Patterns of Nutrient Dynamics within and below the Rootzone of Collard Greens Grown under Different Organic Amendment Types and Rates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field
2.2. Organic Amendments, Experimental Design, and Agronomic Practices
2.3. Data Collection and Analysis
3. Results and Discussions
3.1. Macronutrients within the Rootzone
3.2. Macronutrients below the Rootzone
3.3. Micronutrients within the Rootzone
3.4. Micronutrients below the Rootzone
3.5. Effect of Rate of Amendment Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kahlon, T.S.; Chiu, M.C.M.; Chapman, M.H. Steam cooking significantly improves in vitro bile acid binding of collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage. Nutr. Res. 2008, 28, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Talwinder, S.K.; Rebecca, R.M.; Mei-Chin, M.C. In vitro bile acid binding of mustard greens, kale, broccoli, cabbage and green bell pepper improves with sautéing compared with raw or other methods of preparation. Food Nutr. Sci. 2012, 3, 951–958. [Google Scholar]
- Takkar, P.N. Micronutrients research and sustainable agricultural productivity in India. J. Indian Soc. Soil Sci. 1996, 44, 562–581. [Google Scholar]
- Lynch, D.H. Nutrient Cycling and Soil Health in Organic Cropping Systems—Importance of Management Strategies and Soil Resilience. Sustain. Agric. Res. 2015, 4, 80–88. [Google Scholar] [CrossRef]
- Horel, Á.; Gelybó, G.; Potyó, I.; Pokovai, K.; Bakacsi, Z. Soil Nutrient Dynamics and Nitrogen Fixation Rate Changes over Plant Growth in Temperate Soil. Agronomy 2019, 9, 179. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.K.; Ramesh, P.; Bandyopadhyay, K.K.; Tripathi, A.K.; Hati, K.M.; Misra, A.K.; Acharya, C.L. Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer-NPK on three cropping systems in vertisols of semi-arid tropics. I. Crop yields and system performance. Bioresour. Technol. 2004, 95, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Moore, P.A., Jr.; Daniel, T.C.; Gilmour, J.T.; Shreve, B.R.; Edwards, D.R.; Wood, B.H. Decreasing metal runoff from poultry litter with aluminum sulfate. J. Environ. Qual. 1998, 27, 92–99. [Google Scholar] [CrossRef]
- Sims, J.T. Characteristics of animal wastes and waste amended soils: An overview of the agricultural and environmental issues. In Animal Waste and the Land-Water Interface, 1st ed.; Steele, K.F., Ed.; CRC: Boca Raton, FL, USA, 1995; pp. 1–14. [Google Scholar]
- Reiter, M.S.; Daniel, T.C.; Slaton, N.A.; Norman, R.J. Nitrogen Availability from granulated fortified poultry litter fertilizers. Soil Sci. Soc. Am. J. 2014, 78, 861–867. [Google Scholar] [CrossRef]
- Aguilera, S.M.; Borie, G.; Peirano, P.; Mora, M.D.; Demanet, R. Caracterización de purines para su potencial uso como fertilizante y mejorador de suelos. Agric. Téc. 1995, 55, 251–256. [Google Scholar]
- Chambers, B.; Nicholson, N.; Smith, K.; Pain, B.; Cumby, T.; Scotford, I. Managing Livestock Manures: Making Better Use of Livestock Manures on Arable Land; Booklet 1; Ministry of Agriculture: London, UK, 1999; p. 25.
- Pain, B. Control and utilization of livestock manures. In Grass: Its Production and Utilization, 3rd ed.; Hopkins, A., Ed.; British Grassland Society, Blackwell Science Ltd.: Oxford, UK, 2000; pp. 343–364. [Google Scholar]
- De Mendonça Costa, M.S.S.; Cestonaro, T.; de Mendonça Costa, L.A.; Rozatti, M.A.T.; Carneiro, L.J.; Pereira, D.C.; Lorin, H.E.F. Improving the nutrient content of sheep bedding compost by adding cattle manure. J. Clean. Prod. 2015, 86, 9–14. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef]
- Archer, M.J. Marketing biosolids: The experience of Milorganite with special reference to Canada. In Proceedings of the Waste Water Biosolids Sustainability: Technical, Managerial, and Public Synergy, Moncton, NB, Canada, 24–27 June 2007; pp. 1017–1019. [Google Scholar]
- Mailapalli, D.R.; Thompson, A.M. Polyacrylamide coated Milorganite™ and gypsum for controlling sediment and phosphorus loads. Agric. Water Manag. 2011, 101, 27–34. [Google Scholar] [CrossRef]
- Harrison, E.Z.; Oakes, S.R. Investigation of alleged health incidents associated with land application of sewage sludges. New Solut. 2002, 12, 387–408. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, G.A.; Sarkar, D.; Brinton, S.R.; Elliott, H.A.; Martin, F.G. Phytoavailability of biosolids phosphorus. J. Environ. Qual. 2004, 33, 703–712. [Google Scholar] [CrossRef]
- Chinualt, S.L.; O’Connor, G.A. Phosphorus release from a biosolids-amended sandy spodosol. J. Environ. Qual. 2008, 37, 937–943. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Fares, A.; Abbas, F.; Deenik, J.L. Nutrient concentrations within and below rootzones from applied chicken manure in selected Hawaiian soils. J. Environ. Sci. Health B 2009, 44, 828–843. [Google Scholar] [CrossRef]
- Elliott, H.A.; Brandt, R.C.; O’Connor, G.A. Runoff phosphorus losses from surface- applied biosolids. J. Environ. Qual. 2005, 34, 1632–1639. [Google Scholar] [CrossRef] [Green Version]
- Gerardeaux, E.; Jordan-Meille, L. Effect of carbon assimilation on dry weight production and partitioning during vegetative growth. Plant Soil 2009, 324, 329–343. [Google Scholar] [CrossRef]
- Sparks, D.L. Potassium Dynamics in Soils. In Advances in Soil Science; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1987; Volume 6. [Google Scholar]
- Fares, A.; Abbas, F.; Ahmad, A.; Deenik, J.L.; Safeeq, M. Response of selected soil physical and hydrologic properties to manure amendment rates, levels, and types. Soil Sci. 2008, 173, 522–533. [Google Scholar] [CrossRef]
- Paramasivam, S.; Richards, K.A.; Alva, A.K.; Richards, A.M.; Sajwan, K.S.; Jayaraman, K.; Heanacho, A.; Afolabi, J. Evaluation of poultry litter amendment to agricultural soils: Leaching losses and partitioning of trace elements in collard greens. Water Air Soil Poll. 2009, 202, 229–243. [Google Scholar] [CrossRef]
- Kebrom, T.H.; Douglas, R.; Bandara, S.; Woldesenbet, S.; Carson, L.; Kidane, N. Identification of Phytotoxic Levels of Copper and Nickel in Commercial Organic Soil Amendments Recycled from Poultry Farms and Municipal Wastes. Bull Environ. Contam Toxicol. 2020, 105, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Tanha, M. Investigation of Soil Hydro-Structural Parameters Under Various Soil Management Practices and Feasibility of Defining a Soil Quality Indicator: A Case Study. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2019. [Google Scholar]
- Bradley, K.; Williams, E.A.; Bailey, D.; Moussavi, M.; Bayabil, H.; El-Hassan, A.; Awal, R.; Fares, A.; Myers, D.; Barouei, J. Organic Amendments Influence the Rhizosphere and Phyllo-sphere Microbiota Profiles of Collard Greens Grown in Southeast Texas. In Proceedings of the International Association for Food Protection (IAFP) Annual Meeting, Louisville, KY, USA, 21–24 July 2019. [Google Scholar]
- Kebrom, T.H.; Woldesenbet, S.; Bayabil, H.K.; Garcia, M.; Gao, M.; Ampim, P.; Awal, R.; Fares, A. Evaluation of phytotoxicity of three organic amendments to collard greens using the seed germination bioassay. Environ. Sci. Pollut. Res. 2019, 26, 5454–5462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weyers, S.L.; Archer, D.W.; Johnson, M.F.; Wilts, A.R. Management Drives Differences in Nutrient Dynamics in Conventional and Organic Four-Year Crop Rotation Systems. Agronomy 2020, 10, 764. [Google Scholar] [CrossRef]
- Ray, R.L.; Griffin, R.W.; Fares, A.; Elhassan, A.; Awal, R.; Woldesenbet, S.; Risch, E. Soil CO2 emission in response to organic amendments, temperature, and rainfall. Sci. Rep. 2020, 10, 5849. [Google Scholar] [CrossRef] [Green Version]
- Ukalska-Jaruga, A.; Siebielec, G.; Siebielec, S.; Pecio, M. The Impact of Exogenous Organic Matter on Wheat Growth and Mineral Nitrogen Availability in Soil. Agronomy 2020, 10, 1314. [Google Scholar] [CrossRef]
- Moyo, M.; van Rooyen, A.; Bjornlund, H. The dynamics between irrigation frequency and soil nutrient management: Transitioning smallholder irrigation towards more profitable and sustainable systems in Zimbabwe. Int. J. Water Resour. Dev. 2020, 36 (Suppl. 1), S102–S126. [Google Scholar] [CrossRef]
- van Rooyen, A.; Ramshaw, P.; Moyo, M.; Stirzaker, R.; Bjornlund, H. Theory and application of agricultural innovation platforms for improved irrigation scheme management in southern Africa. Int. J. Water Resour. Dev. 2017, 33, 804–823. [Google Scholar] [CrossRef] [Green Version]
- Bjornlund, H.; Parry, K.; Pittock, J.; Stirzaker, R.; Van Rooyen, A.F.; Moyo, M.; Mdemu, M.; de Sousa, W.; Cheveia, E.; Munguambe, P.; et al. Transforming Smallholder Irrigation into Profitable and self-Sustaining Systems in Southern Africa. Technical Report. K-water and the International Water Resources Association (IWRA). 2018. Available online: http://oar.icrisat.org/10966/1/SWM-report-final-web.pdf (accessed on 12 January 2020).
- Parry, K.; van Rooyen, A.; Bjornlund, H.; Kissoly, L.; Moyo, M.; de Sousa, W. The importance of learning processes in transforming smallholder irrigation schemes. Int. J. Water Resour. Dev. 2020, 36 (Suppl. 1), S199–S223. [Google Scholar] [CrossRef]
- van Rooyen, A.; Moyo, M.; Bjornlund, H.; Dube, T.; Parry, K.; Stirzaker, R. Identifying leverage points to transition dysfunctional irrigation schemes towards complex adaptive systems. Int. J. Water Resour. Dev. 2020, 36 (Suppl. 1), S171–S198. [Google Scholar] [CrossRef]
- Mahmood, F.; Khan, I.; Ashraf, U.; Shahzad, T.; Hussain, S.; Shahid, M.; Abid, M.; Ullah, S. Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. J. Soil Sci. Plant Nutr. 2017, 17, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Wortman, S.E.; Holmes, A.A.; Miernicki, E.; Knoche, K.; Pittelkow, C.M. First-season crop yield response to organic soil amendments: A meta-analysis. Agron. J 2017, 109, 1210–1217. [Google Scholar] [CrossRef] [Green Version]
- Jain, N.K.; Meena, H.N.; Bhaduri, D. Improvement in Productivity, Water-Use Efficiency, and Soil Nutrient Dynamics of Summer Peanut (Arachishypogaea L.) through Use of Polythene Mulch, Hydrogel, and Nutrient Management. Commun. Soil Sci. Plant Anal. 2017, 48, 549–564. [Google Scholar] [CrossRef]
- McCauley, A.; Jones, C.; Jacobsen, J. Soil pH and Organic Matter. Nutr. Manag. Module 2009, 8, 1–12. [Google Scholar]
- Basso, B.; Ritchie, J.T. Impact of compost, manure, and inorganic fertilizer on nitrate leaching and yield for a 6-year maize–Alfalfa rotation in Michigan. Agric. Ecosyst. Environ. 2005, 108, 329–341. [Google Scholar] [CrossRef]
- Van Es, H.M.; Sogbedji, J.M.; Schindelbeck, R.R. Effect of manure application timing, crop, and soil type on nitrate leaching. J. Environ. Qual. 2006, 35, 670–679. [Google Scholar] [CrossRef]
- Eghball, B.; Wienhold, B.J.; Gilley, J.E.; Eigenberg, R.A. Mineralization of manure nutrients. J. Soil Water Conserv. 2002, 57, 470–473. [Google Scholar]
- Eghball, B. Nitrogen mineralization from field-applied beef cattle feedlot manure or compost. Soil Sci. Soc. Am. J. 2000, 64, 2024–2030. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Khera, T.S.; Doran, J.W. Mineralization and denitrification in upland, nearly saturated and flooded subtropical soil II. Effect of organic manures varying in N content and C: N ratio. Biol. Fert. Soils. 2000, 31, 168–174. [Google Scholar] [CrossRef]
- Alleoni, L.R.; Brinton, S.R.; O’Connor, G.A. Runoff and leachate losses of phosphorus in a sandy spodosol amended with biosolids. J. Environ. Qual. 2008, 37, 259–265. [Google Scholar] [CrossRef]
- Tinker, P.B. Role of rhizosphere microorganisms in phosphorous uptake by plants. In The Role of Phosphorus in Agriculture; Kwasahneh, F.E., Sample, E.C., Kamprath, E.J., Eds.; American Society of Agronomy: Madison, WI, USA, 1980; pp. 617–654. [Google Scholar]
- Hayman, D.S. Endomycorrhizas. In Interactions between Non-Pathogenic Micro-Organisms and Plants; Dommergues, Y.R., Krupa, S.V., Eds.; Elsevier: Amsterdam, The Netherlands, 1978; pp. 401–442. [Google Scholar]
- Arnold, P.T.; Kapustka, L.A. VA mycorrhizal colonization and spore populations in an abandoned agricultural field after five years of sludge application. Ohio J. Sci. 1987, 87, 112–114. [Google Scholar]
- Elrashidi, M.A.; Mays, M.D.; Fares, A.; Seybold, C.A.; Harder, J.L.; Peaslee, S.D.; Van Neste, P. Loss of nitrate-nitrogen by runoff and leaching for agricultural watersheds. Soil Sci. 2005, 170, 969–984. [Google Scholar] [CrossRef] [Green Version]
- Leytem, A.B.; Williams, P.; Zuidema, S.; Martinez, A.; Chong, Y.L.; Vincent, A.; Vincent, A.; Cronan, D.; Kliskey, A.; Wulfhorst, J.D.; et al. Cycling Phosphorus and Nitrogen through Cropping Systems in an Intensive Dairy Production Region. Agronomy 2021, 11, 1005. [Google Scholar] [CrossRef]
- Alharbi, S.; Majrashi, A.; Ghoneim, A.M.; Ali, E.F.; Modahish, A.S.; Hassan, F.A.S.; Eissa, M.A. A New Method to Recycle Dairy Waste for the Nutrition of Wheat Plants. Agronomy 2021, 11, 840. [Google Scholar] [CrossRef]
- Eissa, M.A.; Nasralla, N.N.; Gomah, N.H.; Osman, D.M.; El-Derwy, Y.M. Evaluation of natural fertilizer extracted from expired dairy products as a soil amendment. J. Soil Sci. Plant Nutr. 2018, 18, 694. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H.; Hergert, G.W.; Nielsen, R.A. Cattle manure application reduces soil compactibility and increases water retention after 71 years. Soil Sci. Soc. Am. J. 2015, 79, 212–223. [Google Scholar] [CrossRef]
- Motavalli, P.P.; Kelling, K.A.; Converse, J.C. First-year nutrient availability from injected dairy manure. J. Environ. Qual. 1989, 18, 180–185. [Google Scholar] [CrossRef]
- Hepperly, P.; Lotter, D.; Ulsh, C.Z.; Seidel, R.; Reider, C. Compost, manure and synthetic fertilizer influences crop yields, soil properties, nitrate leaching and crop nutrient content. Compos. Sci. Util. 2009, 17, 117–126. [Google Scholar] [CrossRef]
- Afzaal, H.; Farooque, A.A.; Abbas, F.; Bishnu, A.; Esau, T. Precision Irrigation Strategies for Sustainable Water Budgeting of Potato Crop in Prince Edward Island. Sustainability 2020, 12, 2419. [Google Scholar] [CrossRef] [Green Version]
- Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Munoz-Carpena, R.; Icerman, J. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agric. Water Manag. 2009, 96, 1247–1258. [Google Scholar] [CrossRef]
- Kiggundu, N.; Migliaccio, K.W.; Schaffer, B.; Li, Y.; Crane, J.H. Water savings, nutrient leaching, and fruit yield in a young avocado orchard as affected by irrigation and nutrient management. Irrig. Sci. 2012, 30, 275–286. [Google Scholar] [CrossRef]
- Alvarenga, P.; Mourinha, C.; Farto, M.; Santos, T.; Palma, P.; Sengo, J.; Morais, M.C.; Cunha-Queda, C. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors. Waste Manag. 2015, 40, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Foster, L.G. A Case Study in Toxic Tort Causation: Scientific and Legal Standards Work against Recovery for Vicitms. Envtl. L 1988, 19, 141. [Google Scholar]
- Emino, E.R.; Warman, P.R. Biological assay for compost quality. Compos. Sci Util 2004, 12, 342–348. [Google Scholar] [CrossRef]
- Barral, M.T.; Paradelo, R. A review on the use of phytotoxicity as a compost quality indicator. Dyn. Soil Dyn. Plant 2011, 5, 36–44. [Google Scholar]
- Bolan, N.S.; Szogi, A.A.; Chuasavathi, T.; Seshadri, B.; Rothrock, M.J.; Panneerselvam, P. Uses and management of poultry litter. World Poult. Sci. J. 2010, 66, 673–698. [Google Scholar] [CrossRef] [Green Version]
- Yazdankhah, S.; Rudi, K.; Bernhoft, A. Zinc and copper in animal feed—Development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb. Ecol. Health Dis. 2014, 25, 25862. [Google Scholar] [CrossRef] [Green Version]
- Giudice, B.D.; Young, T.M. Mobilization of endocrine-disrupting chemicals and estrogenic activity in simulated rainfall runoff from land-applied biosolids. Environ. Toxicol. Chem. 2011, 30, 2220–2228. [Google Scholar] [CrossRef]
Depth (cm) | Soil Horizon and Texture | % | Ksat (cm/hr) | pH | ||
---|---|---|---|---|---|---|
Sand | Silt | Clay | ||||
0–18 | A—Fine sandy loam | 61–70 | 26–32 | 4.0–7.0 | 0.97 | 5.1–6.0 |
18–56 | E—Fine sandy loam | 51–62 | 29–40 | 6.0–9.0 | 5.6–6.5 | |
56–147 | Btc—Sandy clay loam | 45–52 | 17–31 | 22–37 | 5.1–6.5 | |
147–203 | Btcv—Sandy clay loam | 38–46 | 19–23 | 31–46 | 5.6–6.5 |
% | ppm | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OA * | N | P | K | Ca | Mg | B | Cu | Fe | Zn | Na | As | Cd | Cr | Pb | Hg | pH | EC ** |
CM | 3 | 2 | 3 | 10,632 | 3900 | 279 | 117 | 259 | 424 | 5558 | 1.9 | 0 | 4 | 0.9 | 1.9 | 7.8 | 5.8 |
DM | 0.5 | 0.5 | 0.5 | 9833 | 357 | 69 | 7 | 164 | 74 | 451 | 1.7 | 0.1 | 2 | 1.3 | 7.8 | 8.2 | 3.4 |
MG | 5 | 4 | 0 | 6140 | 2171 | 102 | 45 | 2154 | 220 | 851 | 2.9 | 0.2 | 18 | 15.2 | 0 | 6.1 | 3.8 |
Within-Rootzone Collection Time | Below-Rootzone Collection Time | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SOV | df | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 |
Block | 2 | Mg | |||||||||||
Type | 2 | K | P, K, Na | TN, P, | TN, P, K, Na, Mg, Ca | K | TN, P, Ca, Mg | TN | TN, Ca | ||||
Rate | 3 | K | P, K, Na, Ca, Mg | TN, P, K, Ca, Mg | TN, P, Na, Ca, Mg | TN, P, Na, Ca, Mg | TN, Na, Ca, Mg | P | P | TN, P, Ca, Mg | Ca, Mg | Ca, Mg | |
Type × Rate | 6 | P | P | TN, P | TN | K | |||||||
Error | 19 | ||||||||||||
Total | 32 |
Within-Rootzone Collection Time | Below-Rootzone Collection Time | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SOV | DF | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 |
Block | 2 | ||||||||||||
Type | 2 | B | B, Cu, Fe | B, Cu | B, Cu | B | B | Cu | Fe | ||||
Rate | 3 | B, Cu | B | Zn | Zn | Zn | |||||||
Type × Rate | 6 | B, Fe | B, Cu | B | Fe | ||||||||
Error | 19 | ||||||||||||
Total | 32 |
Application Rates | Within-Rootzone Collection Time | Below-Rootzone Collection Time | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | ||
C | Total nitrogen | - | - | 104 B | 56.8 B | 29.9 A | 14.2 B | - | - | - | 122 B | - | - |
HR | - | - | 196 A | 157 AB | 104 A | 61.5 A | - | - | - | 175 A | - | - | |
MR | - | - | 172 AB | 174 A | 103 A | 46.0 AB | - | - | - | 154 AB | - | - | |
LR | - | - | 107 AB | 73.1 AB | 41.0 AB | 14.8 B | - | - | - | 118 B | - | - | |
C | Phosphorous | - | 0.06 B | 0.05 B | 0.09 B | 0.05 B | - | 0.31 B | 0.04 B | 0.11 B | - | - | |
HR | - | 0.26 A | 0.19 A | 0.35 A | 0.30 A | - | 0.80 A | 0.15 A | 0.33 A | - | - | ||
MR | - | 0.13 B | 0.08 B | 0.22 AB | 0.15 AB | - | 0.52 AB | 0.06 AB | 0.19 AB | - | - | ||
LR | - | 0.09 B | 0.05 B | 0.15 AB | 0.09 B | - | 0.19 B | 0.05 AB | 0.11 B | - | - | ||
C | Potassium | 57.5 B | 6.49 B | 7.90 B | - | - | - | - | - | - | - | - | 1.44 AB |
HR | 144 A | 56.7 A | 34.7 A | - | - | - | - | - | - | - | - | 1.58 AB | |
MR | 120 A | 23.6 AB | 22.0 AB | - | - | - | - | - | - | - | - | 0.96 B | |
LR | 56.1 B | 2.88 B | 10.2 AB | - | - | - | - | - | - | - | - | 3.39 A | |
C | Sodium | - | 45.3 B | - | 39.2 B | 33.3 C | 33.7 B | - | - | - | - | - | - |
HR | - | 123 A | - | 116 A | 115 A | 128 A | - | - | - | - | - | - | |
MR | - | 98.0 AB | - | 113 A | 107 AB | 104 AB | - | - | - | - | - | - | |
LR | - | 53.5 AB | - | 62.5 AB | 51.4 BC | 50.4 B | - | - | - | - | - | NS | |
C | Calcium | - | 92.4 B | 119 B | 56.2 B | 38.6 C | 29.7 C | - | - | - | 122 B | 71.6 B | 101 B |
HR | - | 222 A | 250 A | 157 A | 134 A | 113 A | - | - | - | 175 A | 185 A | 189 A | |
MR | - | 199 AB | 220 A | 140 AB | 116 AB | 94.5 AB | - | - | - | 154 AB | 104 B | 135 B | |
LR | - | 118 AB | 146 A | 75.7 AB | 57.6 BC | 45.8 BC | - | - | - | 118 B | 71.6 B | 103 B | |
C | Magnesium | - | 23.0 B | 30.3 B | 14.3 B | 8.90 B | 7.35 C | - | - | - | 23.9 B | 15.3 B | 10.2 B |
HR | - | 61.0 A | 71.4 A | 50.3 A | 38.4 A | 36.0 A | - | - | - | 48.4 A | 46.6 A | 24.4 A | |
MR | - | 55.9 AB | 66.2 AB | 38.9 AB | 30.7 AB | 28.6 AB | - | - | - | 33.5 AB | 24.1 AB | 15.5 AB | |
LR | - | 28.9 B | 39.2 B | 20.6 AB | 15.3 AB | 11.7 BC | - | - | - | 24.1 B | 15.5 B | 13.4 AB |
Application Rates | Within-Rootzone Collection Time | Below-Rootzone Collection Time | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | ||
C | Boron | - | 0.07 B | 0.07 B | - | - | - | - | - | - | - | - | - |
HR | - | 0.18 A | 0.11 A | - | - | - | - | - | - | - | - | - | |
MR | - | 0.09 B | 0.09 B | - | - | - | - | - | - | - | - | - | |
LR | - | 0.08 B | 0.08 AB | - | - | - | - | - | - | - | - | - | |
C | Copper | - | 0 B | - | - | - | - | - | - | - | - | - | - |
HR | - | 0.03 A | - | - | - | - | - | - | - | - | - | - | |
MR | - | 0.01 AB | - | - | - | - | - | - | - | - | - | - | |
LR | - | 0.0003 B | - | - | - | - | - | - | - | - | - | - | |
C | Iron | - | - | - | - | - | - | - | - | - | - | - | - |
HR | - | - | - | - | - | - | - | - | - | - | - | - | |
MR | - | - | - | - | - | - | - | - | - | - | - | - | |
LR | - | - | - | - | - | - | - | - | - | - | - | - | |
C | Zinc | - | - | - | 0.03 B | 0.01 A | 0.02 B | - | - | - | - | - | - |
HR | - | - | - | 0.11 A | 0.12 A | 0.08 A | - | - | - | - | - | - | |
MR | - | - | - | 0.10 AB | 0.07 A | 0.05 AB | - | - | - | - | - | - | |
LR | - | - | - | 0.03 B | 0.01 A | 0.02 B | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awal, R.; Hassan, A.E.; Abbas, F.; Fares, A.; Bayabil, H.K.; Ray, R.L.; Woldesenbet, S. Patterns of Nutrient Dynamics within and below the Rootzone of Collard Greens Grown under Different Organic Amendment Types and Rates. Sustainability 2021, 13, 6857. https://doi.org/10.3390/su13126857
Awal R, Hassan AE, Abbas F, Fares A, Bayabil HK, Ray RL, Woldesenbet S. Patterns of Nutrient Dynamics within and below the Rootzone of Collard Greens Grown under Different Organic Amendment Types and Rates. Sustainability. 2021; 13(12):6857. https://doi.org/10.3390/su13126857
Chicago/Turabian StyleAwal, Ripendra, Almoutaz El Hassan, Farhat Abbas, Ali Fares, Haimanote K. Bayabil, Ram L. Ray, and Selamawit Woldesenbet. 2021. "Patterns of Nutrient Dynamics within and below the Rootzone of Collard Greens Grown under Different Organic Amendment Types and Rates" Sustainability 13, no. 12: 6857. https://doi.org/10.3390/su13126857
APA StyleAwal, R., Hassan, A. E., Abbas, F., Fares, A., Bayabil, H. K., Ray, R. L., & Woldesenbet, S. (2021). Patterns of Nutrient Dynamics within and below the Rootzone of Collard Greens Grown under Different Organic Amendment Types and Rates. Sustainability, 13(12), 6857. https://doi.org/10.3390/su13126857