, Y. Adsorption of cationic dyes on activated carbon obtained from waste Elaeagnus stone. Adsorpt. Sci. Technol. 2016, 34, 512–525. [Google Scholar] [CrossRef] [Green Version]
- Eldeeb, T.M.; El Nemr, A.; Khedr, M.H.; El-Dek, S.; Imam, N.G. Novel three-dimensional chitosan-carbon nanotube—PVA nanocomposite hydrogel for removal of Cr6+ from wastewater. Desalination Water Treat. 2020, 184, 25366. [Google Scholar] [CrossRef]
- Mohy Eldin, M.S.; Abu-Saied, M.A.; Tamer, T.M.; Youssef, M.E.; Hashem, A.I.; Sabet, M.M. Development of polystyrene based nanoparticles ions exchange resin for water purification applications. Desalination Water Treat. 2016, 57, 14810–14823. [Google Scholar] [CrossRef]
- Shah, A.K.; Ali, Z.M.; Memon, A.R.; Laghari, A.J.; Mughal, M.A.; Farman, S.; Shah, A.; Saleem, H. Exploitation of Low Cost Coal Fly Ash Adsorbent with Coagulants for the Treatment of Industrial Complex Nature Dyes Wastewater. Int. J. Sci. Eng. Res. 2013, 4, 109–119. [Google Scholar]
- Ghoneim, M.M.; El-Desoky, H.S.; El-Moselhy, K.M.; Amer, A.; Abou El-Naga, E.H.; Mohamedein, L.I.; Al-Prol, A.E. Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca. Egypt. J. Aquat. Res. 2014, 40, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part II.—Liquids. J. Frankl. Inst. 1917, 184, 721. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Über die adsorption in losungen (Adsorption in Solution). Z. Phys. Chem. 1906, 57, 1100–1107. [Google Scholar]
- Ofomaja, A.E. Equilibrium sorption of methylene blue using mansonia wood sawdust as biosorbent. Desalinat. Water Treat. 2009, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Halsey, G. Physical adsorption on non-uniform surfaces. J. Chem. Phys. 1948, 16, 931–937. [Google Scholar] [CrossRef]
- El Nemr, A. Pomegranate husk as an adsorbent in the removal of toxic chromium from wastewater. Chem. Ecol. 2007, 23, 409–425. [Google Scholar] [CrossRef]
- Machado, F.M.; Bergmann, C.P.; Lima, E.C.; Royer, B.; De Souza, F.E.; Jauris, I.M.; Fagan, S.B. Adsorption of Reactive Blue 4 dye from water solutions by carbon nanotubes: Experiment and theory. Phys. Chem. Chem. Phys 2012, 14, 11139–11153. [Google Scholar] [CrossRef] [PubMed]
- Machado, F.M.; Bergmann, C.P.; Lima, E.C.; Adebayo, M.A.; Fagan, S.B. Adsorption of a textile dye from aqueous solutions by carbon nanotubes. Mater. Res. 2014, 17, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Maryam, M.; Suriani, A.B.; Shamsudin, M.S.; Rusop, M. BET analysis on carbon nanotubes: Comparison between single and double stage thermal CVD method. In Proceedings of the Advanced Materials Research; Trans Tech Publications: Kapellweg, Switzerland, 2013; Volume 626, pp. 289–293. [Google Scholar]
- Romantsova, I.V.; Burakov, A.E.; Kucherova, A.E.; Neskoromnaya, E.A.; Babkin, A.V.; Tkachev, A.G. Liquid-phase adsorption of an organic dye on non-modified and nanomodified activated carbons: Equilibrium and kinetic analysis. Adv. Mater. Technol. 2016, 1, 42–48. [Google Scholar] [CrossRef]
- Cao, A.; Xu, C.; Liang, J.; Wu, D.; Wei, B. X-ray diffraction characterization on the alignment degree of carbon nanotubes. Chem. Phys. Lett. 2001, 344, 13–17. [Google Scholar] [CrossRef]
- Hanbali, G.; Jodeh, S.; Hamed, O.A.; Bol, R. Magnetic Multiwall Carbon Nanotube Decorated with Novel Functionalities: Synthesis and Application as Adsorbents for Lead Removal from Aqueous Medium. Processes 2020, 8, 986. [Google Scholar] [CrossRef]
- Dutta, D.P.; Venugopalan, R.; Chopade, S. Manipulating Carbon Nanotubes for Efficient Removal of Both Cationic and Anionic Dyes from Wastewater. ChemistrySelect 2017, 2, 3878–3888. [Google Scholar] [CrossRef]
- Heneash, A.M.; Alprol, A.E.; Abd El-Hamid, H.T.; Khater, M.; El Damhogy, K.A. Assessment of water pollution induced by anthropogenic activities on zooplankton community in Mariout Lake using statistical simulation. Arab. J. Geosci. 2021, 14, 641. [Google Scholar] [CrossRef]
- Ashour, M.; Mabrouk, M.; Abo-Taleb, H.A.; Sharawy, Z.Z.; Ayoub, H.F.; Van Doan, H.; Davies, S.J.; El-Haroun, E.; Goda, A.A. A liquid seaweed extract (TAM®) improves aqueous rearing environment, diversity of zooplankton community, whilst enhancing growth and immune response of Nile tilapia, Oreochromis niloticus, challenged by Aeromonas hydrophila. Aquaculture 2021, 543, 736915. [Google Scholar] [CrossRef]
- Rajabi, M.; Mahanpoor, K.; Moradi, O. RSC Advances Removal of dye molecules from aqueous solution by carbon nanotubes and carbon nanotube functional groups: Critical review. RSC Adv. 2017, 7, 47083–47090. [Google Scholar] [CrossRef] [Green Version]
- Abdelkarim, S.; Mohammed, H.; Nouredine, B. Sorption of Methylene Blue Dye from Aqueous Solution Using an Agricultural Waste. Trends Green Chem. 2017, 3, 4. [Google Scholar] [CrossRef]
- Konicki, W.; Pełech, I.; Mijowska, E.; Jasińska, I. Adsorption of anionic dye Direct Red 23 onto magnetic multi-walled carbon nanotubes-Fe3C nanocomposite: Kinetics, equilibrium and thermodynamics. Chem. Eng. J. 2012, 210, 87–95. [Google Scholar] [CrossRef]
- Ghaedi, M.; Shojaeipour, E.; Ghaedi, A.M.; Sahraei, R. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: Artificial neural network modeling and genetic algorithm optimization. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 142, 135–149. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, R.; Nayak, A.; Saleh, A.; Barakat, M.A. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Adv. Colloid Interface Sci. 2013, 194, 24–34. [Google Scholar] [CrossRef]
- Amuda, O.S.; Olayiwola, A.O.; Alade, A.O. Adsorption of Methylene Blue from Aqueous Solution Using Steam-Activated Carbon Produced from Lantana camara Stem. J. Environ. Prot. 2014, 5, 1352–1363. [Google Scholar] [CrossRef] [Green Version]
- Abualnaja, K.M.; Alprol, A.E.; Abu-Saied, M.A.; Mansour, A.T.; Ashour, M. Studying the Adsorptive Behavior of Poly(Acrylonitrile-co-Styrene) and Carbon Nanotubes (Nanocomposites) Impregnated with Adsorbent Materials towards Methyl Orange Dye. Nanomaterials 2021, 11, 1144. [Google Scholar] [CrossRef]
- Abualnaja, K.M.; Alprol, A.E.; Ashour, M.; Mansour, A.T. Influencing Multi-Walled Carbon Nanotubes for the Removal of Ismate Violet 2R Dye from Wastewater: Isotherm, Kinetics, and Thermodynamic Studies. Appl. Sci. 2021, 11, 4786. [Google Scholar] [CrossRef]
- Abu-Saied, M.A.; Abdel-Halim, E.S.; Fouda, M.M.G.; Al-Deyab, S.S. Preparation and Characterization of Iminated Polyacrylonitrile for the Removal of Methylene Blue from Aqueous Solutions. Int. J. Electrochem. Sci. 2013, 8, 5121–5135. [Google Scholar]
- Sulaymon, A.H.; Ebrahim, S.E.; Abdullah, S.M.; Al-Musawi, T.J. Removal of lead, cadmium, and mercury ions using biosorption. Desalination Water Treat. 2010, 24, 344–352. [Google Scholar] [CrossRef]
- Abate, G.Y.; Alene, A.N.; Habte, A.T.; Getahun, D.M. Adsorptive removal of malachite green dye from aqueous solution onto activated carbon of Catha edulis stem as a low cost bio-adsorbent. Environ. Syst. Res. 2020, 9, 29. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Abdel-Ghani, N.E.-D.T.; El-Chaghaby, G.A. The use of low cost and environment friendly materials for the removal of heavy metals from aqueous solutions. Curr. World Environ. 2008, 3, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Dada, A.O.; Olalekan, A.P.; Olatunya, A.M.; DADA, O. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk. IOSR J. Appl. Chem. 2012, 3, 38–45. [Google Scholar] [CrossRef]
- Kumar, Y.P.; King, P.; Prasad, V.S.R.K. Removal of copper from aqueous solution using Ulva fasciata sp.—A marine green algae. J. Hazard. Mater. 2006, 137, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Kooh, M.R.R.; Dahri, M.K.; Lim, L.B.L. The removal of rhodamine B dye from aqueous solution using Casuarina equisetifolia needles as adsorbent. Cogent Environ. Sci. 2016, 2. [Google Scholar] [CrossRef]
- Özacar, M.; Sengil, I.A. Application of kinetic models to the sorption of disperse dyes onto alunite. Colloids Surf. A Physicochem. Eng. Asp. 2004, 242, 105–113. [Google Scholar] [CrossRef]
- Adeyi, A.A.; Jamil, S.N.A.M.; Abdullah, L.C.; Choong, T.S.Y.; Lau, K.L.; Abdullah, M. Adsorptive Removal of Methylene Blue from Aquatic Environments Using Thiourea-Modified Poly(Acrylonitrile-co-Acrylic Acid). Materials 2019, 12, 1734. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Zhao, X.; Yang, H.; Chen, X.; Yang, Q.; Yu, L. Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci. Total Environ. 2014, 482–483, 241–251. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, F.; Chen, M.; Xu, Z.; Zhu, Z. Bioresource Technology Adsorption behavior of methylene blue on carbon nanotubes. Bioresour. Technol. 2010, 101, 3040–3046. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, W.; Chen, C.; Wang, X. Adsorption of methyl orange dye onto multiwalled carbon nanotubes. Procedia Environ. Sci. 2013, 18, 890–895. [Google Scholar] [CrossRef] [Green Version]
- Eldin, M.M.; El-Sakka, S.; El-Masry, M.; Abdel-Gawad, I.; Garybe, S. Methylene blue removal by nano-poly acrylonitrile particles: Modelling and formulation studies. Desalinat. Water Treat. 2020, 178, 322–336. [Google Scholar] [CrossRef]
Isotherm | Nonlinear | Parameters | Ref. |
---|---|---|---|
Langmuir | qe: capacity of adsorption at equilibrium; qmax: maximum sorption capacity, b: Langmuir constant. RL: the dimensionless equilibrium parameter | [27] | |
RL =1 / (1+ bCi) | |||
Freundlich | Kf: Freundlich constant; n: adsorption intensity | [28] | |
Halsey | Ln qe Ln Ce | n and K are Halsey constants. | [30] |
Tempkin | B is Tempkin constant = (RT/b, J mol-1) and related to the heat of adsorption, which T is absolute temperature (K); R (8.314 J/mol K) is the ideal gas constant, and A is the equilibrium binding constant (L min−1) related to the higher binding energy. | [31] |
Nanocomposite | Angle | Mean (nm) |
---|---|---|
MWCNT | 11.1° | 994.0 |
P (AN-co-St)/AC | 11.1° | 450.5 |
P (AN-co-St) | 11.1° | 56.6 |
Temperature (°C) | ∆Go (kJ mol−1) | ∆H° (J mol−1) | ΔS° (J mol−1) | |||
---|---|---|---|---|---|---|
25 | MWCNTs | P(AN-co-St)/AC | MWCNTs | P(AN-co-St)/AC | MWCNTs | P(AN-co-St)/AC |
−17.226 | −13.260 | 392.29 | 273 | 4.955 | −2.071 | |
35 | −17.141 | −15.939 | ||||
45 | −16.825 | −20.811 | ||||
55 | −12.803 | −27.226 |
Isotherm model | Parameters | MWCNT | P(AN-co-St)/AC |
---|---|---|---|
Langmuir | R2 | 0.987 | 0.998 |
qmax (mg g−1) | 256.41 | 30.30 | |
b | 0.29 | 0.0063 | |
RL | 0.008 | 0.814 | |
Freundlich | R2 | 0.732 | 0.996 |
1/n | 0.56 | 0.725 | |
Kf | 5.57 | 24.02 | |
Tempkin | R2 | 0.928 | 0.953 |
A | 64.06 | 2.10 | |
B | 13.36 | 32.05 | |
bT | 185.44 | 77.29 | |
Halsey | R2 | 0.876 | 0.996 |
1/nH | 0.3006 | 0.725 | |
KH | 82.51 | 34.21 |
Models | Equation | Definition | Ref |
---|---|---|---|
Pseudo first order (PFO) | Log (qe-qt) = log qe − (k1/2.303)t | qe, qt are, respectively, represent adsorption capacity at equilibrium and at time t (mg g−1). k1: pseudo first-order rate constant (min−1) | [55] |
Pseudo second order (PSO) | t/qt = 1/K2qe2 + (1/qe) t | k2 :the pseudo second-order rate constant (g mg−1 min) | [56] |
Intraparticle diffusion (IPD) | qt = Kdif t1/2 + C | C: the intercept in addition; Kdif: the intraparticle diffusion rate constant (mg g−1 min1/2) | [57] |
Model | Parameters | Values | |
---|---|---|---|
MWCNT | P (AN-co-ST)/AC | ||
First-order kinetic | qe (exp.) (mg g−1) | 33.64 | 31 |
qe (calc.) (mg g−1) | 61.51 | 39.61 | |
K1 (1/min) | 0.043 | 0.0651 | |
R2 | 0.167 | 0.666 | |
Pseudo second-order kinetic | qe (exp.) (mg g−1) | 33.64 | 31 |
qe (calc.) (mg g−1) | 25.51 | 21.36 | |
K2 (mg g−1 min−1) | 0.054 | 0.047 | |
R2 | 0.998 | 0.905 | |
Intraparticle diffusion | K | −0.032 | 0.688 |
C | 0.791 | 18.698 | |
R2 | 0.178 | 0.066 |
Adsorbent | Dye | Adsorption Capacity (mg g−1) | Ref. |
---|---|---|---|
Oxidize MWCNTs | Bromothymol blue | 55 | [59] |
MWCNTs | methylene blue | 64.7 | [60] |
MWCNTs | Methyl orange | 52.86 | [61] |
MWNTs | Congo red dye | 352.11 | [17] |
Carbon nanotubes | methyl orange | 78.07 | [15] |
poly acrylonitrile | Methylene blue | 8.7600 | [62] |
P (styrene-co-acrylonitrile) | Methylene blue | 17.77 | [19] |
Poly (AN-co-VP)/Zeolite | Brilliant green | 23.81 | [20] |
P (AN-co-St)/AC | Reactive red 35 | 256.41 | This study |
MWCNTs | Reactive red 35 | 30.30 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abualnaja, K.M.; Alprol, A.E.; Abu-Saied, M.A.; Ashour, M.; Mansour, A.T. Removing of Anionic Dye from Aqueous Solutions by Adsorption Using of Multiwalled Carbon Nanotubes and Poly (Acrylonitrile-styrene) Impregnated with Activated Carbon. Sustainability 2021, 13, 7077. https://doi.org/10.3390/su13137077
Abualnaja KM, Alprol AE, Abu-Saied MA, Ashour M, Mansour AT. Removing of Anionic Dye from Aqueous Solutions by Adsorption Using of Multiwalled Carbon Nanotubes and Poly (Acrylonitrile-styrene) Impregnated with Activated Carbon. Sustainability. 2021; 13(13):7077. https://doi.org/10.3390/su13137077
Chicago/Turabian StyleAbualnaja, Khamael M., Ahmed E. Alprol, M. A. Abu-Saied, Mohamed Ashour, and Abdallah Tageldein Mansour. 2021. "Removing of Anionic Dye from Aqueous Solutions by Adsorption Using of Multiwalled Carbon Nanotubes and Poly (Acrylonitrile-styrene) Impregnated with Activated Carbon" Sustainability 13, no. 13: 7077. https://doi.org/10.3390/su13137077
APA StyleAbualnaja, K. M., Alprol, A. E., Abu-Saied, M. A., Ashour, M., & Mansour, A. T. (2021). Removing of Anionic Dye from Aqueous Solutions by Adsorption Using of Multiwalled Carbon Nanotubes and Poly (Acrylonitrile-styrene) Impregnated with Activated Carbon. Sustainability, 13(13), 7077. https://doi.org/10.3390/su13137077